

HIBERNATE	TIPS
MORE	THAN	70	SOLUTIONS	TO	COMMON
HIBERNATE	PROBLEMS

©	2017	Thorben	Janssen.	All	rights	reserved.
Thorben	Janssen
Hohe	Str.	34
01187	Dresden
Germany
http://www.thoughts-on-java.org

ISBN:	978-1544869179

Copy	Editor:	Nermina	Miller
Cover:	ebokks,	Hildesheim
Cover	Image:	BillionPhotos.com	–	fotolia.com

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system	 or	 transmitted	 in	 any	 form	 or	 by	 any	means,	without	 the	 prior	written
permission	 of	 the	 author,	 except	 in	 the	 case	 of	 brief	 quotations	 embedded	 in
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is

http://www.thoughts-on-java.org

sold	 without	 warranty,	 either	 express	 or	 implied.	 The	 author	 will	 not	 be	 held
liable	 for	any	damages	caused	or	alleged	 to	be	caused	directly	or	 indirectly	by
this	book.

FOREWORD

Undoubtedly,	 Hibernate	 ORM	 and	 JPA	 have	 a	 steep	 learning	 curve.	 You
develop	 a	 quick	 prototype,	 add	 a	 few	 annotations	 to	 your	 Java	 classes	 and
everything	 just	 works  —  things	 seem	 easy.	 But,	 as	 you	 try	 to	 tackle	 more
complex	mappings	 or	 resolve	 performance	 problems,	 you	 quickly	 realize	 that
you	 need	 a	 deeper	 understanding	 of	 Hibernate	 to	 implement	 a	 complete	 and
efficient	database	access	layer.

How	do	you	obtain	this	deeper	understanding?	The	Hibernate	documentation	is
useful,	and	we	always	suggest	that	users	read	it	all.	But,	that	is	a	daunting	task
because	 the	documentation	contains	 a	 lot	of	 content.	Also,	 the	 structure	of	 the
documentation	 is	 to	 describe	 individual	 parts	 of	 the	 solutions.	 However,
object/relational	mapping	is	a	very	complex	concept	---	it	is	simply	not	feasible
for	a	manual	to	cover	all	combinations	that	are	often	needed	to	solve	real-world
problems	and	implement	real-world	use	cases.

For	example,	you	might	not	remember	the	combination	of	annotations	needed	to
define	 a	 specific	mapping	 idea,	 or	 you’re	 just	wondering	 how	 to	 implement	 a
specific	use	case.	You	need	a	recipe	or	a	quick	tip	on	how	to	implement	the	task
you’re	 currently	working	 on.	 For	 such	 cases,	 users	 have	many	 options	 to	 find
solutions	 including	 Hibernate’s	 blogs,	 its	 user	 forums,	 its	 IRC	 channels,	 its
HipChat	 rooms,	 StackOverflow,	 and	 so	 on.	 Another	 great	 resource	 are	 the

numerous	 books	 on	 using	 Hibernate.	 Additionally	 a	 number	 of	 blogs	 exist,
dedicated	 to	 using	 Hibernate	 by	 community	 experts	 ---	 long-time	 Hibernate
power	users.	Many	of	 these	community	expert	blogs	focus	on	showing	how	to
use	Hibernate’s	existing	features	and	annotations	to	implement	specific	use	cases
or	how	to	research	solving	performance	problems.

Thorben	has	been	part	of	this	community	expert	group	for	a	long	time,	helping
Hibernate	users	via	his	blog	posts,	articles,	and	various	forums.	And	now	he	has
written	a	book.	And,	as	always,	Thorben	has	a	lot	of	great	Hibernate	insight	to
share.	This	 is	 the	 first	 book	on	Hibernate	 I	 have	 seen	 that	 takes	 an	FAQ-style
approach,	which	 is	 an	unusual	 structure.	Other	books	on	Hibernate,	 as	well	 as
the	Hibernate	documentation	itself,	take	the	same	basic	approach	to	teaching	---
they	explain	 the	 individual	pieces	 in	detail,	sequentially.	While	 this	 is	valuable
(and	 I’d	 argue	 critical)	 knowledge,	 it	 is	 often	hard	 for	new	users	 to	 apply	 this
sequential,	segmented	knowledge	to	resolve	more	complex	topics.

The	 FAQ	 approach	makes	 it	 easier	 for	 users	 to	 find	 help	 on	 common	 higher-
level	 concepts	 and	 topics.	 Both	 forms	 of	 knowledge	 are	 useful	 in	 learning
Hibernate.	 Together	 with	 the	 other	 listed	 resources,	 this	 book	 will	 be	 a	 great
addition	to	every	developer’s	Hibernate	toolbox.

Steve	Ebersole
Lead	Developer	-	Hibernate	ORM
Principal	Software	Engineer	-	Red	Hat,	Inc.

PREFACE

Hibernate	 is	 one	 of	 the	 most	 popular	 Java	 Persistence	 API	 (JPA)
implementations	 and	 also	 one	 of	 the	 most	 popular	 Java	 Object	 Relational
Mapping	(ORM)	frameworks	in	general.	It	helps	you	to	map	the	classes	of	your
domain	model	to	database	tables	and	automatically	generate	SQL	statements	to
update	 the	 database	 on	 object	 state	 transitions.	 That	 is	 a	 complex	 task,	 but
Hibernate	 makes	 it	 look	 easy.	 You	 just	 annotate	 your	 domain	 classes,	 and
Hibernate	takes	care	of	the	rest.	Or,	it	at	least	seems	like	that	in	the	beginning.

When	you’ve	used	Hibernate	for	a	while,	you	begin	to	recognize	that	you	need
to	do	more	than	just	add	an	@Entity	annotation	to	your	domain	model	classes.

Real-world	 applications	 often	 require	 advanced	 mappings,	 complex	 queries,
custom	data	types,	and	caching.

Hibernate	can	do	all	of	that.	You	just	have	to	know	which	annotations	and	APIs
to	use.	The	acute	need	for	 this	knowledge	prompted	me	to	write	 the	Hibernate
Tips	series	on	my	Thoughts	on	Java	blog	in	2016.	In	this	book,	you’ll	find	more
than	35	exclusive	tips	and	the	most	popular	tips	from	the	blog.

http://www.thoughts-on-java.org

▪

▪

▪

▪

▪

What	you	get	in	this	book
More	 than	 70	 Hibernate	 tips	 show	 you	 how	 to	 solve	 different	 problems	 with
Hibernate.	Each	of	these	tips	consists	of	one	or	more	code	samples	and	an	easy-
to-follow	procedure.	You	can	also	download	an	example	project	with	executable
test	cases	for	each	Hibernate	tip.	I	recommend	downloading	this	project	before
you	start	reading	the	book	so	that	you	can	try	each	Hibernate	tip	when	you	read
it.

To	 help	 you	 find	 the	 tip	 for	 your	 development	 task,	 I	 grouped	 them	 into	 the
following	chapters:

I	show	you	how	to	bootstrap	Hibernate	in	different	execution	environments	in
the	Setting	up	Hibernate	chapter.

In	 the	Basic	Mappings	 chapter,	 I	 introduce	 you	 to	 basic	 attribute	mappings
that	 allow	 you	 to	 use	Hibernate’s	 standard	mappings	 to	map	 an	 entity	 to	 a
database	table.

The	 tips	 in	 the	Advanced	Mappings	 chapter	 show	 you	 some	 of	Hibernate’s
advanced	features	and	how	you	can	use	them	for	things	like	defining	custom
mappings	 for	unsupported	data	 types,	mapping	of	 read-only	database	views,
defining	derived	primary	keys,	and	mapping	of	inheritance	hierarchies.

Hibernate	 implements	 the	 JPA	 specification,	 but	 it	 also	 provides	 several
proprietary	 features.	 I	 show	 you	 some	 of	 them	 in	 the	Hibernate	 Specific
Queries	and	Mappings	chapter.

Java	8	introduced	several	new	APIs	and	programming	concepts.	Since	version
5,	you	can	use	them	with	Hibernate.	I	show	you	a	few	examples	in	the	Java	8
chapter.

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

▪

▪

Logging	is	an	important	topic	that	gets	ignored	in	a	lot	of	projects.	You	should
always	make	sure	that	Hibernate	logs	useful	information	during	development
and	 doesn’t	 slow	 down	 your	 application	 in	 production.	 I	 give	 you	 several
configuration	tips	in	the	Logging	chapter.

The	 tips	 in	 the	JPQL	chapter	show	you	how	to	use	JPA’s	query	language	to
read	 records	 from	 the	 database	 and	 how	 you	 can	 use	 it	 to	 update	 or	 delete
multiple	entities	at	once.

If	 your	 queries	 are	 too	 complex	 for	 JPQL,	 take	 a	 look	 at	 the	Native	 SQL
Queries	 chapter,	 which	 shows	 how	 to	 perform	 native	 SQL	 queries	 with
Hibernate.

The	 Criteria	 API	 provides	 another	 option	 to	 create	 database	 queries.	 It	 is
especially	useful	if	you	need	to	create	queries	programmatically.	I	show	you
several	examples	using	this	API	in	 the	Create	queries	programmatically	with
the	Criteria	API	chapter.

In	 the	Stored	 Procedures	 chapter,	 I	 explain	 how	 you	 can	 use	 the
@NamedStoredProcedureQuery	 annotation	 and	 the

StoredProcedureQuery	 interface	 to	 execute	 stored	 procedures	 in	 your

database.

Caching	 can	 be	 an	 effective	 approach	 to	 improve	 the	 performance	 of	 your
application.	I	show	you	how	to	activate	and	use	Hibernate’s	second-level	and
query	cache	in	the	Caching	chapter.

How	to	get	the	example	project
I	 use	 a	 lot	 of	 code	 samples	 in	 this	 book	 to	 show	 you	 how	 to	 solve	 a	 specific
problem	with	Hibernate.	You	 can	 download	 an	 example	 project	with	 all	 code
samples	 and	 executable	 test	 cases	 at	http://www.hibernate-tips.com/download-
examples.

http://www.hibernate-tips.com/download-examples

Who	this	book	is	for
This	book	 is	 for	developers	who	are	 already	working	with	Hibernate	 and	who
are	 looking	 for	 solutions	 for	 their	 current	 development	 tasks	or	 problems.	The
tips	are	designed	as	self-contained	recipes	that	provide	specific	solutions	and	can
be	accessed	as	needed.	Most	tips	contain	links	to	related	tips	that	you	can	follow
if	you	want	to	dive	deeper	into	a	topic	or	need	a	slightly	different	solution.	There
is	no	need	 to	 read	 the	 tips	 in	a	 specific	order.	Feel	 free	 to	 read	 the	book	 from
cover	to	cover	or	just	pick	the	tips	that	help	you	in	your	current	project.

To	get	the	most	out	of	this	book,	you	should	already	be	familiar	with	the	general
concepts	of	JPA	and	Hibernate.	You’re	in	the	right	place	if	you	are	looking	for
tips	on	how	to	use	Hibernate	 to	 implement	your	business	requirements.	I	don’t
explain	Hibernate’s	general	concepts,	and	therefore	this	book	is	not	intended	for
beginners.	 But,	 if	 you’re	 already	 familiar	 with	 ORM	 frameworks	 and	 like	 to
learn	by	doing,	you	may	find	this	example-based	approach	helpful.

▪

▪

▪

▪

▪

▪

SETTING	UP	HIBERNATE

You	 can	 use	Hibernate	 in	 several	 different	 environments.	You	 can

use	it	as	a	JPA	implementation	in	a	Java	SE	or	Java	EE	environment,	as	a

proprietary	persistence	framework	in	Java	SE	or	as	a	persistence	provider

in	 Spring.	 The	 core	 Hibernate	 features	 that	 I	 explain	 in	 the	 Hibernate

Tips	 in	 this	 book,	 are	 available	 in	 all	 these	 environments.	 The	 only

differences	 are	 features	 that	 other	 frameworks	 in	 your	 environment

provide	on	top	of	Hibernate	and	the	bootstrapping	mechanism.

You	can	find	examples	for	the	different	bootstrapping	approaches	in	the

following	Hibernate	tips:

How	to	bootstrap	Hibernate	in	a	Java	SE	environment

How	to	bootstrap	Hibernate	in	a	Java	EE	environment

How	to	use	Hibernate’s	native	bootstrapping	API

How	to	bootstrap	Hibernate	with	Spring	Boot

How	to	access	Hibernate	APIs	from	JPA

How	to	automatically	add	Metamodel	classes	to	your	project

How	to	bootstrap	Hibernate	in	a	Java	SE	environment

Problem
I	want	to	use	Hibernate	as	my	JPA	provider	in	a	Java	SE	environment.	How	do	I
bootstrap	Hibernate?

Solution
Before	you	can	bootstrap	Hibernate	in	your	Java	SE	application,	you	need	to	add
the	required	dependencies	to	your	classpath.	I’m	using	Hibernate	5.2.8.Final	for
the	 examples	 of	 this	 book,	 and	 the	hibernate-core.jar	 file	 is	 the	 only

required	 Hibernate	 dependency.	 The	 JPA	 jar-file	 is	 included	 as	 a	 transitive
dependency	of	hibernate-core.

<dependency>

				<groupId>org.hibernate</groupId>

				<artifactId>hibernate-core</artifactId>

				<version>5.2.8.Final</version>

</dependency>

You	also	need	 to	add	a	database-specific	JDBC	driver	 to	 the	classpath	of	your
application.	Please	check	your	database	documentation	for	more	information.

After	you’ve	added	the	required	dependencies,	you	can	bootstrap	Hibernate	as	it
is	defined	in	the	JPA	specification.	You	need	to	add	a	persistence.xml	file

to	 the	META-INF	 directory	 of	 your	 application.	 The	 following	 code	 snippet

shows	 a	 simple	 example	 of	 a	persistence.xml	 file.	 It	 configures	 a

persistence-unit	 with	 the	 name	my-persistence-unit.	 It	 also	 tells

Hibernate	 to	 use	 the	PostgreSQLDialect	 and	 to	connect	 to	a	PostgreSQL

database	 on	 localhost.	 Your	 configuration	 might	 differ	 if	 you	 use	 a	 different

database	or	a	connection	pool.

<persistence>

				<persistence-unit	name="my-persistence-unit">

								<description>Hibernate	Tips</description>

								<provider>

												org.hibernate.jpa.HibernatePersistenceProvider

								</provider>

								<exclude-unlisted-classes>false</exclude-unlisted-classes>

								<properties>

												<property	name="hibernate.dialect"

																value="org.hibernate.dialect.PostgreSQLDialect"	/>

												<property	name="javax.persistence.jdbc.driver"

																value="org.postgresql.Driver"	/>

												<property	name="javax.persistence.jdbc.url"

																value="jdbc:postgresql://localhost:5432/recipes"	/>

												<property	name="javax.persistence.jdbc.user"

																value="postgres"	/>

												<property	name="javax.persistence.jdbc.password"

																value="postgres"	/>

								</properties>

				</persistence-unit>

</persistence>

You	 can	 then	 call	 the	createEntityManagerFactory	 of	 the

Persistence	 class	 to	 create	 an	EntityManagerFactory	 for	 the

persistence-unit	you	configured	 in	your	persistence.xml	file.	The

EntityManagerFactory	 provides	 a	method	 to	 get	 an	EntityManager,

which	I	use	in	most	examples	in	this	book.	That’s	all	you	need	to	do	to	bootstrap
Hibernate	in	your	application.

EntityManagerFactory	emf	=

				Persistence.createEntityManagerFactory("my-persistence-unit");

EntityManager	em	=	emf.createEntityManager();

Source	Code
You	can	 find	a	project	with	executable	 test	 cases	 for	 this	Hibernate	Tip	 in	 the
JPABootstrapping	module	of	 the	example	project.	 If	you	haven’t	 already

done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-tips.com/download-
examples.

Learn	More
JPA	also	defines	a	bootstrapping	approach	for	Java	EE	environments.	I	explain	it
in	How	to	bootstrap	Hibernate	in	a	Java	EE	environment.

You	 can	 also	 use	Hibernate’s	 proprietary	 bootstrapping	API,	which	 gives	 you
access	to	proprietary	configuration	features.	I	show	you	how	to	do	that	in	How
to	use	Hibernate’s	native	bootstrapping	API.

If	you	want	to	use	Hibernate	with	Spring	Boot,	take	a	look	at	How	to	bootstrap
Hibernate	with	Spring	Boot.

http://www.hibernate-tips.com/download-examples

How	to	bootstrap	Hibernate	in	a	Java	EE	environment

Problem
I	want	to	use	Hibernate	as	my	JPA	provider	in	a	Java	EE	environment.	How	do	I
bootstrap	Hibernate?

Solution
Bootstrapping	Hibernate	in	a	Java	EE	environment	is	pretty	simple.	You	need	to
make	sure	that	Hibernate	is	set	up	in	your	Java	EE	application	server.	That’s	the
case	 if	 you’re	 using	 a	 JBoss	Wildfly	 or	 JBoss	EAP	 server.	 Please	 check	 your
application	server	documentation	if	you’re	using	a	different	server.	Your	server
might	already	use	Hibernate	as	the	JPA	implementation	or	you	need	to	decide	if
you	want	to	replace	the	existing	JPA	implementation.

You	can	then	bootstrap	Hibernate	as	it	is	defined	in	the	JPA	specification.	You
just	 need	 to	 add	 a	persistence.xml	 file	 to	 the	META-INF	 directory	of	 a

deployment	 unit.	 The	 following	 code	 snippet	 shows	 a	 simple	 example	 of	 a
persistence.xml	 file	 that	 defines	 the	 persistence-unit	my-

persistence-unit.	 It	 tells	 Hibernate	 to	 use	 the	PostgreSQLDialect

and	to	connect	to	a	PostgreSQL	database	on	localhost.	Your	configuration	might
differ	if	you	use	a	connection	pool	provided	by	your	application	server.

<persistence>

				<persistence-unit	name="my-persistence-unit">

								<description>Hibernate	Tips</description>

								<provider>

												org.hibernate.jpa.HibernatePersistenceProvider

								</provider>

								<exclude-unlisted-classes>false</exclude-unlisted-classes>

								<properties>

												<property	name="hibernate.dialect"

																value="org.hibernate.dialect.PostgreSQLDialect"	/>

												<property	name="javax.persistence.jdbc.driver"

																value="org.postgresql.Driver"	/>

												<property	name="javax.persistence.jdbc.url"

																value="jdbc:postgresql://localhost:5432/recipes"	/>

												<property	name="javax.persistence.jdbc.user"

																value="postgres"	/>

												<property	name="javax.persistence.jdbc.password"

																value="postgres"	/>

								</properties>

				</persistence-unit>

</persistence>

The	 container	 creates	 an	EntityManagerFactory	 for	 each

persistence-unit	defined	in	the	configuration.	It	also	enables	you	to	inject

an	EntityManagerFactory	or	an	EntityManager	when	you	need	it.

@PersistenceUnit

private	EntityManagerFactory	emf;

@PersistenceUnit

private	EntityManager	em;

Learn	More
JPA	and	Hibernate	also	provide	two	approaches	to	bootstrap	Hibernate	in	a	Java
SE	 environment.	 I	 explain	 them	 in	How	 to	 bootstrap	 Hibernate	 in	 a	 Java	 SE
environment	and	How	to	use	Hibernate’s	native	bootstrapping	API.

If	you	want	to	use	Hibernate	with	Spring	Boot,	take	a	look	at	How	to	bootstrap
Hibernate	with	Spring	Boot.

How	to	use	Hibernate’s	native	bootstrapping	API

Problem
I	 need	more	 control	 over	Hibernate’s	 internal	 configuration.	How	 do	 I	 use	 its
native	bootstrapping	API?

Solution
Hibernate’s	 native	 bootstrapping	 API	 is	 very	 flexible,	 which	 makes	 it	 more
complicated	 to	use	but	also	more	powerful	 than	 the	JPA	bootstrapping	API.	 If
you	don’t	need	this	flexibility,	I	recommend	using	the	JPA	API.

Before	 you	 can	 start	 the	 bootstrapping	 process,	 you	 need	 to	 add	 the	 required
dependencies	to	your	classpath.	I’m	using	Hibernate	5.2.8.Final	for	the	examples
of	 this	 book,	 and	 the	hibernate-core.jar	 file	 is	 the	 only	 required

Hibernate	 dependency.	 It	 also	 includes	 the	 JPA	 jar-file	 as	 a	 transitive
dependency.

<dependency>

				<groupId>org.hibernate</groupId>

				<artifactId>hibernate-core</artifactId>

				<version>5.2.8.Final</version>

</dependency>

You	also	need	 to	add	a	database-specific	JDBC	driver	 to	 the	classpath	of	your
application.	Please	check	your	database	documentation	for	more	information.

As	 soon	 as	 you	 add	 the	 required	 dependencies,	 you	 can	 implement	 the
bootstrapping	process.	You	need	 to	 create	 a	StandardServiceRegistry,

build	 a	Metadata	 object,	 and	 use	 that	 object	 to	 instantiate	 a

SessionFactory.

Hibernate	uses	two	service	registries	---	the	BootstrapServiceRegistry

and	 the	StandardServiceRegistry.	 The	 default

BootstrapServiceRegistry	 provides	 a	 good	 solution	 for	 most

applications,	so	I	skip	the	programmatic	definition	in	this	example.

However,	 you	 need	 to	 configure	 the	StandardServiceRegistry.	 In	 this

example,	 I	 do	 that	 using	 a	hibernate.cfg.xml	 file,	 which	 makes	 the

implementation	 easy	 and	 allows	 you	 to	 change	 the	 configuration	 without
changing	 the	 source	 code.	Hibernate	 loads	 the	 configuration	 file	 automatically
from	 the	 classpath	 when	 you	 call	 the	configure	 method	 on	 the

StandardServiceRegistryBuilder.	 You	 can	 then	 adapt	 the

configuration	 programmatically	 before	 you	 call	 the	build	 method	 to	 get	 a

ServiceRegistry.

ServiceRegistry	standardRegistry	=

								new	StandardServiceRegistryBuilder()

																.configure()

																.build();

The	 following	 code	 snippet	 shows	 an	 example	 of	 a	hibernate.cfg.xml

configuration	 file.	 It	 tells	Hibernate	 to	use	 the	PostgreSQLDialect	and	 to

connect	 to	 a	 PostgreSQL	 database	 on	 localhost.	 It	 also	 tells	 Hibernate	 to
generate	 the	database	 tables	 based	on	 the	 entity	mappings.	Your	 configuration
may	differ	if	you	use	a	different	database	or	a	connection	pool.

Generating	your	database	tables	based	on	entity	mappings	is	not	recommended	for	production.
You	should	use	SQL	scripts	instead	so	that	you	are	in	control	of	your	database	model	and	can
optimize	it	for	your	requirements.

<hibernate-configuration>

				<session-factory>

								<property	name="dialect">

												org.hibernate.dialect.PostgreSQLDialect

								</property>

								<property	name="connection.driver_class">

												org.postgresql.Driver

								</property>

								<property	name="connection.url">

												jdbc:postgresql://localhost:5432/recipes

								</property>

								<property	name="connection.username">postgres</property>

								<property	name="connection.password">postgres</property>

								<property	name="connection.pool_size">1</property>

								<property	name="hbm2ddl.auto">create</property>

				</session-factory>

</hibernate-configuration>

After	 you	 instantiate	 a	 configured	ServiceRegistry,	 you	 need	 to	 create	 a

Metadata	representation	of	your	domain	model.	You	can	do	that	based	on	the

configuration	 files	hbm.xml	 and	orm.xml	 or	 annotated	 entity	 classes.	 I	 use

annotated	 classes	 in	 the	 following	 code	 snippet.	 I	 first	 use	 the
ServiceRegistry,	which	I	created	in	the	previous	step	to	instantiate	a	new

MetadataSources	 object.	 Then	 I	 add	my	 annotated	 entity	 classes	 and	 call

the	buildMetadata	to	create	the	Metadata	representation.	In	this	example,

I	use	only	the	Author	entity.	After	that,	I	call	the	buildSessionFactory

method	on	the	Metadata	object	to	instantiate	a	SessionFactory.

▪

▪

SessionFactory	sessionFactory	=

								new	MetadataSources(standardRegistry)

																.addAnnotatedClass(Author.class)

																.buildMetadata()

																.buildSessionFactory();

Session	session	=	sessionFactory.openSession();

That	is	all	you	need	to	do	to	create	a	basic	Hibernate	setup	with	its	native	API.
You	can	now	use	the	SessionFactory	to	open	a	new	Session	and	use	it	to

read	or	persist	entities.

Author	a	=	new	Author();

a.setFirstName("Thorben");

a.setLastName("Janssen");

session.persist(a);

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
HibernateBootstrapping	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
The	bootstrapping	API	defined	by	 the	 JPA	standard	 is	easier	 to	use	but	not	as
flexible.	I	explain	it	in	more	detail	in:

How	to	bootstrap	Hibernate	in	a	Java	SE	environment

How	to	bootstrap	Hibernate	in	a	Java	EE	environment

You	 can	 also	 use	 Hibernate	 with	 Spring	 Boot.	 I	 explain	 the	 required
bootstrapping	process	in	How	to	bootstrap	Hibernate	with	Spring	Boot.

http://www.hibernate-tips.com/download-examples

How	to	bootstrap	Hibernate	with	Spring	Boot

Problem
How	do	I	use	Hibernate	in	my	Spring	Boot	application?

Solution
Spring	Boot	makes	 it	 extremely	 easy	 to	bootstrap	Hibernate.	You	 just	 need	 to
add	the	Spring	Boot	JPA	starter	to	your	classpath,	and	Spring	Boot	handles	the
bootstrapping	for	you.

<dependency>

				<groupId>org.springframework.boot</groupId>

				<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

You	also	need	 to	add	a	database-specific	JDBC	driver	 to	 the	classpath	of	your
application.	Please	check	your	database	documentation	for	more	information.

You	 define	 your	 data	 source	 with	 a	 few	 properties	 in	 the
application.properties	 file.	 The	 following	 configuration	 example

defines	a	data	source	that	connects	to	a	PostgreSQL	database	on	localhost.

spring.datasource.url	=	jdbc:postgresql://localhost:5432/recipes

spring.datasource.username	=	postgres

spring.datasource.password	=	postgres

If	 you	 add	 an	H2,	HSQL,	 or	Derby	 database	 on	 the	 classpath,	 you	 can	 safely
omit	 the	 configuration,	 and	 Spring	 Boot	 starts	 and	 connects	 to	 an	 in-memory
database.	You	can	also	add	multiple	JDBC	drivers	and	an	in-memory	database	to
your	classpath	and	use	different	configurations	for	different	target	environments.

▪

▪

That’s	all	you	need	to	do	bootstrap	Hibernate	in	a	Spring	Boot	application.	You
can	now	use	the	@Autowired	annotation	to	inject	an	EntityManager.

@Autowired

private	EntityManager	em;

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
SpringBootBootstrapping	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
JPA	defines	a	bootstrapping	approach	for	Java	SE	and	Java	EE	environments.	I
explain	it	in:

How	to	bootstrap	Hibernate	in	a	Java	SE	environment

How	to	bootstrap	Hibernate	in	a	Java	EE	environment

You	 can	 also	 use	Hibernate’s	 proprietary	 bootstrapping	API,	which	 gives	 you
access	to	proprietary	configuration	features.	I	show	you	how	to	do	that	in	How
to	use	Hibernate’s	native	bootstrapping	API.

http://www.hibernate-tips.com/download-examples

How	to	access	Hibernate	APIs	from	JPA

Problem
I’m	using	Hibernate	via	the	EntityManager	API.	Is	there	a	way	to	access	the

proprietary	Hibernate	Session	and	SessionFactory?

Solution
Since	 version	 2.0,	 JPA	 provides	 easy	 access	 to	 the	 APIs	 of	 the	 underlying
implementations.	EntityManager	 and	EntityManagerFactory	provide

a n	unwrap	 method,	 which	 returns	 the	 corresponding	 classes	 of	 the	 JPA

implementation.	 In	 Hibernate’s	 case,	Session	 and	SessionFactory	 give

you	 full	 access	 to	 proprietary	 Hibernate	 features,	 such	 as	 the	 support	 for
Streams	and	Optional.

The	following	code	snippet	shows	you	how	to	get	the	Hibernate	Session	from

EntityManager.	 You	 just	 need	 to	 call	 the	unwrap	 method	 on

EntityManager	and	provide	the	Session	class	as	a	parameter.

Session	session	=	em.unwrap(Session.class);

As	 you	 can	 see	 in	 the	 next	 code	 snippet,	 you	 can	 get	 Hibernate’s
SessionFactory	in	a	similar	way.	You	first	get	EntityMangerFactory

f r o m	EntityManager	 and	 then	 call	 the	 unwrap	 method	 with	 the

SessionFactory	class.

SessionFactory	sessionFactory	=	em.getEntityManagerFactory()

																																		.unwrap(SessionFactory.class);

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AccessHibernateApi	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
You	 also	 get	 direct	 access	 to	 Hibernate’s	Session	 and	SessionFactory

classes,	if	you	use	its	native	bootstrapping	API.	For	more	information,	see	How
to	use	Hibernate’s	native	bootstrapping	API.

http://www.hibernate-tips.com/download-examples

How	to	automatically	add	Metamodel	classes	to	your
project

Problem
I	use	Hibernate’s	Static	Metamodel	Generator	 to	generate	 the	JPA	Metamodel.
These	classes	are	generated	to	a	different	directory,	which	isn’t	used	as	a	source
folder.	Is	there	a	way	to	automatically	register	this	folder	as	a	source	folder?

Solution
During	my	research,	I	learned	from	Frits	Walraven	that	there	is	a	Maven	plugin
that	can	do	exactly	that.	Special	thanks	to	Frits,	who	also	reviewed	this	book.

The	 only	 thing	 you	 need	 to	 do	 is	 to	 add	 the	 following	Maven	 plugin	 to	 your
build	configuration.	It	registers	a	list	of	directories	as	additional	source	folders.	I
use	 it	 in	 the	parent	pom.xml	 file	of	my	project	 to	add	the	directory,	 to	which

the	 JPA	 Metamodel	 classes	 get	 generated	 (target/generated-

sources/annotations),	as	a	source	folder.

<project>

				...

				<build>

								<plugins>

												<plugin>

																<groupId>org.codehaus.mojo</groupId>

																<artifactId>build-helper-maven-plugin</artifactId>

																<version>3.0.0</version>

																<executions>

																				<execution>

																								<id>add-source</id>

																								<phase>generate-sources</phase>

																								<goals>

																												<goal>add-source</goal>

																								</goals>

																								<configuration>

																												<sources>

																																<source>

																												target/generated-sources/annotations

																																</source>

																												</sources>

																								</configuration>

																				</execution>

																</executions>

												</plugin>

								</plugins>

				</build>

				...

</project>

Source	Code
You	 can	 find	 an	 example	 of	 a	 complete	 maven	 build	 configuration	 in	 the
example	 project.	 If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at
http://www.hibernate-tips.com/download-examples.

Learn	More
The	JPA	Metamodel	provides	a	type-safe	way	to	reference	entity	attributes	when
you	 create	 a	CriteriaQuery	 or	 an	EntityGraph.	 I	 explain	 it	 in	 more

detail	in	How	to	reference	entity	attributes	in	a	type-safe	way.

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

▪

▪

BASIC	MAPPINGS

Hibernate	 supports	 a	 set	 of	 standard	mappings	 that	 allows	 you	 to

map	an	entity	attribute	to	a	database	column	easily.	The	examples	in	this

chapter	 show	 you	 how	 to	 use	 standard	 mappings	 for	 entity	 attributes,

map	primary	key	attributes,	generate	unique	primary	key	values,	and	map

associations	 between	 entities.	 You	 can	 find	 more	 advanced	 mapping

definition	in	the	Advanced	Mappings	chapter.

To	learn	about	standard	mappings	for	entity	attributes,	see:

How	to	define	schema	and	table	names

How	to	map	basic	entity	attributes	to	database	columns

How	to	map	a	util	Date	or	Calendar	to	a	database	column

How	to	map	an	enum	to	a	database	column

To	learn	about	 the	mapping	of	primary	key	attributes	and	generation	of

unique	primary	key	values,	see:

How	to	map	a	simple	primary	key

How	 to	 use	 an	 auto-incremented	 column	 to	 generate	 primary	 key
values

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

How	 to	 use	 a	 custom	 database	 sequence	 to	 generate	 primary	 key
values

How	to	use	a	database	table	to	generate	primary	key	values

How	to	use	a	generated	UUID	as	a	primary	key

To	learn	about	the	mapping	of	associations	between	entities,	see:

How	to	map	a	bidirectional	many-to-one	association

How	to	map	an	unidirectional	many-to-one	association

How	to	map	an	unidirectional	one-to-many	association

How	to	map	a	bidirectional	many-to-many	association

How	to	map	an	unidirectional	many-to-many	association

How	to	map	a	bidirectional	one-to-one	association

How	to	map	an	unidirectional	one-to-one	association

How	to	define	schema	and	table	names

Problem
How	do	I	define	the	name	of	the	database	schema	and	table	to	which	Hibernate
maps	an	entity?

Solution
You	 can	 define	 the	 schema	 and	 table	 name	 with	 the	schema	 and	name

attributes	 of	 the	javax.persistence.Table	 annotation.	 See	 a	 related

example	 in	 the	 following	 code	 snippet.	 You	 just	 have	 to	 add	 the	@Table

annotation	to	your	entity	class	and	set	the	name	and	schema	attributes.

@Entity

@Table(name	=	"author",	schema	=	"bookstore")

public	class	Author	{...}

When	 you	 now	 use	 the	 entity,	 Hibernate	 uses	 the	 provided	 schema	 and	 table
names	to	create	the	SQL	statements.	The	following	code	snippet	persists	a	new
Author	entity	and	performs	a	query	to	get	all	Author	entities	with	the	given

first	name.

Author	a	=	new	Author();

a.setFirstName("firstName");

a.setLastName("lastName");

em.persist(a);

a	=	em.createQuery(

				"SELECT	a	FROM	Author	a	WHERE	firstName	=	‘firstName'",

				Author.class).getSingleResult();

As	 you	 can	 see	 in	 the	 following	 log	 output,	 Hibernate	 persists	 the	Author

entity	 to	 the	author	 table	in	the	bookstore	database	schema	and	performs	the

SELECT	statement	on	the	same	table.

06:11:42,481	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								bookstore.author

								(firstName,	lastName,	version,	id)

				values

								(?,	?,	?,	?)

06:11:42,785	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	id1_0_,

								author0_.firstName	as	firstNam2_0_,

								author0_.lastName	as	lastName3_0_,

								author0_.version	as	version4_0_

				from

								bookstore.author	author0_

				where

								author0_.firstName='firstName'

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
DefineTableAndSchemaName	 module	 of	 the	 example	 project.	 If	 you

haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

How	to	map	basic	entity	attributes	to	database	columns

Problem
How	do	I	map	basic	entity	attributes	to	database	columns?

Solution
Hibernate	doesn’t	need	any	additional	information	to	map	entity	attributes	of	the
following	Java	types:

java.lang.String

char	and	java.lang.Character

boolean	and	java.lang.Boolean

byte	and	java.lang.Byte

short	and	java.lang.Short

int	and	java.lang.Integer

long	and	java.lang.Long

float	and	java.lang.Float

double	and	java.lang.Double

java.math.BigInteger

java.math.BigDecimal

java.sql.Timestamp

java.sql.Time

java.sql.Date

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

java.util.Calendar

java.util.Date

java.util.Locale

java.util.Timezone

java.net.URL

java.sql.Blob

java.sql.Clob

byte[]	and	java.lang.Byte[]

char[]	and	java.lang.Character[]

java.util.UUID

java.sql.NClob

Hibernate	 also	 supports	 a	 default	 mapping	 for	 enumerations	 which	 doesn’t
require	any	additional	annotations.	I	get	into	more	detail	about	that	mapping	and
its	customization	options	in	How	to	map	an	enum	to	a	database	column.

Since	version	5.0,	Hibernate	also	supports	the	classes	of	the	Date	and	Time	API
as	basic	types:

java.time.Duration

java.time.Instant

java.time.LocalDateTime

java.time.LocalDate

java.time.LocalTime

java.time.OffsetDateTime

▪

▪

java.time.OffsetTime

java.time.ZonedDateTime

When	you	 don’t	 provide	 any	 additional	mapping	 information,	Hibernate	maps
entity	attributes	of	these	types	to	database	columns	with	the	same	name.	It	maps
the	 entity	 attributes	id,	 version,	 and	firstName	 in	 the	 following	 code

snippet	to	the	database	columns	id,	version,	and	firstname.

If	you	want	to	map	an	entity	attribute	to	a	column	with	a	different	name,	you	can
annotate	it	with	@Column	and	provide	the	column	name	as	the	name	attribute.	I

use	 this	 annotation	 in	 the	 following	 code	 snippet	 to	 map	 the	lastName

attribute	to	the	database	column	lname.

You	 can	 also	 use	 the	@Column	 annotation	 to	 provide	 additional	 mapping

information	that	Hibernate	can	use	to	generate	the	database	schema	and	to	apply
internal	optimizations.	I	don’t	recommend	using	Hibernate’s	schema	generation
feature	to	create	the	final	version	of	your	table	model,	and	you	shouldn’t	add	any
additional	 annotations	 for	 it	 to	 your	 entity	 mappings.	 But,	 you	 should	 tell
Hibernate	if	a	column	is	nullable,	insertable,	and	updatable	because

it	can	use	this	information	for	internal	optimizations.	I	show	that	in	the	following
example	for	the	primary	key	attribute	id.	The	mapping	doesn’t	allow	null	as	a

value,	and	Hibernate	doesn’t	support	updates	on	primary	key	attributes.

@Entity

public	class	Author	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(updatable	=	false,	nullable	=	false)

				private	Long	id;

				@Version

				private	int	version;

				private	String	firstName;

				@Column(name	=	"lname")

				private	String	lastName;

				...

}

When	 you	 now	 use	 the	 entity,	 Hibernate	 uses	 the	 default	 mapping	 for	 all
columns	 that	 are	 not	 annotated.	 For	 all	 other	 columns,	 Hibernate	 uses	 the
mapping	 information	 provided	 by	 the	 annotation.	 The	 following	 code	 snippet
persists	 a	 new	Author	 entity	 and	performs	a	query	 to	get	 the	Author	entity

with	a	given	id.

Author	a	=	new	Author();

a.setFirstName("John");

a.setLastName("Doe");

em.persist(a);

...

a	=	em.find(Author.class,	a.getId());

As	you	can	see	in	the	following	log	output,	Hibernate	persists	the	Author	entity
to	 the	 author	 table	 and	uses	 the	 default	 column	names	 for	 the	 entity	 attributes
id,	version,	 and	firstName.	 Hibernate	 doesn’t	 use	 the	 default	 name	 for

the	lastName	attribute	because	 the	@Column	annotation	specifies	a	mapping

to	the	column	name	lname.	And,	of	course,	Hibernate	uses	the	same	mappings

for	the	SELECT	statement.

12:03:01,827	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Author

								(firstName,	lname,	version,	id)

				values

								(?,	?,	?,	?)

...

12:03:01,849	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	id1_0_0_,

								author0_.firstName	as	firstNam2_0_0_,

								author0_.lname	as	lname3_0_0_,

								author0_.version	as	version4_0_0_

				from

								Author	author0_

				where

								author0_.id=?

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
MapBasicAttributes	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
Hibernate	 can	map	java.util.Date	 and	java.util.Calendar	classes

without	any	additional	annotation.	It	always	maps	them	as	an	SQL	TIMESTAMP

with	milliseconds.	But	that’s	often	not	the	mapping	you	need	for	your	use	case.	I
show	 you	 how	 to	 choose	 a	 different	 format	 in	How	 to	 map	 a	 util	 Date	 or
Calendar	to	a	database	column.

http://www.hibernate-tips.com/download-examples

The	same	applies	for	enumerations.	Hibernate	can	map	them	by	default,	but	you
might	want	to	customize	the	way	it	does	it.	I	show	you	how	to	do	that	in	How	to
map	an	enum	to	a	database	column.

▪

▪

▪

How	to	map	a	util	Date	or	Calendar	to	a	database
column

Problem
I	use	a	java.util.Date	to	model	a	date	as	an	entity	attribute.	But	Hibernate

maps	it	to	a	timestamp	with	nanoseconds.	How	do	I	change	the	mapping	so	that
Hibernate	only	stores	the	years,	months,	and	days?

Solution
The	 SQL	 standard	 supports	 three	 different	 data	 types	 to	 store	 date	 and	 time
information.	 Hibernate	 can	 map	 all	 of	 them	 to	 a	java.util.Date	 or	 a

java.util.Calendar.	 You	 need	 to	 decide	 which	 of	 the	 following	 SQL

types	Hibernate	will	use:

TIMESTAMP:	 Persists	 the	 date	 and	 time	 with	 nanoseconds.	 Hibernate	 uses

this	type	by	default.

TIME:	Stores	only	the	time	of	day	without	nanoseconds.

DATE:	Persists	only	the	date	with	years,	months,	and	days.

You	can	define	the	preferred	mapping	with	the	@Temporal	annotation.	As	you

can	see	 in	 the	following	code	snippet,	 the	annotation	 takes	a	TemporalType

enum	as	a	value.	The	enum	allows	you	to	select	the	SQL	type	(DATE,	TIME,	or

TIMESTAMP)	that	you	want	to	use.

@Entity

public	class	Author	{

				@Temporal(TemporalType.DATE)

				private	Date	dateOfBirth;

				...

}

As	you	can	see	in	the	following	log	output,	the	dateOfBirth	attribute	of	the

Author	entity	gets	mapped	to	an	SQL	DATE	without	any	time	information.

07:22:50,453	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	id1_0_0_,

								author0_.dateOfBirth	as	dateOfBi2_0_0_,

								author0_.firstName	as	firstNam3_0_0_,

								author0_.lastName	as	lastName4_0_0_,

								author0_.version	as	version5_0_0_

				from

								Author	author0_

				where

								author0_.id=?

07:22:50,454	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[BIGINT]	-	[1]

07:22:50,464	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([dateOfBi2_0_0_]	:	[DATE])	-	[1980-01-01]

...

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
MapUtilDate	module	of	the	example	project.	If	you	haven’t	already	done	so,

you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
Since	Hibernate	5,	you	can	also	use	the	classes	of	the	Java	8	Date	and	Time	API
as	 entity	 attribute	 types.	 The	 new	 classes	 solve	 a	 lot	 of	 issues	 with	 the

http://www.hibernate-tips.com/download-examples

java.util.Date	and	provide	all	 information	Hibernate	needs	 to	map	 them

to	 the	 correct	 JDBC	 types.	 I	 explain	 the	mapping	 of	 the	 Date	 and	 Time	API
classes	in	more	detail	in	How	to	map	classes	of	Java	8’s	Date	and	Time	API.

▪

▪

How	to	map	an	enum	to	a	database	column

Problem
How	do	I	map	an	enum	attribute	to	a	database	column?	Which	option	should	I
choose?

Solution
JPA	and	Hibernate	provide	two	standard	options	to	map	an	enum	to	a	database
column.	You	can	either	use	the	String	representation	or	the	ordinal	value.

Both	approaches	have	their	drawbacks:

The	String	representation	is	verbose,	and	renaming	an	enum	value	requires

that	you	also	update	your	database.

The	 ordinal	 of	 an	 enum	 value	 is	 its	 position	 in	 the	 enum	 declaration.	 This
value	changes	and	requires	you	to	update	your	database	when	you	remove	an
existing	value	or	do	not	add	new	values	to	the	end	of	the	enum	declaration.

You	 have	 to	 decide	 which	 drawback	 is	 the	 lesser	 evil	 for	 your	 specific
application	or	use	an	AttributeConverter	to	define	a	custom	mapping	to

avoid	these	issues.

When	you	use	the	JPA	and	Hibernate	standard	mapping,	you	can	either	rely	on
the	default	mapping	of	 its	ordinal	value	or	specify	 the	mapping	approach.	You
can	do	that	with	an	@Enumerated	annotation.

The	following	examples	use	the	AuthorStatus	enum.	This	enum	indicates	if

an	author	published	a	book	with	a	publisher,	self-published,	or	is	still	writing	a

book.

public	enum	AuthorStatus	{

				PUBLISHED,	SELF_PUBLISHED,	NOT_PUBLISHED;

}

The	 following	 example	 mapping	 uses	 the	@Enumerated	 annotation	 to

explicitly	 tell	 Hibernate	 to	 use	 the	 ordinal	 value.	 If	 you	 don’t	 provide	 an
@Enumerated	 annotation	 or	 don’t	 set	 an	EnumType	 as	 its	 value,	Hibernate

also	uses	the	ordinal	value	as	the	default	mapping.

@Entity

public	class	Author	{

				@Enumerated(EnumType.ORDINAL)

				private	AuthorStatus	status;

				...

}

When	 you	 use	 this	 mapping	 to	 persist	 an	Author	 entity	 with	status

PUBLISHED,	Hibernate	stores	the	value	0	in	the	database.

If	 you	 want	 to	 store	 the	String	 representation	 of	 the	 enum	 value	 in	 the

database,	you	need	to	annotate	the	entity	attribute	with	@Enumerated	and	set

EnumType.STRING	as	its	value.

@Entity

public	class	Author	{

				@Enumerated(EnumType.STRING)

				private	AuthorStatus	status;

				...

}

When	you	now	persist	the	same	entity	in	the	database,	Hibernate	writes	the	value
PUBLISHED	into	the	database	column	status.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
MapEnumerations	 module	 of	 the	 example	 project.	 If	 you	 haven’t	 already

done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-tips.com/download-
examples.

Learn	More
You	 can	 use	 an	AttributeConverter	 to	 define	 your	 own	 mapping	 and

avoid	the	drawbacks	of	the	JPA	standard	mapping.	I	show	you	how	to	do	that	in
How	to	define	a	custom	enum	mapping.

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

▪

How	to	map	a	simple	primary	key

Problem
How	do	I	map	a	simple	primary	key	of	a	database	table	with	an	entity?

Solution
You	can	model	a	simple	primary	key	with	an	entity	attribute	 that	you	annotate
with	an	@Id	annotation.	JPA	and	Hibernate	support	the	following	data	types	as

primary	keys:

Primitive	Java	types	and	their	wrapper	types

java.lang.String

java.util.Date	and	java.sql.Date

java.math.BigDecimal

java.math.BigInteger

The	following	code	snippet	shows	an	example	of	a	primary	key	attribute.	It	is	of
t ype	java.lang.Long.	 I	 annotated	 it	 with	 an	@Id	 and	 a	@Column

annotation.	You	 don’t	 need	 the	@Column	 annotation	 to	define	a	primary	key,

but	it	allows	you	to	provide	additional	mapping	information.	In	this	example,	I
tell	Hibernate	that	the	id	attribute	can’t	be	null	and	can’t	be	updated.	You	could

also	provide	the	database	column	name,	if	you	don’t	want	to	rely	on	Hibernate’s
default	mapping.

@Entity

public	class	Author	{

				@Id

				@Column(updatable	=	false,	nullable	=	false)

				private	Long	id;

				...

}

That’s	all	you	need	to	do	to	define	a	primary	key	attribute.	You	can	now	use	it,
for	example,	to	read	an	entity	via	the	EntityManager	find	method.

Author	a	=	em.find(Author.class,	1L);

When	you	persist	a	new	Author	entity,	you	need	to	provide	a	unique	primary

key	value.

Author	a	=	new	Author();

a.setId(1L);

a.setFirstName("Thorben");

a.setLastName("Janssen");

em.persist(a);

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
PrimaryKey	module	of	 the	example	project.	 If	you	haven’t	already	done	so,

you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	more
JPA	and	Hibernate	 support	different	 strategies	 to	generate	unique	primary	key
values.	You	 should	 use	 one	 of	 these	 strategies	 if	 the	 primary	 key	 value	 is	 not
provided	as	user	input.	I	explain	them	in	more	detail	in:

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

How	to	use	a	custom	database	sequence	to	generate	primary	key	values

How	to	use	an	auto-incremented	column	to	generate	primary	key	values

How	to	use	a	database	table	to	generate	primary	key	values

How	to	use	a	generated	UUID	as	a	primary	key

How	to	use	an	auto-incremented	column	to	generate
primary	key	values

Problem
How	 do	 I	 use	 an	 auto-incremented	 database	 column	 to	 generate	 primary	 key
values?

Solution
JPA	and	Hibernate	 support	different	 strategies	 to	generate	primary	key	values.
One	 of	 them	 is	 the	 identity	 strategy	 that	 uses	 an	 auto-incremented	 database
column.

If	you	want	to	use	this	strategy,	you	have	to	annotate	the	primary	key	attribute
with	 an	@Id	 and	 a	@GeneratedValue	 annotation	 with

GenerationType.IDENTITY	as	the	value	of	the	strategy	attribute.

The	following	code	snippet	shows	an	example	of	this	annotation.

@Entity

public	class	Author	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.IDENTITY)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				...

}

If	 you	 persist	 a	 new	Author	 entity,	 Hibernate	 performs	 the	 SQL	INSERT

statement	 immediately.	 It	 uses	 the	 auto-incremented	 database	 column	id	 to

generate	 the	primary	key	value	and	retrieves	 the	value	 from	the	database.	You
can	see	that	in	the	log	file	if	you	activate	the	logging	for	SQL	statements.

Author	a	=	new	Author();

a.setFirstName("Thorben");

a.setLastName("Janssen");

log.info("Before	persist");

em.persist(a);

log.info("After	persist");

05:35:43,918	INFO		[org.thoughts.on.java.model.TestIdentityStrategy]	

-	Before	persist

05:35:43,975	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Author

								(firstName,	lastName,	version)

				values

								(?,	?,	?)

05:35:43,989	DEBUG	[org.hibernate.id.IdentifierGeneratorHelper]	-	

Natively	generated	identity:	1

05:35:43,993	INFO		[org.thoughts.on.java.model.TestIdentityStrategy]	

-	After	persist

Databases	handle	auto-incremented	columns	very	efficiently.	However,	you	need	to	be	aware
that	 Hibernate	 has	 to	 perform	 the	INSERT	 statement	 immediately	 to	 get	 the	 primary	 key

value.	That	prevents	Hibernate	from	using	different	performance	optimization	techniques	that
rely	on	the	delayed	execution	of	database	operations.

Source	Code

▪

▪

▪

You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
PrimaryKeyIdentityStrategy	 module	 of	 the	 example	 project.	 If	 you

haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
Auto-incremented	database	columns	are	only	one	out	of	four	options	to	generate
primary	key	values.	You	should	also	take	a	look	at:

How	to	use	a	custom	database	sequence	to	generate	primary	key	values

How	to	use	a	database	table	to	generate	primary	key	values

How	to	use	a	generated	UUID	as	a	primary	key

http://www.hibernate-tips.com/download-examples

How	to	use	a	custom	database	sequence	to	generate
primary	key	values

Problem
Hibernate	 uses	 its	 default	 database	 sequence	 to	 generate	 primary	 key	 values.
How	do	I	use	my	own	sequence?

Solution
The	JPA	specification	supports	four	options	to	generate	primary	key	values.	One
of	 them	 is	 the	GenerationType.SEQUENCE,	 which	 uses	 a	 database

sequence	to	generate	primary	key	values.

When	 you	want	 to	 use	 a	 custom	 database	 sequence,	 you	 have	 to	 annotate	 the
primary	 key	 attribute	 with	 the	@GeneratedValue	 annotation	 and	 set

GenerationType.SEQUENCE	as	the	value	of	the	strategy	attribute.	This

tells	Hibernate	to	use	a	database	sequence	to	generate	the	primary	key	value.	If
you	 don’t	 provide	 any	 additional	 information,	 Hibernate	 uses	 its	 default
sequence,	hibernate_sequence.

You	can	configure	the	name	and	schema	of	a	custom	database	sequence	using	a
@SequenceGenerator	 annotation.	 The	 following	 code	 snippet	 shows	 an

example	of	such	a	mapping.	The	@GeneratedValue	annotation	references	a

custom	generator	with	the	name	author_generator.	This	generator	gets

defined	 by	 the	@SequenceGenerator	 annotation,	which	 tells	Hibernate	 to

use	the	author_seq	database	sequence.

@Entity

public	class	Author	{

	 @Id

	 @GeneratedValue(

	 				strategy	=	GenerationType.SEQUENCE,

	 				generator	=	"author_generator")

	 @SequenceGenerator(

	 				name="author_generator",

	 				sequenceName	=	"author_seq")

	 @Column(name	=	"id",	updatable	=	false,	nullable	=	false)

	 private	Long	id;

	 ...

}

When	 you	 persist	 a	 new	Author	 entity,	Hibernate	 selects	 a	new	primary	key

value	 from	 the	 database	 sequence	author_seq	 before	 it	 executes	 the	 SQL

INSERT	statement.	You	can	see	these	statements	in	the	log	file,	if	you	activate

the	logging	for	SQL	statements.

Author	a	=	new	Author();

a.setFirstName("Thorben");

a.setLastName("Janssen");

em.persist(a);

12:17:47,432	DEBUG	[org.hibernate.SQL]	-

				select

								nextval	('author_seq')

12:17:47,459	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Author

								(firstName,	lastName,	version,	id)

				values

								(?,	?,	?,	?)

▪

▪

▪

12:17:47,462	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[VARCHAR]	-	[firstName]

12:17:47,462	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[2]	as	[VARCHAR]	-	[lastName]

12:17:47,463	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[3]	as	[INTEGER]	-	[0]

12:17:47,464	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[4]	as	[BIGINT]	-	[1]

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CustomSequence	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	more
Sequences	are	only	one	out	of	four	options	to	generate	primary	key	values.	You
should	also	have	a	look	at:

How	to	use	an	auto-incremented	column	to	generate	primary	key	values

How	to	use	a	database	table	to	generate	primary	key	values

How	to	use	a	generated	UUID	as	a	primary	key

http://www.hibernate-tips.com/download-examples

How	to	use	a	database	table	to	generate	primary	key
values

Problem
How	do	I	generate	primary	key	values	if	my	database	doesn’t	support	sequences
or	auto-incremented	columns?

Solution
JPA	and	Hibernate	 support	different	 strategies	 to	generate	primary	key	values.
One	 of	 them	 is	 the	 table	 strategy,	 which	 uses	 a	 database	 table	 to	 simulate	 a
sequence.	 This	 strategy	 provides	 a	 good	 solution	 if	 your	 database	 doesn’t
support	sequences	and	auto-incremented	database	columns.

Almost	 all	modern	 databases	 support	 sequences	 or	 auto-incremented	 columns	 that	 generate
primary	key	values	more	efficiently	than	the	table	strategy	described	in	this	tip.	Please	check	if
your	database	supports	one	of	these	strategies	before	you	decide	to	use	the	table	strategy.

If	you	want	to	use	this	strategy,	you	have	to	annotate	the	primary	key	attribute
with	 an	@Id	 and	 a	@GeneratedValue	 annotation	 with

GenerationType.TABLE	as	the	value	of	the	strategy	attribute.

@Entity

public	class	Author	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.TABLE)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				...

}

When	you	persist	a	new	Author	entity,	Hibernate	selects	the	next	primary	key

value	 from	 the	hibernate_sequences	 table	 and	 updates	 it	 afterwards.

These	 two	 statements	 create	 an	 overhead	 and	 lock	 the
hibernate_sequence	 table	 until	 you	 commit	 the	 transaction.	 That	makes

the	TABLE	strategy	slower	than	the	SEQUENCE	or	IDENTITY	strategy.

Hibernate	 then	uses	 the	retrieved	primary	key	value	 to	 insert	 the	new	Author

entity	into	the	Author	table.	You	can	see	that	in	the	log	file	if	you	activate	the

logging	for	SQL	statements.

Author	a	=	new	Author();

a.setFirstName("Thorben");

a.setLastName("Janssen");

em.persist(a);

12:20:53,967	DEBUG	[org.hibernate.SQL]	-

				select

								tbl.next_val

				from

								hibernate_sequences	tbl

				where

								tbl.sequence_name=?	for	update

												of	tbl

12:20:53,972	DEBUG	[org.hibernate.SQL]	-

				update

								hibernate_sequences

				set

								next_val=?

				where

								next_val=?

								and	sequence_name=?

▪

▪

▪

12:20:54,001	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Author

								(firstName,	lastName,	version,	id)

				values

								(?,	?,	?,	?)

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
PrimaryKeyTableStrategy	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
Auto-incremented	database	columns	are	only	one	of	multiple	options	to	generate
primary	key	values.	You	should	also	take	a	look	at:

How	to	use	a	custom	database	sequence	to	generate	primary	key	values

How	to	use	an	auto-incremented	column	to	generate	primary	key	values

How	to	use	a	generated	UUID	as	a	primary	key

http://www.hibernate-tips.com/download-examples

How	to	use	a	generated	UUID	as	a	primary	key

Problem
I	want	to	use	a	UUID	as	a	primary	key.	How	do	I	map	them	with	Hibernate?	Can
Hibernate	generate	UUID	values	for	new	entities?

Solution
Hibernate	 provides	 proprietary	 support	 for	 attributes	 of	 type
java.util.UUID	as	primary	keys	and	offers	two	generators	to	create	UUID

values.	 The	 generators	 support	 the	 standards	 IETF	 RFC	 4122	 version	 4	 and
IETF	RFC	4122	version	1.

IETF	RFC	4122	version	4	---	Random	number-based	UUID

By	 default,	 Hibernate	 uses	 a	 random	 number-based	 generation	 strategy.	 As
always,	you	don’t	have	to	do	much	to	get	the	default	behavior.	You	just	need	to
add	 a	@GeneratedValue	 annotation	 to	 a	 primary	 key	 attribute	 of	 type

java.util.UUID.

You	can	see	an	example	of	it	in	the	following	code	snippet.

@Entity

public	class	Author	{

				@Id

				@GeneratedValue

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	UUID	id;

				...

}

When	 you	 now	 persist	 a	 new	Author	 entity,	 Hibernate	 generates	 a	 UUID

before	writing	the	new	record	to	the	database.

Author	a	=	new	Author();

a.setFirstName("Thorben");

a.setLastName("Janssen");

em.persist(a);

12:25:31,071	DEBUG	

[org.hibernate.event.internal.AbstractSaveEventListener]	-	Generated	

identifier:	35a18e65-97b9-48fd-a547-56f81e157253,	using	strategy:	

org.hibernate.id.UUIDGenerator

12:25:31,113	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Author

								(firstName,	lastName,	version,	id)

				values

								(?,	?,	?,	?)

12:25:31,117	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[VARCHAR]	-	[Thorben]

12:25:31,118	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[2]	as	[VARCHAR]	-	[Janssen]

12:25:31,119	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[3]	as	[INTEGER]	-	[0]

12:25:31,120	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[4]	as	[OTHER]	-	[35a18e65-97b9-48fd-a547-

56f81e157253]

IETF	RFC	4122	version	1	---	IP-	and	timestamp-based	UUID

Hibernate	can	also	generate	a	UUID	based	on	the	IP	and	timestamp	as	defined
by	IETF	RFC	4122	version	1.	But	the	configuration	of	it	requires	an	additional
annotation.

You	need	to	annotate	a	primary	key	attribute	of	type	java.util.UUID	with	a

@GeneratedValue	 annotation	 that	 references	 a	 custom	 ID	 generator	 by	 its

name.	 The	 ID	 generator	 defines	 the	 strategy	 Hibernate	 uses	 to	 generate	 the
primary	key	value.	You	can	define	it	with	Hibernate’s	@GenericGenerator

annotations.	 It	 requires	 the	name	 of	 the	 generator,	 the	 name	 of	 the	 class	 that

implements	 the	 generator	strategy,	 and	 an	 additional	@Parameter

annotation.	 In	 this	 case,	 the	 generator	 is	 implemented	 by	 the
org.hibernate.id.UUIDGenerator	 class.	 That	 is	 the	 same	 generator

class	that	Hibernate	uses	by	default	to	generate	UUIDs.	You	need	to	tell	it	to	use
a	 different	 generation	 strategy.	 You	 can	 do	 that	 using	 the	@Parameter

annotation.	You	need	 to	set	 the	name	 to	uuid_gen_strategy_class	and

provide	the	fully	qualified	class	name	of	the	CustomVersionOneStrategy

class	as	the	value.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(generator	=	"UUID")

				@GenericGenerator(

								name	=	"UUID",

								strategy	=	"org.hibernate.id.UUIDGenerator",

								parameters	=	{

												@Parameter(

																name	=	"uuid_gen_strategy_class",

																value	=

																"org.hibernate.id.uuid.CustomVersionOneStrategy"

)

								}

)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	UUID	id;

				...

}

Hibernate	 uses	 this	 mapping	 definition	 in	 the	 same	 way	 as	 in	 the	 previous
example.	It	just	uses	a	different	algorithm	to	generate	the	UUID	before	it	stores
the	new	Book	entity	in	the	database.

Book	b	=	new	Book();

b.setTitle("Hibernate	Tips");

em.persist(b);

05:57:35,777	DEBUG	

[org.hibernate.event.internal.AbstractSaveEventListener]	-	Generated	

identifier:	c0a8b214-5abb-1aa1-815a-bbbaa51e0000,	using	strategy:	

org.hibernate.id.UUIDGenerator

05:57:35,840	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Book

								(price,	publishingDate,	title,	version,	id)

				values

								(?,	?,	?,	?,	?)

05:57:35,845	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[DOUBLE]	-	[null]

05:57:35,846	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[2]	as	[DATE]	-	[null]

05:57:35,847	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[3]	as	[VARCHAR]	-	[Hibernate	Tips]

05:57:35,848	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[4]	as	[INTEGER]	-	[0]

05:57:35,849	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[5]	as	[OTHER]	-	[c0a8b214-5abb-1aa1-815a-

bbbaa51e0000]

Source	Code

▪

▪

▪

You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
PrimaryKeyUUID	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	more
Hibernate	 also	 supports	 different	 options	 to	 generate	 numeric	 primary	 key
values.	You	can	read	more	about	them	in:

How	to	use	a	custom	database	sequence	to	generate	primary	key	values

How	to	use	an	auto-incremented	column	to	generate	primary	key	values

How	to	use	a	database	table	to	generate	primary	key	values

http://www.hibernate-tips.com/download-examples

How	to	map	a	bidirectional	many-to-one	association

Problem
My	 table	model	 contains	 a	many-to-one	 association.	 How	 do	 I	 model	 it	 with
Hibernate	so	that	I	can	navigate	it	in	both	directions?

Solution
You	 need	 to	model	 the	 association	 on	 both	 entities	 if	 you	want	 to	 be	 able	 to
navigate	 it	 in	 both	 directions.	 Consider	 this	 example.	 A	 book	 in	 an	 online
bookstore	 can	 have	multiple	 reviews.	 In	 your	 domain	model,	 the	Book	 entity

has	a	one-to-many	association	to	the	Review	entity,	and	the	Review	entity	has

a	many-to-one	relationship	to	the	Book	entity.

Let’s	begin	with	the	Review	entity,	which	is	the	owning	side	of	the	association

in	this	example.	That	means	that	it	defines	the	association	and	the	Book	entity

just	 references	 it.	The	 relationship	consists	of	 two	mandatory	and	one	optional
part.	 The	 entity	 attribute	 of	 type	Book	 and	 the	@ManyToOne	 annotation	 are

required.	The	 attribute	models	 the	 association,	 and	 the	 annotation	 declares	 the
type	of	relationship.	The	@JoinColumn	annotation	is	optional.	It	allows	you	to

define	the	name	of	the	foreign	key	column.	I	use	it	in	the	following	code	snippet
to	set	the	column	name	to	fk_book.

If	you	don’t	define	the	name	yourself,	Hibernate	generates	a	name	by	combining
the	name	of	the	association	mapping	attribute	and	the	name	of	the	primary	key
attribute	 of	 the	 associated	 entity.	 In	 this	 example,	 Hibernate	 would	 use
book_id	as	the	default	column	name.

@Entity

public	class	Review	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@ManyToOne

				@JoinColumn(name	=	"fk_book")

				private	Book	book;

				...

}

You	also	need	to	map	the	one-to-many	association	on	the	Book	entity	to	make	it

bidirectional.	 As	 you	 can	 see	 in	 the	 following	 code	 snippet,	 this	 is	 done	 in	 a
similar	way	as	the	many-to-one	association.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@OneToMany(mappedBy	=	"book")

				private	List<Review>	reviews	=	new	ArrayList<Review>();

				...

}

You	need	an	attribute	that	models	the	association,	which	is	the	List<Review>

reviews	attribute	in	this	example	and	a	@OneToMany	annotation.	Like	in	the

table	model,	the	bidirectional	one-to-many	association	gets	defined	on	the	many
side.	The	table	on	the	many	side	stores	the	foreign	key	and	its	entity	defines	the
association.	 It’s	 similar	 for	 the	 entity	mapping.	You	 just	 need	 to	 reference	 the
name	of	the	association	attribute	of	the	many	side	as	the	value	of	the	mappedBy

attribute	and	Hibernate	has	all	the	information	it	needs.

That’s	all	you	need	to	do	to	define	a	bidirectional	many-to-one	association.	You
can	now	navigate	it	in	both	directions	in	your	JPQL	or	Criteria	API	queries	or	on
your	domain	objects.

b	=	em.find(Book.class,	1L);

List<Review>	reviews	=	b.getReviews();

Assert.assertEquals(b,	reviews.get(0).getBook());

Bidirectional	 associations	 are	 easy	 to	 use	 in	 queries,	 but	 they	 also	 require	 an
additional	step	when	you	persist	a	new	entity.	You	need	to	update	the	association
on	both	sides	when	you	add	or	remove	an	entity.	You	can	see	an	example	of	it	in
the	 following	 code	 snippet,	 in	 which	 I	 first	 create	 a	 new	Review	 entity	 and

initialize	its	association	to	the	Book	entity.	And	after	that,	I	also	need	to	add	the

new	Review	entity	to	the	List	of	reviews	on	the	Book	entity.

Book	b	=	em.find(Book.class,	1L);

Review	r	=	new	Review();

r.setComment("This	is	a	comment");

r.setBook(b);

b.getReviews().add(r);

em.persist(r);

▪

▪

▪

Updating	the	associations	on	both	entities	is	an	error-prone	task.	Therefore,	it’s	a
good	practice	 to	provide	a	helper	method	 that	adds	another	entity	 to	 the	many
side	of	the	association.

@Entity

public	class	Book	{

				...

				public	void	addReview(Review	review)	{

								this.reviews.add(review);

								review.setBook(this);

				}

				...

}

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AssociationBidirectionalManyToOne	 module	 of	 the	 example

project.	 If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at
http://www.hibernate-tips.com/download-examples.

Learn	More
Bidirectional	many-to-one	associations	are	 just	one	way	 to	model	 relationships
between	entities.	I	show	other	options	in:

How	to	map	an	unidirectional	many-to-one	association

How	to	map	an	unidirectional	one-to-many	association

How	to	map	a	bidirectional	one-to-one	association

http://www.hibernate-tips.com/download-examples

▪

▪

▪

How	to	map	an	unidirectional	one-to-one	association

How	to	map	a	bidirectional	many-to-many	association

How	to	map	an	unidirectional	many-to-many	association

How	to	map	an	unidirectional	many-to-one	association

Problem
My	table	model	contains	a	many-to-one	association.	I	only	want	to	model	it	on
the	many	side.	How	do	I	do	that	with	Hibernate?

Solution
Using	 an	 unidirectional	 many-to-one	 association	 is	 a	 typical	 approach	 for
associations	that	contain	a	lot	of	entities	on	the	many	side	of	the	relationship.	It
allows	you	 to	navigate	 it	 in	 the	 to-one	direction	but	avoids	performance	 issues
that	might	occur	if	Hibernate	has	to	load	a	huge	number	of	entities	to	initialize
the	many	side	of	the	association.

You	model	 the	 association	only	on	 the	 entities	of	 the	many	 side.	Let’s	 have	 a
look	at	an	example.	A	book	in	an	online	bookstore	can	have	multiple	reviews.	In
your	 domain	 model,	 you	 only	 model	 the	 many-to-one	 association	 on	 the
Review	 entity.	You	 can	 see	 an	 example	 of	 such	 a	mapping	 in	 the	 following

code	snippet.

The	 association	 consists	 of	 two	 mandatory	 and	 one	 optional	 part.	 The	 entity
attribute	 of	 type	Book	 and	 the	@ManyToOne	 annotation	 are	 required.	 The

attribute	 models	 the	 association,	 and	 the	 annotation	 declares	 the	 kind	 of
relationship.	The	@JoinColumn	annotation	is	optional.	It	allows	you	to	define

the	name	of	 the	foreign	key	column.	I	use	 it	 in	 this	example	 to	set	 the	column
name	to	fk_book.

If	you	don’t	define	the	name	yourself,	Hibernate	generates	a	name	by	combining
the	name	of	the	association	mapping	attribute	and	the	name	of	the	primary	key
attribute	 of	 the	 associated	 entity.	 In	 this	 example,	 Hibernate	 would	 use
book_id	as	the	default	column	name.

@Entity

public	class	Review	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@ManyToOne

				@JoinColumn(name	=	"fk_book")

				private	Book	book;

				...

}

That’s	 all	 you	 need	 to	 do	 to	model	 an	 unidirectional	many-to-one	 association.
Like	 in	 the	 table	model,	 the	unidirectional	many-to-to	 association	gets	defined
on	the	many	side.	The	table	on	the	many	side	stores	the	foreign	key	and	its	entity
defines	the	association.	That	makes	it	easy	to	model	it	as	an	unidirectional	many-
to-one	association	in	your	domain	model.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AssociationUnidirectionalManyToOne	 module	 of	 the	 example

▪

▪

▪

▪

▪

▪

project.	 If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at
http://www.hibernate-tips.com/download-examples.

Learn	More
Unidirectional	many-to-one	associations	are	just	one	way	to	model	relationships
between	entities.	I	show	other	options	in:

How	to	map	a	bidirectional	many-to-one	association

How	to	map	an	unidirectional	one-to-many	association

How	to	map	a	bidirectional	one-to-one	association

How	to	map	an	unidirectional	one-to-one	association

How	to	map	a	bidirectional	many-to-many	association

How	to	map	an	unidirectional	many-to-many	association

http://www.hibernate-tips.com/download-examples

How	to	map	an	unidirectional	one-to-many	association

Problem
My	 table	 model	 contains	 a	 one-to-many	 relationship.	 How	 do	 I	 model	 it	 as
unidirectional	association	with	Hibernate?

Solution
Modeling	 an	 unidirectional	 one-to-many	 association	 is	 not	 a	 very	 popular
approach.	It	allows	you	to	navigate	it	in	the	to-many	direction	but	not	in	the	to-
one	 direction.	 Most	 developers	 prefer	 a	 bidirectional	 association	 or	 decide	 to
model	an	unidirectional	many-to-one	association	to	avoid	performance	issues	for
relationships	with	huge	numbers	of	entities.

You	model	the	association	only	on	the	entities	of	the	one	side.	Let’s	have	a	look
at	an	example.	A	book	in	an	online	bookstore	can	have	multiple	reviews.	In	your
domain	model,	you	only	model	the	one-to-many	association	on	the	Book	entity.

You	can	see	an	example	of	such	a	mapping	in	the	following	code	snippet.	The
List<Review>	 reviews	 attribute	 models	 the	 association	 and	 the

@OneToMany	annotation	declares	the	kind	of	relationship.

@Entity

public	class	Book	{

				@OneToMany

				private	List<Review>	reviews	=	new	ArrayList<Review>();

				...

}

That’s	 all	 you	 need	 to	 do	 to	 define	 a	 basic	 one-to-many	 association.	You	 can
now	use	the	association	in	your	queries	and	you	can	navigate	it	in	your	domain
object	 tree.	But	 there	 are	 two	 things	 you	 need	 to	 know	 before	 you	model	 the
association	in	this	way.	First	of	all,	you	need	to	keep	in	mind	that	you	modeled
the	 association	 only	 on	 the	Book	 entity.	 When	 you	 persist	 a	 new	Review

entity,	you	need	to	update	the	associated	Book	entity	as	well.

Book	b	=	em.find(Book.class,	1L);

Review	r	=	new	Review();

r.setComment("This	is	a	comment");

b.getReviews().add(r);

em.persist(r);

More	importantly,	Hibernate	uses	a	join	table	to	persist	the	association.

05:50:37,181	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Review

								(comment,	id)

				values

05:50:37,198	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Book_Review

								(Book_id,	reviews_id)

				values

								(?,	?)

You	 can	 avoid	 that	with	 a	@JoinColumn	 annotation.	 It	 allows	you	 to	define

the	name	of	the	foreign	key	column	in	the	table	mapped	by	the	associated	entity.
In	the	following	example,	it	tells	Hibernate	to	use	the	fk_book	column	on	the

review	table	as	the	foreign	key.

@Entity

public	class	Book	{

				@OneToMany

				@JoinColumn(name	=	"fk_book")

				private	List<Review>	reviews	=	new	ArrayList<Review>();

				...

}

05:52:01,118	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Review

								(comment,	id)

				values

								(?,	?)

05:52:01,125	DEBUG	[org.hibernate.SQL]	-

				update

								Review

				set

								fk_book=?

				where

								id=?

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AssociationUnidirectionalOneToMany	 module	 of	 the	 example

project.	 If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at
http://www.hibernate-tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

▪

▪

Learn	More
Unidirectional	one-to-many	associations	are	just	one	way	to	model	relationships
between	entities.	I	show	other	options	in:

How	to	map	a	bidirectional	many-to-one	association

How	to	map	an	unidirectional	many-to-one	association

How	to	map	a	bidirectional	one-to-one	association

How	to	map	an	unidirectional	one-to-one	association

How	to	map	a	bidirectional	many-to-many	association

How	to	map	an	unidirectional	many-to-many	association

How	to	map	a	bidirectional	many-to-many	association

Problem
My	table	model	contains	a	many-to-many	association.	How	do	I	model	 it	with
Hibernate	so	that	I	can	navigate	it	in	both	directions?

Solution
You	 need	 to	model	 the	 association	 on	 both	 entities	 if	 you	want	 to	 be	 able	 to
navigate	it	in	both	directions.	Let’s	have	a	look	at	an	example.	Multiple	Authors
can	write	multiple	 books	 and	 a	 book	 can	 be	 written	 by	 one	 or	more	 authors.
That’s	a	typical	many-to-many	association,	and	you	probably	want	to	navigate	it
in	both	directions	in	your	domain	model	and	queries.	You	need	to	model	it	as	a
many-to-many	association	on	the	Book	entity	and	the	Author	entity.

Let’s	begin	with	the	Book	entity,	which	is	the	owning	side	of	the	association	in

this	example.	That	means	that	it	defines	the	association	and	the	Author	entity

just	references	it.

The	relationship	definition	consists	of	two	mandatory	and	one	optional	part.	The
entity	 attribute	List<Author>	 authors	 and	 the	@ManyToMany

annotation	are	required.	The	attribute	models	the	association,	and	the	annotation
declares	 the	 kind	 of	 relationship.	 The	@JoinTable	 annotation	 is	 optional.	 It

allows	 you	 to	 define	 the	 name	 of	 the	 join	 table	 and	 foreign	 key	 columns	 that
store	the	many-to-many	association.	I	use	it	in	the	following	code	snippet	to	set

the	name	of	the	join	table	to	book_author	and	the	names	of	the	foreign	key

columns	to	fk_book	and	fk_author.

If	 you	 don’t	 define	 the	 name	 yourself,	 Hibernate	 generates	 default	 table	 and
column	names.	The	default	table	name	is	the	combination	of	both	entity	names.
In	 this	example,	 it	would	be	Book_Author.	The	foreign	key	column	name	is

generated	by	combining	 the	name	of	 the	association	mapping	attribute	and	 the
name	of	the	primary	key	attribute	of	the	entity.	These	would	be	books_id	and

authors_id	in	this	example.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@ManyToMany

				@JoinTable(

								name	=	"book_author",

								joinColumns	=	{	@JoinColumn(name	=	"fk_book")	},

								inverseJoinColumns	=	{	@JoinColumn(name	=	"fk_author")	})

				private	List<Author>	authors	=	new	ArrayList<Author>();

				...

}

You	also	need	 to	map	 the	many-to-many	association	on	 the	Author	 entity	 to

make	it	bidirectional.	As	you	can	see	in	the	following	code	snippet,	this	is	done
in	 a	 similar	way	 as	 on	 the	Book	 entity.	You	need	an	attribute	 that	models	 the

association	 and	 a	@ManyToMany	 annotation.	 In	 this	 example,	 it’s	 the

List<Book>	 books	 attribute	 that	 I	 annotated	 with	 a	@ManyToMany

annotation.	 The	 association	 is	 already	 defined	 on	 the	Book	 entity.	 You	 can

therefore	 just	 reference	 the	 attribute	 on	 the	Book	 entity	 in	 the	mappedBy

attribute	and	Hibernate	uses	the	same	definition.

@Entity

public	class	Author	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@ManyToMany(mappedBy="authors")

				private	List<Book>	books	=	new	ArrayList<Book>();

				...

}

That’s	 all	 you	 need	 to	 do	 to	 define	 a	 bidirectional	many-to-many	 association.
You	can	now	navigate	it	in	both	directions	in	your	JPQL	or	Criteria	API	queries
or	on	your	domain	objects.

b	=	em.find(Book.class,	1L);

List<Author>	authors	=	b.getAuthors();

Bidirectional	 associations	 are	 easy	 to	 use	 in	 queries,	 but	 they	 also	 require	 an
additional	step	when	you	persist	a	new	entity.	You	need	to	update	the	association
on	both	sides	when	you	add	or	remove	an	entity.	You	can	see	an	example	of	it	in
the	following	code	snippet	in	which	I	first	create	a	new	Author	entity	and	add

the	Book	 entity	 to	 the	List	 of	books.	And	after	 that,	 I	also	need	 to	add	 the

new	Author	entity	to	the	List	of	authors	on	the	Book	entity.

Book	b	=	em.find(Book.class,	1L);

Author	a	=	new	Author();

a.setFirstName("Thorben");

a.setLastName("Janssen");

a.getBooks().add(b);

b.getAuthors().add(a);

em.persist(a);

Updating	the	associations	on	both	entities	is	an	error-prone	task.	It’s	therefore	a
good	practice	to	provide	helper	methods	for	it.

@Entity

public	class	Author	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@ManyToMany(mappedBy="authors")

				private	List<Book>	books	=	new	ArrayList<Book>();

				public	void	addBook(Book	b)	{

								this.books.add(b);

								b.getAuthors().add(this);

				}

				public	void	removeBook(Book	b)	{

								this.books.remove(b);

								b.getAuthors().remove(this);

				}

				...

}

Source	Code

▪

▪

▪

▪

▪

▪

You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AssociationBidirectionalManyToMany	 module	 of	 the	 example

project.	 If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at
http://www.hibernate-tips.com/download-examples.

Learn	More
Bidirectional	many-to-many	associations	are	just	one	way	to	model	relationships
between	entities.	I	show	other	options	in:

How	to	map	an	unidirectional	many-to-many	association

How	to	map	an	unidirectional	one-to-one	association

How	to	map	a	bidirectional	one-to-one	association

How	to	map	a	bidirectional	many-to-one	association

How	to	map	an	unidirectional	many-to-one	association

How	to	map	an	unidirectional	one-to-many	association

http://www.hibernate-tips.com/download-examples

How	to	map	an	unidirectional	many-to-many
association

Problem
My	table	model	contains	a	many-to-many	association.	I	only	need	to	navigate	it
in	one	direction.	How	do	I	model	that	with	Hibernate?

Solution
You	only	need	 to	model	 the	association	on	 the	entity	 from	which	you	want	 to
navigate	the	relationship.	Let’s	have	a	look	at	an	example.	Multiple	Authors	can
write	multiple	books,	and	a	book	can	be	written	by	one	or	more	authors.	That’s	a
typical	many-to-many	association.	If	you	only	want	to	navigate	it	from	the	Book

to	 the	Author	 entities,	 you	 only	 need	 to	 model	 it	 as	 a	 many-to-many

association	on	the	Book	entity.

The	relationship	definition	consists	of	two	mandatory	and	one	optional	part.	The
entity	 attribute	List<Author>	 authors	 and	 the	@ManyToMany

annotation	are	required.	The	attribute	models	the	association,	and	the	annotation
declares	 the	 kind	 of	 relationship.	 The	@JoinTable	 annotation	 is	 optional.	 It

allows	 you	 to	 define	 the	 name	 of	 the	 join	 table	 and	 foreign	 key	 columns	 that
store	the	many-to-many	association.	I	use	it	in	the	following	code	snippet	to	set
the	name	of	the	join	table	to	book_author	and	the	names	of	the	foreign	key

columns	to	fk_book	and	fk_author.

If	 you	 don’t	 define	 the	 names	 yourself,	 Hibernate	 generates	 default	 table	 and
column	names.	The	default	table	name	is	the	combination	of	both	entity	names.
In	 this	 example,	 it	 would	 be	Book_Author.	 The	 foreign	 key	 column	 is

generated	by	combining	 the	name	of	 the	association	mapping	attribute	and	 the
name	of	the	primary	key	attribute	of	the	entity.	These	would	be	books_id	and

authors_id	in	this	example.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@ManyToMany

				@JoinTable(

								name	=	"book_author",

								joinColumns	=	{	@JoinColumn(name	=	"fk_book")	},

								inverseJoinColumns	=	{	@JoinColumn(name	=	"fk_author")	})

				private	List<Author>	authors	=	new	ArrayList<Author>();

				...

}

That’s	all	you	need	 to	do	 to	define	a	unidirectional	many-to-many	association.
You	can	now	navigate	it	from	the	Book	to	the	Author	entities	in	your	JPQL	or

Criteria	API	queries	or	on	your	domain	objects.

b	=	em.find(Book.class,	1L);

List<Author>	authors	=	b.getAuthors();

Source	Code

▪

▪

▪

▪

▪

▪

You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AssociationUnidirectionalManyToMany	 module	 of	 the	 example

project.	 If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at
http://www.hibernate-tips.com/download-examples.

Learn	More
Unidirectional	 many-to-many	 associations	 are	 just	 one	 way	 to	 model
relationships	between	entities.	I	show	other	options	in:

How	to	map	a	bidirectional	many-to-many	association

How	to	map	an	unidirectional	one-to-one	association

How	to	map	a	bidirectional	one-to-one	association

How	to	map	a	bidirectional	many-to-one	association

How	to	map	an	unidirectional	many-to-one	association

How	to	map	an	unidirectional	one-to-many	association

http://www.hibernate-tips.com/download-examples

How	to	map	a	bidirectional	one-to-one	association

Problem
My	 table	 model	 contains	 a	 one-to-one	 association.	 How	 do	 I	 model	 it	 with
Hibernate	so	that	I	can	navigate	it	in	both	directions?

Solution
You	 need	 to	model	 the	 association	 on	 both	 entities	 if	 you	want	 to	 be	 able	 to
navigate	 it	 in	 both	 directions.	 Let’s	 have	 a	 look	 at	 an	 example.	 A	 book	 gets
created	 from	 a	 manuscript.	 You	 could	 model	 this	 with	 a	Book	 and	 a

Manuscript	 entity	and	a	one-to-one	association	between	 them.	You	need	 to

model	 that	 with	 a	 one-to-one	 association	 on	 the	Book	 entity	 and	 the

Manuscript	entity.

Let’s	 begin	 with	 the	Manuscript	 entity,	 which	 is	 the	 owning	 side	 of	 the

association	 in	 this	example.	That	means	 that	 it	defines	 the	 relationship	and	 the
Book	entity	just	references	it.

The	relationship	definition	consists	of	two	mandatory	and	one	optional	part.	The
entity	attribute	Book	book	and	the	@OneToOne	annotation	are	required.	The

attribute	 models	 the	 association,	 and	 the	 annotation	 declares	 the	 kind	 of
relationship.	The	@JoinColumn	annotation	is	optional.	It	allows	you	to	define

the	name	of	the	foreign	key	column	that	links	the	book	to	the	manuscript.	I	use	it

in	 the	 following	 code	 snippet	 to	 set	 the	 name	 of	 the	 foreign	 key	 column	 to
fk_book.	If	you	don’t	define	the	name	yourself,	Hibernate	generates	a	name	by

combining	 the	 name	of	 the	 association	mapping	 attribute	 and	 the	 name	 of	 the
primary	key	attribute	of	the	associated	entity.	In	this	example,	Hibernate	would
use	book_id	as	the	default	column	name.

@Entity

public	class	Manuscript	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@OneToOne

				@JoinColumn(name	=	"fk_book")

				private	Book	book;

				...

}

You	also	need	to	map	the	one-to-one	association	on	the	Book	entity	to	make	it

bidirectional.	 As	 you	 can	 see	 in	 the	 following	 code	 snippet,	 this	 is	 done	 in	 a
similar	way	as	the	one-to-one	association	on	the	Manuscript	entity.	You	need

an	 attribute	 that	models	 the	 association	 and	 a	@OneToOne	 annotation.	 In	 this

example,	 it’s	 the	Manuscript	 manuscript	 attribute,	 which	 I	 annotated

with	 a	@OneToOne	 annotation.	 The	 association	 is	 already	 defined	 on	 the

Manuscript	entity.	You	can	therefore	just	reference	the	attribute	on	the	Book

entity	in	the	mappedBy	attribute	and	Hibernate	uses	the	same	definition.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@OneToOne(mappedBy	=	"book")

				private	Manuscript	manuscript;

				...

}

That’s	all	you	need	 to	do	 to	define	a	bidirectional	one-to-one	association.	You
can	now	navigate	it	in	both	directions	in	your	JPQL	or	Criteria	API	queries	or	on
your	domain	objects.

Book	b	=	em.find(Book.class,	1L);

Manuscript	m	=	b.getManuscript();

Assert.assertEquals(b,	m.getBook());

Bidirectional	 associations	 are	 easy	 to	 use	 in	 queries,	 but	 they	 also	 require	 an
additional	step	when	you	persist	a	new	entity.	You	need	to	update	the	association
on	both	sides	when	you	add	or	remove	an	entity.	You	can	see	an	example	of	it	in
the	 following	 code	 snippet	 in	which	 I	 first	 create	 a	 new	Manuscript	 entity

and	initialize	its	association	to	the	Book	entity.	And	after	that,	I	also	need	to	set

the	new	Manuscript	entity	on	the	Book	entity.

Book	b	=	em.find(Book.class,	1L);

Manuscript	m	=	new	Manuscript();

m.setBook(b);

b.setManuscript(m);

em.persist(m);

Source	Code

▪

▪

▪

▪

▪

▪

You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AssociationBidirectionalOneToOne	module	of	 the	example	project.

If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
Bidirectional	 one-to-one	 associations	 are	 just	 one	 way	 to	 model	 relationships
between	entities.	I	show	other	options	in:

How	to	map	an	unidirectional	one-to-one	association

How	to	map	a	bidirectional	many-to-one	association

How	to	map	an	unidirectional	many-to-one	association

How	to	map	an	unidirectional	one-to-many	association

How	to	map	a	bidirectional	many-to-many	association

How	to	map	an	unidirectional	many-to-many	association

http://www.hibernate-tips.com/download-examples

How	to	map	an	unidirectional	one-to-one	association

Problem
My	 table	model	 contains	 an	 one-to-one	 association.	 I	 only	 need	 to	 navigate	 it
one	direction.	How	do	I	model	that	with	Hibernate?

Solution
You	only	need	 to	model	 the	association	on	 the	entity	 from	which	you	want	 to
navigate	the	relationship.	Let’s	have	a	look	at	an	example.	A	book	gets	created
from	 a	 manuscript.	 You	 could	 model	 this	 with	 a	Book	 and	 a	Manuscript

entity	and	a	one-to-one	association	between	them.	If	you	just	want	to	navigate	it
from	the	Manuscript	to	the	Book	entity,	you	only	need	to	model	it	as	a	one-

to-one	association	on	the	Manuscript	entity.

The	relationship	definition	consists	of	two	mandatory	and	one	optional	part.	The
entity	attribute	Book	book	and	the	@OneToOne	annotation	are	required.	The

attribute	 models	 the	 association,	 and	 the	 annotation	 declares	 the	 kind	 of
relationship.	The	@JoinColumn	annotation	is	optional.	It	allows	you	to	define

the	name	of	the	foreign	key	column	that	links	the	book	to	the	manuscript.	I	use	it
in	 the	 following	 code	 snippet	 to	 set	 the	 name	 of	 the	 foreign	 key	 column	 to
fk_book.	If	you	don’t	define	the	name	yourself,	Hibernate	generates	a	name	by

combining	 the	 name	of	 the	 association	mapping	 attribute	 and	 the	 name	 of	 the

primary	key	attribute	of	the	associated	entity.	In	this	example,	Hibernate	would
use	book_id	as	the	default	column	name.

@Entity

public	class	Manuscript	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@OneToOne

				@JoinColumn(name	=	"fk_book")

				private	Book	book;

				...

}

That’s	all	you	need	to	do	to	define	a	unidirectional	one-to-one	association.	You
can	now	navigate	 from	 the	Manuscript	 to	 the	Book	entity	in	your	JPQL	or

Criteria	API	queries	or	on	your	domain	objects.

Book	b	=	em.find(Book.class,	1L);

Manuscript	m	=	b.getManuscript();

Assert.assertEquals(b,	m.getBook());

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AssociationUnidirectionalOneToOne	 module	 of	 the	 example

project.	 If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at
http://www.hibernate-tips.com/download-examples.

Learn	More

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

▪

▪

Unidirectional	 one-to-one	 associations	 are	 just	 one	way	 to	model	 relationships
between	entities.	I	show	other	options	in:

How	to	map	a	bidirectional	one-to-one	association

How	to	map	a	bidirectional	many-to-one	association

How	to	map	an	unidirectional	many-to-one	association

How	to	map	an	unidirectional	one-to-many	association

How	to	map	a	bidirectional	many-to-many	association

How	to	map	an	unidirectional	many-to-many	association

▪

▪

▪

▪

▪

▪

▪

▪

▪

ADVANCED	MAPPINGS

The	basic	mappings	described	in	the	previous	chapter	provide	good

solutions	for	the	most	common	use	cases	and	are	a	good	starting	point,	if

you’re	new	to	Hibernate.	But	most	real-world	applications	require	more

advanced	mappings	because	their	domain	model	uses	custom	data	types

or	an	inheritance	structure	and	the	database	administrator	defined	views

or	database	trigger	to	generate	column	values.	All	these	use	cases	are	not

supported	by	the	basic	mappings.	But	JPA	and	Hibernate	support	a	lot	of

advanced	features	that	you	can	use	to	implement	these	use	cases:

How	to	map	a	view	with	Hibernate

How	to	define	a	custom	enum	mapping

How	to	map	the	Date	and	Time	API	with	Hibernate	4.4

How	to	map	generated	values

How	to	calculate	entity	attributes	with	a	@Formula

How	to	cache	preprocessed,	non-persistent	attributes

How	to	automatically	set	an	attribute	before	persisting	it

How	to	order	the	elements	of	a	collection

How	to	model	a	derived	primary	key	with	Hibernate

▪

▪

▪

How	to	model	an	association	with	additional	attributes

How	to	map	an	inheritance	hierarchy	to	multiple	tables

How	to	map	an	inheritance	hierarchy	to	one	table

How	to	map	a	view	with	Hibernate

Problem
I	have	a	read-only	view	that	I	want	to	use	in	associations	and	JPQL	queries.	How
do	I	map	it	with	Hibernate?

Solution
Database	views,	in	general,	are	mapped	in	the	same	way	as	database	tables.	You
just	have	to	define	an	entity	that	maps	the	view	with	the	specific	name	and	one
or	more	of	its	columns.

But	 the	 normal	 table	mapping	 is	 not	 read-only,	 and	 you	 can	 use	 the	 entity	 to
change	its	content.

Depending	on	 the	 database	 you	use	 and	 the	 definition	of	 the	 view,	 you’re	 not
allowed	 to	 perform	 an	 update	 on	 the	 view	 content.	You	 should	 therefore	 also
prevent	Hibernate	from	updating	it.

You	 can	 easily	 achieve	 that	 by	 annotating	 your	 entity	 with	 Hibernate’s
@Immutable	annotation.

@Entity

@Immutable

public	class	BookView	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@Version

				@Column(name	=	"version")

				private	int	version;

				@Column

				private	String	title;

				@Column

				@Temporal(TemporalType.DATE)

				private	Date	publishingDate;

				@Column

				private	String	authors;

				...

}

As	a	result,	Hibernate	performs	an	SQL	SELECT	statement	to	read	the	entity	but

it	does	not	perform	any	UPDATE	statements	when	you	change	an	attribute.

BookView	bv	=	em.find(BookView.class,	1L);

log.info(bv);

bv.setTitle("updated");

05:07:15,239	DEBUG	[org.hibernate.SQL]	-	select	bookview0_.id	as	

id1_3_0_,	bookview0_.authors	as	authors2_3_0_,	

bookview0_.publishingDate	as	publishi3_3_0_,	bookview0_.title	as	

title4_3_0_,	bookview0_.version	as	version5_3_0_	from	BookView	

bookview0_	where	bookview0_.id=?

05:07:15,269	INFO		[org.thoughts.on.java.model.TestViewEntity]	-	

BookView	[id=1,	version=0,	title=Hibernate	Tips,	

publishingDate=2017-04-04,	authors=Thorben	Janssen]

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
DatabaseViews	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

How	to	define	a	custom	enum	mapping

Problem
I	need	 to	map	enum	values	 from	a	 legacy	database	 that	don’t	match	 the	enum
standard	mapping.

Or:

I	don’t	want	to	face	the	drawbacks	of	JPA’s	standard	enum	mapping.	How	do	I
avoid	them?

Solution
Since	JPA	2.1,	you	can	use	an	AttributeConverter	to	implement	a	custom

mapping	for	your	enums.	It	allows	you	to	implement	the	conversion	between	a
Java	 type	 and	 its	 database	 representation.	 You	 can	 use	 it	 to	 convert	 all	 basic
attributes	defined	by	entity	classes,	mapped	superclasses,	or	embeddable	classes.
The	 only	 exceptions	 are	 id	 attributes,	 version	 attributes,	 relationship	 attributes
and	attributes	annotated	as	@Temporal	or	@Enumerated.

In	 this	 example,	 I	 define	 a	 custom	 mapping	 for	 the	AuthorStatus

enumerations.	 I	 want	 to	 persist	 the	 value	PUBLISHED	 as	P,

SELF_PUBLISHED	as	S	and	NOT_PUBLISHED	as	N.

public	enum	AuthorStatus	{

				PUBLISHED,	SELF_PUBLISHED,	NOT_PUBLISHED;

}

The	 implementation	 of	 the	 custom	 mapping	 is	 simple.	 You	 just	 need	 to
implement	 the	AttributeConverter	 interface	 with	 its	 2	 methods

convertToDatabaseColumn	 and	convertToEntityAttribute.	The

implementation	 of	 these	 methods	 is	 pretty	 simple	 in	 this	 example.	 The
convertToDatabaseColumn	 uses	 a	switch	 statement	 to	 return	 the

String	 representation	 of	 each	 value.	 The	convertToEntityAttribute

also	 uses	 a	switch	 statement	 to	 implement	 the	 inverse	 mapping	 from	 the

String	representation	to	the	AuthorStatus	enum.

You	 also	 need	 to	 annotate	 the	 class	 with	 the	@Converter	 annotation.	 The

autoApply	 attribute	 of	 the	@Converter	 annotation	 defines	 if	 Hibernate

shall	 apply	 the	AttributeConverter	 to	 all	 entity	 attributes	 of	 the	 given

type.	That	is	a	good	approach	if	you	want	to	define	a	custom	mapping	for	your
enum	values.

If	you	don’t	want	to	use	the	AttributeConverter	for	all	entity	attributes	of

type	AuthorStatus,	 you	 can	 set	 the	autoApply	 attribute	 to	false.	You

then	 need	 to	 activate	 the	 converter	 for	 specific	 attributes.	You	 can	 do	 that	 by
annotating	 the	 entity	 attribute	 with	 a	@Convert(converter	 =

AuthorStatusConverter.class)	annotation	that	references	the	class	of

the	AttributeConverter	you	want	to	use.

@Converter(autoApply	=	true)

public	class	AuthorStatusConverter	implements	

AttributeConverter<AuthorStatus,	String>	{

				@Override

				public	String	convertToDatabaseColumn(AuthorStatus	status)	{

								switch	(status)	{

								case	NOT_PUBLISHED:

												return	"N";

								case	PUBLISHED:

												return	"P";

								case	SELF_PUBLISHED:

												return	"S";

								default:

												throw	new	IllegalArgumentException(

																"AuthorStatus	["+status+"]	not	supported.");

								}

				}

				@Override

				public	AuthorStatus	convertToEntityAttribute(String	dbData)	{

								switch	(dbData)	{

								case	"N":

												return	AuthorStatus.NOT_PUBLISHED;

								case	"P":

												return	AuthorStatus.PUBLISHED;

								case	"S":

												return	AuthorStatus.SELF_PUBLISHED;

								default:

												throw	new	IllegalArgumentException(

																"AuthorStatus	["+dbData+"]	not	supported.");

								}

				}

}

The	autoApply	 attribute	 makes	 this	AttributeConverter	 easy	 to	 use.

You	 just	 need	 to	define	 an	 entity	 attribute	of	 type	AuthorStatus	without	 a

@Enumerated	annotation,	and	Hibernate	applies	the	conversion	automatically.

@Entity

public	class	Author	{

				private	AuthorStatus	status;

				...

}

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CustomEnumerationsMapping	 module	 of	 the	 example	 project.	 If	 you

haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
JPA	and	Hibernate	also	support	a	standard	mapping	for	enum	values.	You	can
read	more	about	it	in	How	to	map	an	enum	to	a	database	column.

Custom	enum	mappings	are	just	one	use	case	for	an	AttributeConverter.

You	can	also	use	it	to	map	the	classes	of	Java	8’s	Date	and	Time	API	with	older
Hibernate	 versions,	 as	 I	 show	 in	How	 to	 map	 the	 Date	 and	 Time	 API	 with
Hibernate	4.4.

http://www.hibernate-tips.com/download-examples

How	to	map	the	Date	and	Time	API	with	Hibernate	4.4

Problem
Hibernate	 4.4	 doesn’t	 support	 the	 classes	 of	 Java	 8’s	 Date	 and	 Time	 API	 as
attribute	types.	How	do	I	persist	these	classes	with	Hibernate?

Solution
Since	JPA	2.1,	you	can	use	an	AttributeConverter	to	easily	implement	a

custom	 mapping	 for	 unsupported	 data	 types.	 It	 allows	 you	 to	 implement	 the
conversion	between	a	Java	type	and	its	database	representation.	You	can	use	it	to
convert	 all	 basic	 attributes	 defined	 by	 entity	 classes,	 mapped	 superclasses,	 or
embeddable	 classes.	 The	 only	 exceptions	 are	 id	 attributes,	 version	 attributes,
relationship	 attributes	 and	 attributes	 annotated
as	@Temporal	or	@Enumerated.

The	 following	 code	 snippet	 shows	 an
AttributeConverter<LocalDate,	 Date>	 that	 converts	 an	 entity

attribute	of	type	java.time.LocalDate	to	a	java.sql.Date	to	persist	it

in	 the	 database.	 When	 Hibernate	 reads	 the	 database	 column,	 it	 calls	 the
AttributeConverter	 to	 transform	 the	java.sql.Date	 into	 a

java.time.LocalDate.

You	 just	 need	 to	 implement	 the	AttributeConverter	 interface	with	 its	 2

m e t h o d s	convertToDatabaseColumn	 and

convertToEntityAttribute.	 In	 this	 example,	 the	 implementation	 of

these	methods	 is	 pretty	 simple.	 The	java.sql.Date	 class	 already	 provides

the	 required	 methods	 to	 transform	 a	java.time.LocalDate	 into	 a

java.sql.Date	 and	 to	 create	 a	java.time.LocalDate	 from	 a

java.sql.Date.

You	 also	 need	 to	 annotate	 the	 class	 with	 the	@Converter	 annotation.	 Its

autoApply	attribute	defines	if	Hibernate	shall	apply	the	AttributeConverter	to

all	 entity	 attributes	 of	 the	 given	 type.	 That	 is	 a	 good	 approach	 if	 you	want	 to
define	custom	mappings	for	the	classes	of	the	Date	and	Time	API.

If	you	don’t	want	to	use	the	AttributeConverter	for	all	entity	attributes	of

type	LocalDate,	you	can	 set	 the	autoApply	 attribute	 to	false.	You	 then

need	 to	 activate	 the	 converter	 for	 specific	 attributes.	 You	 can	 do	 that	 by
annotating	 the	 entity	 attribute	 with	 a	@Convert(converter	 =

LocalDateConverter.class)	annotation	 that	 references	 the	class	of	 the

AttributeConverter	you	want	to	use.

@Converter(autoApply	=	true)

public	class	LocalDateConverter

								implements	AttributeConverter<LocalDate,	Date>	{

				@Override

				public	Date	convertToDatabaseColumn(LocalDate	attribute)	{

								return	Date.valueOf(attribute);

				}

				@Override

				public	LocalDate	convertToEntityAttribute(Date	dbData)	{

								return	dbData.toLocalDate();

				}

}

The	autoApply	 attribute	 makes	 this	AttributeConverter	 easy	 to	 use.

You	 just	 need	 to	 define	 an	 entity	 attribute	 of	 type	java.time.LocalDate

and	Hibernate	will	applies	the	conversion	automatically.

@Entity

public	class	Author	{

				private	LocalDate	dateOfBirth;

				...

}

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AttributeConverterForDateAndTime	module	of	 the	example	project.

If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
Hibernate	5	 supports	 the	 classes	of	 the	Date	 and	Time	API	 as	BasicType.	 I

show	you	how	 to	use	 them	 in	How	 to	map	classes	of	 Java	8’s	Date	and	Time
API.

You	 can	 also	 use	AttributeConverter	 to	 implement	 custom	 enum

mappings,	as	I	show	in	How	to	define	a	custom	enum	mapping.

http://www.hibernate-tips.com/download-examples

How	to	map	generated	values

Problem
My	database	 administrator	 set	 up	 a	 trigger	 to	generate	 the	value	of	 a	 database
column.	How	do	I	map	this	column	so	that	Hibernate	retrieves	the	value	after	it
gets	generated?

Solution
You	 can	 annotate	 an	 entity	 attribute	with	@Generated(GenerationTime

value),	 to	 tell	 Hibernate	 that	 the	 database	 will	 generate	 the	 value	 of	 the

attribute.	The	GenerationTime	enum	tells	Hibernate	when	the	database	will

generate	 the	value.	 It	 can	 either	do	 this	NEVER,	 only	 on	INSERT	 or	ALWAYS

(on	 insert	 and	update).	Hibernate	 then	 executes	 an	 additional	 query	 to	 retrieve
the	generated	value	from	the	database.

The	following	code	snippet	shows	an	example	of	such	an	entity	mapping.

@Entity

public	class	Author	{

				@Column

				@Generated(GenerationTime.ALWAYS)

				private	LocalDateTime	lastUpdate;

				...

}

As	you	can	see	 in	 the	 log	output,	Hibernate	now	performs	an	additional	query
for	each	insert	and	update	statement	to	retrieve	the	generated	value.

//	Transaction	1

em.getTransaction().begin();

Author	a	=	new	Author();

a.setFirstName("Thorben");

a.setLastName("Janssen");

em.persist(a);

em.getTransaction().commit();

log.info(a);

//	Transaction	2

em.getTransaction().begin();

a	=	em.find(Author.class,	a.getId());

a.setFirstName("Changed	Firstname");

em.getTransaction().commit();

log.info(a);

12:06:36,349	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Author

								(firstName,	lastName,	version,	id)

				values

								(?,	?,	?,	?)

12:06:36,353	DEBUG	[org.hibernate.SQL]	-

				select

								author_.lastUpdate	as	lastUpda4_0_

				from

								Author	author_

				where

								author_.id=?

12:06:36,376	INFO		[org.thoughts.on.java.model.TestGeneratedColumn]	

-	Author	[id=1,	version=0,	firstName=Thorben,	lastName=Janssen,	

lastUpdate=2017-03-09T12:06:36.322]

12:06:36,382	DEBUG	[org.hibernate.SQL]	-

				update

								Author

				set

								firstName=?,

								lastName=?,

								version=?

				where

								id=?

								and	version=?

12:06:36,384	DEBUG	[org.hibernate.SQL]	-

				select

								author_.lastUpdate	as	lastUpda4_0_

				from

								Author	author_

				where

								author_.id=?

12:06:36,387	INFO		[org.thoughts.on.java.model.TestGeneratedColumn]	

-	Author	[id=1,	version=1,	firstName=Changed	Firstname,	

lastName=Janssen,	lastUpdate=2017-03-09T12:06:36.383]

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
MapGeneratedColumns	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

How	to	calculate	entity	attributes	with	a	@Formula

Problem
The	 value	 of	 one	 of	 the	 entity	 attributes	 needs	 to	 be	 calculated	 by	 a	 SQL
expression.	How	do	I	map	that	with	Hibernate?

Solution
You	 can	 use	 the	@Formula	 annotation	 to	 provide	 a	 SQL	 snippet.	 Hibernate

executes	it	when	it	fetches	the	entity	from	the	database.	The	return	value	of	the
SQL	expression	gets	mapped	to	a	read-only	entity	attribute.

The	 following	 examples	 shows	 a	@Formula	 that	 calculates	 the	 age	 of	 an

author.

@Entity

public	class	Author	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@Column

				private	LocalDate	dateOfBirth;

				@Formula(value	=	"date_part('year',	age(dateOfBirth))")

				private	int	age;

				...

				public	int	getAge()	{

								return	age;

				}

}

When	Hibernate	 fetches	 an	Author	entity	 from	the	database,	 it	adds	 the	SQL

snippet	of	the	@Formula	annotation	to	its	SQL	statement.

05:35:15,762	DEBUG	[org.hibernate.SQL]	–	select	author0_.id	as	

id1_0_,	author0_.dateOfBirth	as	dateOfBi2_0_,	author0_.firstName	as	

firstNam3_0_,	author0_.lastName	as	lastName4_0_,	author0_.version	as	

version5_0_,	date_part(‘year’,	age(author0_.dateOfBirth))	as	

formula0_	from	Author	author0_	where	author0_.id=1

The	@Formula	annotation	provides	 an	easy	way	 to	map	 the	 result	of	 an	SQL	snippet	 to	 an
entity	attribute.	But	it	also	has	some	downsides	you	should	be	aware	of:

1.	 Hibernate	executes	the	SQL	snippet	for	every	Author	entity	it	fetches	from	the	database.
So	better	make	sure,	that	you	only	use	it	for	attributes	you	need	in	all	of	your	use	cases.

2.	 You	need	to	provide	a	native	SQL	snippet	to	the	@Formula	annotation.	This	can	affect

the	database	portability	of	your	application.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
Formula	module	of	 the	example	project.	 If	you	haven’t	already	done	so,	you

can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	more
If	 you	 don’t	want	 to	 execute	 the	 SQL	 snippet	 every	 time	Hibernate	 loads	 the
entity,	you	should	make	it	a	part	of	a	custom	query.	This	allows	you	to	execute	it
only	when	you	need	it.

Here	are	a	few	tips	that	help	you	to	define	complex	queries:

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

How	to	create	a	JPQL	query	at	runtime

How	to	call	a	standard	function	in	a	JPQL	query

How	to	call	a	user-defined	function	in	a	JPQL	query

How	to	create	a	native	SQL	query	at	runtime

How	to	cache	preprocessed,	non-persistent	attributes

Problem
I	often	use	a	value	that	gets	calculated	based	on	an	entity	attribute,	like	the	age
of	a	person.	How	do	I	cache	this	calculated	attribute	in	the	entity	without	storing
it	in	the	database?

Solution
There	are	different	ways	to	provide	a	calculated	value	to	the	user	of	the	entity:

1.	 You	 can	 use	 a	@Formula	 to	 provide	 an	 SQL	 expression	 that	 returns	 the

value.

2.	 You	can	use	field	access	and	calculate	the	value	in	a	getter	method.

3.	 You	can	use	a	transient	entity	attribute	that	stores	the	calculated	value

without	persisting	it	in	the	database.

I	 already	 explained	 option	 1	 in	How	 to	 calculate	 entity	 attributes	 with	 a
@Formula.	Here,	I	focus	on	options	2	and	3.

Calculate	the	value	in	a	getter	method
Option	 2	 is	 easy	 to	 implement.	 When	 you	 use	 field	 access,	 you	 can	 add
additional	getter	methods	to	your	entity.	You	can	for	example,	add	a	getAge()

method	that	calculates	and	returns	the	age	of	the	Author.

This	approach	requires	you	to	calculate	the	value	for	each	call	of	the	getAge()

method.	 It	 is,	 therefore,	 not	 a	 good	 solution	 for	 complex	 calculations	 that	 you
need	to	perform	often.

@Entity

public	class	Author	{

				...

				@Column

				private	LocalDate	dateOfBirth;

				public	int	getCalculatedAge()	{

								log.info("Calculate	age");

								return	Period.between(dateOfBirth,

																														LocalDate.now()).getYears();

				}

}

When	 you	 use	 this	 mapping,	 Hibernate	 doesn’t	 select	 the	 value	 of	 the	age

attribute	from	the	database	and	calculates	it	every	time	the	getAge	method	gets

called.

Author	a	=	em.find(Author.class,	1L);

Assert.assertEquals(43,	a.getCalculatedAge());

log.info(a.getFirstName()	+	"	"	+	a.getLastName()	+	"	is	"

												+	a.getCalculatedAge()	+	"	years	old.");

12:22:08,911	DEBUG	[org.hibernate.SQL]	-	select	author0_.id	as	

id1_0_0_,	author0_.dateOfBirth	as	dateOfBi2_0_0_,	author0_.firstName	

as	firstNam3_0_0_,	author0_.lastName	as	lastName4_0_0_,	

author0_.version	as	version5_0_0_	from	Author	author0_	where	

author0_.id=?

12:22:08,916	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[BIGINT]	-	[1]

12:22:08,935	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([dateOfBi2_0_0_]	:	[DATE])	-	[1973-04-12]

12:22:08,936	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([firstNam3_0_0_]	:	[VARCHAR])	-	[John]

12:22:08,936	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([lastName4_0_0_]	:	[VARCHAR])	-	[Doe]

12:22:08,937	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([version5_0_0_]	:	[INTEGER])	-	[0]

12:22:08,945	INFO		[org.thoughts.on.java.model.Author]	-	Calculate	

age

12:22:08,957	INFO		[org.thoughts.on.java.model.Author]	-	Calculate	

age

12:22:08,958	INFO		[org.thoughts.on.java.model.TestTransient]	-	John	

Doe	is	43	years	old.

Use	a	transient	entity	attribute
The	 transient	 attribute	 approach	 requires	 a	 little	more	 code	 but	 allows	 you	 to
store	 the	 calculated	 value	 in	 an	 entity	 attribute	 without	 persisting	 it.	 The
@Transient	annotation	tells	Hibernate,	and	any	other	JPA	implementation,	to

ignore	the	attribute	when	writing	or	reading	the	entity.	You	can,	therefore,	use	it
in	your	getAge()	method	to	store	the	calculated	result.	This	can	be	useful,	if

you	need	to	perform	a	complex	calculation	that	you	don’t	want	to	repeat	for	each
call.

@Entity

public	class	Author	{

				...

				@Column

				private	LocalDate	dateOfBirth;

				@Transient

				private	Integer	age;

				...

				public	int	getAge()	{

								if	(this.age	==	null)	{

												log.info("Calculate	age");

												this.age	=	Period.between(dateOfBirth,

																																						LocalDate.now()).getYears();

								}	else	{

												log.info("Return	cached	value.");

								}

								return	age;

				}

}

As	you	can	see	in	the	following	example,	Hibernate	doesn’t	select	the	value	of
the	age	attribute	from	the	database	and	it	only	gets	calculated	for	the	first	call	of
the	getAge	method.

Author	a	=	em.find(Author.class,	1L);

Assert.assertEquals(43,	a.getAge());

log.info(a.getFirstName()	+	"	"	+	a.getLastName()	+	"	is	"

												+	a.getAge()	+	"	years	old.");

12:13:40,377	DEBUG	[org.hibernate.SQL]	-	select	author0_.id	as	

id1_0_0_,	author0_.dateOfBirth	as	dateOfBi2_0_0_,	author0_.firstName	

as	firstNam3_0_0_,	author0_.lastName	as	lastName4_0_0_,	

author0_.version	as	version5_0_0_	from	Author	author0_	where	

author0_.id=?

12:13:40,382	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[BIGINT]	-	[1]

12:13:40,408	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([dateOfBi2_0_0_]	:	[DATE])	-	[1973-04-12]

12:13:40,412	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([firstNam3_0_0_]	:	[VARCHAR])	-	[John]

12:13:40,414	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([lastName4_0_0_]	:	[VARCHAR])	-	[Doe]

12:13:40,416	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([version5_0_0_]	:	[INTEGER])	-	[0]

12:13:40,425	INFO		[org.thoughts.on.java.model.Author]	-	Calculate	

age

12:13:40,480	INFO		[org.thoughts.on.java.model.Author]	-	Return	

cached	value.

12:13:40,480	INFO		[org.thoughts.on.java.model.TestTransient]	-	John	

Doe	is	43	years	old.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
TransientAttributes	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
The	@Formula	annotation	provides	another	option	to	calculate	entity	attribute

values	based	on	other	database	columns.	You	can	read	more	about	it	in:	How	to
calculate	entity	attributes	with	a	@Formula.

http://www.hibernate-tips.com/download-examples

How	to	automatically	set	an	attribute	before	persisting	it

Problem
I	want	to	initialize	an	entity	attribute	automatically	before	it	gets	persisted.	How
do	I	execute	custom	code	before	Hibernate	persists	an	entity?

Solution
The	 JPA	 specification	 defines	 a	 set	 of	 callback	 annotations	 to	 trigger	method
calls	 for	 certain	 lifecycle	 events.	 If	 you	 want	 to	 initialize	 an	 entity	 attribute
before	it	gets	persisted,	you	just	have	to	do	2	things:

1.	 Add	a	method	to	the	entity	that	initializes	the	attribute.

2.	 Annotate	this	method	with	@PrePersist	so	that	Hibernate	calls	it	before

it	persists	the	entity.

You	can	see	an	example	of	such	a	method	in	the	following	code	snippet.

@Entity

public	class	Author	{

	 ...

	 @PrePersist

	 private	void	initializeCreatedAt()	{

	 	 this.createdAt	=	LocalDateTime.now();

	 	 log.info("Set	createdAt	to	"+this.createdAt);

	 }

}

Hibernate	calls	 this	method	before	it	persists	 the	new	Author	entity	and	trigger
the	 initialization	 of	 the	createdAt	 attribute.	 You	 can	 see	 that	 in	 the	 log

output,	when	you	persist	a	new	Author	entity.

Author	a	=	new	Author();

a.setFirstName("Thorben");

a.setLastName("Janssen");

em.persist(a);

Hibernate	 calls	 the	initializeCreatedAt	 method	 before	 it	 selects	 the

primary	key	value	from	the	database.	It	 then	persists	the	createdAt	attribute

value	in	the	database.

05:34:00,205	INFO		[org.thoughts.on.java.model.Author]	-	Set	

createdAt	to	2017-03-03T05:34:00.198

05:34:00,211	DEBUG	[org.hibernate.SQL]	-

				select

								nextval	('hibernate_sequence')

05:34:00,260	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								Author

								(createdAt,	firstName,	lastName,	version,	id)

				values

								(?,	?,	?,	?,	?)

05:34:00,267	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[TIMESTAMP]	-	[2017-03-03T05:34:00.198]

05:34:00,269	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[2]	as	[VARCHAR]	-	[Thorben]

05:34:00,270	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[3]	as	[VARCHAR]	-	[Janssen]

05:34:00,271	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[4]	as	[INTEGER]	-	[0]

05:34:00,272	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[5]	as	[BIGINT]	-	[1]

Source	Code

You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
PrePersistLifecycleEvent	 module	 of	 the	 example	 project.	 If	 you

haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
The	JPA	specification	also	defines	callback	annotations	for	other	entity	lifecycle
events.	 You	 can,	 for	 example,	 use	 the	@PreRemove	 annotation	 to	 execute

custom	 code	 before	 Hibernate	 deletes	 an	 entity,	 as	 I	 do	 in	 this	 post:	How	 to
implement	a	soft	delete	with	Hibernate.

http://www.hibernate-tips.com/download-examples
http://www.thoughts-on-java.org/implement-soft-delete-hibernate/

How	to	order	the	elements	of	a	collection

Problem
How	do	I	order	the	elements	of	a	collection	without	writing	my	own	query?

Solution
JPA	 supports	 the	@OrderBy	annotation.	You	can	use	 it	 to	define	 the	order	 in

which	associated	entities	shall	be	retrieved	from	the	database.

Hibernate	 applies	 the	ordering	 every	 time	 it	 loads	 the	 associated	 entities	 from	 the	database.
That	 slows	down	 the	query,	and	you	should	make	sure	 that	you	always	need	 to	 retrieve	 the
entities	in	the	defined	order.	Otherwise,	you	should	use	a	use	case-specific	query	that	returns
the	entities	in	the	defined	order.

You	can	apply	 the	@OrderBy	annotation	to	a	relationship	attribute	and	define

the	ordering	 in	 the	same	way	as	 in	a	JPQL	query.	You	have	 to	provide	one	or
more	entity	attributes	as	a	comma-separated	list.	Hibernate	applies	an	ascending
order	 by	 default.	 But	 you	 can	 also	 define	 the	 preferred	 order	 for	 each	 of	 the
attributes.	You	just	need	to	add	ASC	to	define	an	ascending	order	or	DESC	for	an

descending	order	behind	the	attribute	name.

I	use	this	annotation	in	the	following	code	snippet	to	retrieve	the	Authors	of	a

Book	in	the	ascending	order	of	their	lastName	attribute.

@ManyToMany

@JoinTable(name="BookAuthor",

											joinColumns={@JoinColumn(name="bookId",

																																				referencedColumnName="id")},

											inverseJoinColumns={@JoinColumn(name="authorId",

																																				referencedColumnName="id")})

@OrderBy(value	=	"lastName	ASC")

private	Set<Author>	authors	=	new	HashSet<Author>();

Hibernate	 uses	 the	 value	 of	 the	 annotation	 to	 create	 an	ORDER	BY	 statement

when	it	fetches	the	related	entities	from	the	database.

05:22:13,930	DEBUG	[org.hibernate.SQL]	–

select	authors0_.bookId	as	bookId1_2_0_,

				authors0_.authorId	as	authorId2_2_0_,

				author1_.id	as	id1_0_1_,

				author1_.firstName	as	firstNam2_0_1_,

				author1_.lastName	as	lastName3_0_1_,

				author1_.version	as	version4_0_1_

from	BookAuthor	authors0_	inner	join	Author	author1_

				on	authors0_.authorId=author1_.id

where	authors0_.bookId=?

order	by	author1_.lastName	asc

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
OrderRelationships	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

How	to	model	a	derived	primary	key	with	Hibernate

Problem
My	database	table	uses	a	derived	primary	key	that	includes	the	primary	key	of	an
associated	entity.	How	do	I	model	such	a	primary	key	with	Hibernate?

Solution
You	 can	model	 a	 derived	 primary	 key	with	 an	 embedded	 id	 and	 a	@MapsId

annotation	on	the	association	whose	primary	key	is	part	of	the	derived	identifier.
The	following	code	snippet	shows	an	example	of	such	a	mapping.

@Entity

public	class	Review	{

				@EmbeddedId

				private	ReviewId	id;

				private	String	comment;

				@ManyToOne

				@JoinColumn(name	=	"fk_book")

				@MapsId("bookId")

				private	Book	book;

				...

}

The	id	 attribute	 models	 the	 primary	 key	 of	 the	Review	 entity.	 It	 is	 of	 type

ReviewId,	which	is	an	embeddable	and	shown	in	the	following	code	snippet.

The	 second	 important	 part	 of	 this	mapping	 is	 the	@MapsId	 annotation	on	 the

Book	book	 association.	 You	 can	 use	 this	 annotation	 with	 many-to-one	 and

one-to-one	associations.	 It	 tells	Hibernate	 to	use	 the	primary	key	of	 the	 to-one

side	 of	 the	 association	 as	 a	 primary	 key	 attribute	 of	 the	 to-many	 side	 of	 the
association.	 It	 also	provides	 the	name	of	 the	embedded	 id	attribute	 to	which	 it
shall	be	mapped.	In	 this	example,	 the	id	 attribute	of	 the	Book	entity	becomes

part	of	the	primary	key	of	the	Review	entity	and	gets	mapped	to	the	bookId

attribute	of	the	ReviewId	class.

You	can	 see	 the	ReviewId	class	 in	 the	following	code	snippet.	 It	models	 the

primary	 key	 with	 the	 attributes	bookId	 and	userName.	 It	 is	 used	 as	 an

embedded	 id	 and	 needs	 to	 fulfill	 the	 requirements	 of	 a	 primary	 key	 class.	 A
primary	 key	 class	 must	 be	 public,	 have	 a	 public	 default	 constructor,	 be
serializable	and	implement	the	equals	and	hashCode	methods.

@Embeddable

public	class	ReviewId	implements	Serializable	{

				private	static	final	long	serialVersionUID	=

								-5073745645379676235L;

				private	String	userName;

				private	Long	bookId;

				public	ReviewId()	{

				}

				public	ReviewId(String	userName,	Long	bookId)	{

								this.userName	=	userName;

								this.bookId	=	bookId;

				}

				public	String	getUserName()	{

								return	userName;

				}

				public	void	setUserName(String	userName)	{

								this.userName	=	userName;

				}

				public	Long	getBookId()	{

								return	bookId;

				}

				public	void	setBookId(Long	bookId)	{

								this.bookId	=	bookId;

				}

				@Override

				public	int	hashCode()	{

								final	int	prime	=	31;

								int	result	=	1;

								result	=	prime	*	result

																+	((bookId	==	null)	?	0	:	bookId.hashCode());

								result	=	prime	*	result

																+	((userName	==	null)	?	0	:	userName.hashCode());

								return	result;

				}

				@Override

				public	boolean	equals(Object	obj)	{

								if	(this	==	obj)

												return	true;

								if	(obj	==	null)

												return	false;

								if	(getClass()	!=	obj.getClass())

												return	false;

								ReviewId	other	=	(ReviewId)	obj;

								return	Objects.equals(bookId,	other.bookId)

																&&	Objects.equals(userName,	other.userName);

				}

}

The	 following	 code	 snippet	 shows	 an	 example	 that	 persists	 a	 new	Review

entity.	Due	 to	 the	@MapsId	annotation,	Hibernate	automatically	 initializes	 the

primary	key	attribute	bookId	when	you	call	the	setBook(Book	b)	method.

That	 requires	 you	 to	 initialize	 the	id	 attribute	 before	 you	 set	 the	Book

association.

Review	r	=	new	Review();

r.setId(new	ReviewId());

r.getId().setUserName("peter");

r.setBook(em.find(Book.class,	1L));

r.setComment("This	is	a	comment");

em.persist(r);

The	ReviewId	class	only	contains	the	bookId	attribute	of	type	Long	and	not

the	 association	 to	 the	Book	 entity.	 This	 makes	 it	 easy	 to	 instantiate	 a	 new

ReviewId	object,	if	you	want	to	lookup	a	Review	entity.

Review	r	=	em.find(Review.class,	new	ReviewId("peter",	1L));

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
DerivedPrimaryKey	module	of	the	example	project.	If	you	haven’t	already

done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-tips.com/download-
examples.

Learn	More
Derived	 primary	 keys	 are	 often	 used	 by	 entities	 that	 model	 the	 join	 tables	 of
many-to-many	 associations.	 I	 use	 one	 in	 the	 Hibernate	 tip	How	 to	 model	 an

http://www.hibernate-tips.com/download-examples

association	with	additional	attributes.

How	to	model	an	association	with	additional	attributes

Problem
I	need	to	persist	additional	attributes	for	my	many-to-many	association.	How	do
I	do	that	with	Hibernate?

Solution
Modelling	a	many-to-many	association	with	JPA	and	Hibernate	is	simple.	You
just	 need	 an	 entity	 attribute	 and	 a	@ManyToMany	 annotation.	 Hibernate

internally	maps	the	relationship	to	the	join	table	you	need	in	your	table	model.
But	this	approach	has	one	downside.	It	doesn’t	allow	you	to	map	any	columns	of
the	join	table.	If	you	want	to	do	that,	you	need	to	model	 it	 in	the	same	way	as
you	do	it	in	the	database.	You	need	to	split	the	many-to-many	association	into	an
entity	 that	 maps	 the	 join	 table	 and	 has	 two	 many-to-one	 relationships	 to	 the
associated	entities.

The	 following	 diagram	 shows	 the	 domain	 model	 of	 a	 bookstore	 that	 uses	 an
association	with	additional	attributes.	There	are	books	in	multiple	formats	(e.g.
hardcover,	 paperback,	 ebook)	 and	 each	 format	 was	 published	 by	 a	 different
publisher.	 The	Book	 and	Publisher	 entities	 model	 the	 two	 main	 domain

objects.	The	BookPublisher	entity	models	the	association	between	them	and

persists	the	Format	as	an	additional	attribute.

There	 is	 nothing	 special	 about	 the	Book	 and	Publisher	 entity	 in	 this

example.	 They	model	 the	 properties	 of	 the	 domain	model	 and	 have	 a	 one-to-
many	association	to	the	BookPublisher	entity.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@Version

				private	int	version;

				private	String	title;

				@OneToMany(mappedBy	=	"book")

				private	List<BookPublisher>	publishers	=

								new	ArrayList<BookPublisher>();

				...

}

@Entity

public	class	Publisher	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@Version

				private	int	version;

				private	String	name;

				@OneToMany(mappedBy	=	"publisher")

				private	List<BookPublisher>	books	=

								new	ArrayList<BookPublisher>();

				...

}

The	BookPublisher	entity	models	the	association	between	the	Book	and	the

Publisher	entity	and	stores	the	additional	Format	format	attribute.	It’s	a

common	practice	to	use	a	composite	primary	key	with	the	derived	primary	keys
of	the	associated	entities.	I	explain	derived	primary	keys	and	how	to	model	them
with	an	embedded	id	in	How	to	model	a	derived	primary	key	with	Hibernate.

@Entity

public	class	BookPublisher	{

				@EmbeddedId

				private	BookPublisherId	id;

				@Enumerated(EnumType.STRING)

				private	Format	format;

				@ManyToOne

				@JoinColumn(name	=	"fk_book")

				@MapsId("bookId")

				private	Book	book;

				@ManyToOne

				@JoinColumn(name	=	"fk_publisher")

				@MapsId("publisherId")

				private	Publisher	publisher;

				...

}

@Embeddable

public	class	BookPublisherId	implements	Serializable	{

				private	static	final	long	serialVersionUID	=

								-3287715633608041039L;

				private	Long	bookId;

				private	Long	publisherId;

				public	BookPublisherId()	{

				}

				public	BookPublisherId(Long	bookId,	Long	publisherId)	{

								this.bookId	=	bookId;

								this.publisherId	=	publisherId;

				}

				public	Long	getBookId()	{

								return	bookId;

				}

				public	Long	getPublisherId()	{

								return	publisherId;

				}

				@Override

				public	int	hashCode()	{

								final	int	prime	=	31;

								int	result	=	1;

								result	=	prime	*	result

												+	((bookId	==	null)	?	0	:	bookId.hashCode());

								result	=	prime	*	result

												+	((publisherId	==	null)	?	0	:	publisherId.hashCode());

								return	result;

				}

				@Override

				public	boolean	equals(Object	obj)	{

								if	(this	==	obj)

												return	true;

								if	(obj	==	null)

												return	false;

								if	(getClass()	!=	obj.getClass())

												return	false;

								BookPublisherId	other	=	(BookPublisherId)	obj;

								return	Objects.equals(bookId,	other.bookId)

																&&	Objects.equals(publisherId,

																																		other.getPublisherId());

				}

				@Override

				public	String	toString()	{

								return	"BookPublisherId	[bookId="	+	bookId

																+	",	publisherId="	+	publisherId	+	"]";

				}

}

When	you	want	 to	persist	 the	association	between	a	Book	 and	 a	Publisher

entity,	you	need	to	create	a	new	BookPublisher	entity	and	associate	it	with	a

Book	and	a	Publisher	entity.

Book	b	=	em.find(Book.class,	1L);

Publisher	p	=	em.find(Publisher.class,	1L);

BookPublisher	bp	=	new	BookPublisher();

bp.setId(new	BookPublisherId());

bp.setBook(b);

bp.setPublisher(p);

bp.setFormat(Format.PAPERBACK);

em.persist(bp);

16:37:31,898	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_0_0_,

								book0_.title	as	title2_0_0_,

								book0_.version	as	version3_0_0_

				from

								Book	book0_

				where

								book0_.id=?

16:37:31,902	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[BIGINT]	-	[1]

16:37:31,916	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([title2_0_0_]	:	[VARCHAR])	-	[Hibernate	Tips]

16:37:31,917	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([version3_0_0_]	:	[INTEGER])	-	[0]

16:37:31,937	DEBUG	[org.hibernate.SQL]	-

				select

								publisher0_.id	as	id1_2_0_,

								publisher0_.name	as	name2_2_0_,

								publisher0_.version	as	version3_2_0_

				from

								Publisher	publisher0_

				where

								publisher0_.id=?

16:37:31,938	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[BIGINT]	-	[1]

16:37:31,939	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([name2_2_0_]	:	[VARCHAR])	-	[Thoughts	on	Java]

16:37:31,940	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([version3_2_0_]	:	[INTEGER])	-	[0]

16:37:31,979	DEBUG	[org.hibernate.SQL]	-

				insert

				into

								BookPublisher

								(format,	fk_book,	fk_publisher)

				values

								(?,	?,	?)

16:37:31,979	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[2]	as	[BIGINT]	-	[1]

16:37:31,979	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[3]	as	[BIGINT]	-	[1]

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
AssociationsWithAttributes	 module	 of	 the	 example	 project.	 If	 you

haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more

http://www.hibernate-tips.com/download-examples

It	is	a	common	practice	to	model	the	primary	key	of	the	association	table	and	its
entity	as	a	derived	primary	key.	I	explain	the	required	mapping	in	more	detail	in
How	to	model	a	derived	primary	key	with	Hibernate.

How	to	map	an	inheritance	hierarchy	to	multiple	tables

Problem
My	 database	 contains	 multiple	 tables	 that	 I	 want	 to	 map	 to	 an	 inheritance
hierarchy	of	entities.	How	do	I	define	such	a	mapping?

Solution
JPA	and	Hibernate	support	different	inheritance	strategies	that	allow	you	to	map
the	 entities	 to	 different	 table	 structures.	 The	MappedSuperclass	 approach

and	the	strategies	TablePerClass	and	Joined	map	an	inheritance	hierarchy

of	entities	to	multiple	tables.	Each	of	them	maps	the	entities	to	a	different	table
structure	 with	 its	 advantages	 and	 disadvantages.	 You	 need	 to	 decide	 for	 your
particular	use	case	which	approach	you	want	to	use.

Let’s	take	a	look	at	the	entity	model	that	I	use	in	all	examples	of	this	Hibernate
tip	 before	 I	 show	 you	 the	 different	 inheritance	 strategies.	Authors	 can	write

different	 kinds	 of	Publications,	 like	Books	 and	BlogPosts.	 The

Publication	class	is	the	super	class	of	the	Book	and	BlogPost	classes.

MappedSuperclass
The	MappedSuperclass	approach	maps	each	entity	class	to	a	database	table

but	 not	 the	 superclass.	 In	 this	 example,	 it	 maps	 the	 entity	 classes	Author,

BlogPost	 and	Book	 to	 the	database	 tables	author,	blogpost	 and	book.

The	Publication	class	does	not	get	mapped	to	any	database	table.

You	 define	 this	 mapping	 by	 annotating	 the	 superclass	 with	 the
@MappedSuperclass	 annotation	 but	 not	 with	 a	@Entity	 annotation.	The

superclass	 is	 not	 an	 entity.	 It	 just	 defines	 the	 attributes	 that	 are	 shared	 by	 the
subclasses.

@MappedSuperclass

public	abstract	class	Publication	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				private	Long	id;

				@Version

				private	int	version;

				private	String	title;

				private	LocalDate	publishingDate;

				...

}

The	 subclasses	 only	 need	 to	 extend	 the	 superclass	 and	 are	 annotated	 with	 a
@Entity	annotation.	The	mapping	of	the	inheritance	hierarchy	doesn’t	require

any	additional	annotations.

@Entity

public	class	Book	extends	Publication	{

				private	int	numPages;

				...

}

Th e	MappedSuperclass	 approach	 enables	 Hibernate	 to	 select	Book	 or

BlogPost	 entities	 with	 a	 simple	 SQL	 query.	 But	 it	 doesn’t	 support	 any

polymorphic	queries.

TypedQuery<Book>	q	=	em.createQuery(

				"SELECT	b	FROM	Book	b	WHERE	b.id	=	:id",	Book.class);

q.setParameter("id",	1L);

b	=	q.getSingleResult();

13:49:00,420	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_2_,

								book0_.publishingDate	as	publishi2_2_,

								book0_.title	as	title3_2_,

								book0_.version	as	version4_2_,

								book0_.numPages	as	numPages5_2_

				from

								Book	book0_

				where

								book0_.id=?

TablePerClass

T h e	TablePerClass	 strategy	 maps	 each	 concrete	 entity	 class	 of	 the

hierarchy,	including	the	superclass,	to	its	own	database	table.	In	contrast	to	the

MappedSuperclass	 approach,	 the	 superclass	 is	 now	 also	 an	 entity	 which

gets	mapped	to	a	database	table	and	can	be	used	in	queries	and	associations.

That	 means	 in	 the	 current	 example,	 that	 Hibernate	 maps	 the	Author,

Publication,	Book	and	BlogPost	entities	to	database	tables	with	the	same

name	and	a	column	for	each	entity	attribute.

If	you	want	to	use	this	inheritance	strategy,	you	need	to	annotate	the	superclass
with	 an	@Inheritance	 annotation	 and	 provide	 the

InheritanceType.TABLE_PER_CLASS	 as	 the	 value	 of	 the	strategy

attribute.

@Entity

@Inheritance(strategy	=	InheritanceType.TABLE_PER_CLASS)

public	class	Publication	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				private	Long	id;

				@Version

				private	int	version;

				private	String	title;

				private	LocalDate	publishingDate;

				@ManyToMany

				@JoinTable(

								name="PublicationAuthor",

								joinColumns={@JoinColumn(name="publicationId",

																																	referencedColumnName="id")},

								inverseJoinColumns={@JoinColumn(name="authorId",

																																	referencedColumnName="id")})

				private	Set<Author>	authors	=	new	HashSet<Author>();

				...

}

The	 subclasses	 only	 need	 to	 extend	 the	 superclass	 and	 are	 annotated	 with	 a
@Entity	annotation.

@Entity

public	class	Book	extends	Publication	{

				private	int	numPages;

				...

}

The	TablePerClass	 strategy	 allows	 efficient	 queries	 as	 long	 as	 you	 select

only	 one	 kind	 of	 entity.	 But	 as	 you	 can	 see	 in	 the	 following	 log	 output,
polymorphic	 queries	 and	 associations	 require	 complex	 join	 statements	 and
should	be	avoided.

Author	a	=	em.find(Author.class,	1L);

List<Publication>	publications	=	a.getPublications();

05:41:00,338	DEBUG	[org.hibernate.SQL]	-

				select

								publicatio0_.authorId	as	authorId2_4_0_,

								publicatio0_.publicationId	as	publicat1_4_0_,

								publicatio1_.id	as	id1_3_1_,

								publicatio1_.publishingDate	as	publishi2_3_1_,

								publicatio1_.title	as	title3_3_1_,

								publicatio1_.version	as	version4_3_1_,

								publicatio1_.numPages	as	numPages1_2_1_,

								publicatio1_.url	as	url1_1_1_,

								publicatio1_.clazz_	as	clazz_1_

				from

								PublicationAuthor	publicatio0_

				inner	join

								(

												select

																id,

																publishingDate,

																title,

																version,

																null::int4	as	numPages,

																null::varchar	as	url,

																0	as	clazz_

												from

																Publication

												union

												all	select

																id,

																publishingDate,

																title,

																version,

																numPages,

																null::varchar	as	url,

																1	as	clazz_

												from

																Book

												union

												all	select

																id,

																publishingDate,

																title,

																version,

																null::int4	as	numPages,

																url,

																2	as	clazz_

												from

																BlogPost

)	publicatio1_

												on	publicatio0_.publicationId=publicatio1_.id

				where

								publicatio0_.authorId=?

Joined

T h e	Joined	 strategy	 maps	 each	 entity	 of	 the	 hierarchy,	 including	 the

superclass,	 to	 a	 database	 table.	 But	 in	 contrast	 to	 the	TablePerClass

approach,	 the	 table	 of	 the	 superclass	 contains	 all	 columns	 shared	 by	 the
subclasses.	That	makes	the	book	and	blogpost	table	of	the	current	example	a

lot	smaller.	They	only	consist	of	a	primary	key	column	and	a	column	to	persist
the	additional	attribute	of	each	entity.

You	 specify	 the	Joined	 table	 strategy	 in	 a	 similar	 way	 as	 the

TablePerClass	strategy.	You	need	to	add	an	@Inheritance	annotation	to

the	 superclass	 and	 set	 the	strategy	 attribute	 to

InheritanceType.JOINED.

@Entity

@Inheritance(strategy	=	InheritanceType.JOINED)

public	abstract	class	Publication	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				private	Long	id;

				@Version

				private	int	version;

				private	String	title;

				private	LocalDate	publishingDate;

				@ManyToMany

				@JoinTable(name="PublicationAuthor",

								joinColumns={@JoinColumn(name="publicationId",

																																	referencedColumnName="id")},

								inverseJoinColumns={@JoinColumn(name="authorId",

																																	referencedColumnName="id")})

				private	Set<Author>	authors	=	new	HashSet<Author>();

				...

}

Like	for	the	previously	discussed	mapping	strategies,	the	subclasses	only	need	to
extend	the	superclass	and	are	annotated	with	a	@Entity	annotation.

@Entity

public	class	Book	extends	Publication	{

				private	int	numPages;

				...

}

The	Joined	table	strategy	maps	the	entity	attributes	defined	by	the	superclass

to	columns	in	the	publication	table	and	the	attributes	defined	by	the	Book

or	BlogPost	entity	to	columns	in	the	book	or	blogpost	 table.	That	makes

the	tables	of	the	subclasses	smaller	and	polymorphic	queries	easier.	But	all	select
statements	require	at	least	one	JOIN	clause	that	joins	the	table	of	the	superclass

with	the	table	of	the	selected	subclass.

TypedQuery<Book>	q	=	em.createQuery(

				"SELECT	b	FROM	Book	b	WHERE	b.id	=	:id",	Book.class);

q.setParameter("id",	1L);

b	=	q.getSingleResult();

14:09:06,926	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_3_,

								book0_1_.publishingDate	as	publishi2_3_,

								book0_1_.title	as	title3_3_,

								book0_1_.version	as	version4_3_,

								book0_.numPages	as	numPages1_2_

				from

								Book	book0_

				inner	join

								Publication	book0_1_

												on	book0_.id=book0_1_.id

				where

								book0_.id=?

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
InheritanceMappedSuperclass,	 InheritanceTablePerClass

and	InheritanceJoined	 modules	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
You	can	also	map	all	entities	of	 the	inheritance	hierarchy	to	the	same	database
table.	I	show	you	how	to	do	that	in	How	to	map	an	inheritance	hierarchy	to	one
table.

http://www.hibernate-tips.com/download-examples

How	to	map	an	inheritance	hierarchy	to	one	table

Problem
My	database	contains	one	table,	which	I	want	to	map	to	an	inheritance	hierarchy
of	entities.	How	do	I	define	such	a	mapping?

Solution
JPA	 and	Hibernate	 support	 different	 inheritance	 strategies	which	 allow	you	 to
map	the	entities	to	different	table	structures.	The	SingleTable	strategy	is	one

of	them	and	maps	an	inheritance	hierarchy	of	entities	to	a	single	database	table.

Let’s	 have	 a	 look	 at	 the	 entity	 model	 before	 I	 explain	 the	 details	 of	 the
SingleTable	 strategy.	Authors	 can	 write	 different	 kinds	 of

Publications,	 like	Books	 and	BlogPosts.	 The	Publication	class	 is

the	super	class	of	the	Book	and	BlogPost	classes.

The	SingleTable	strategy	maps	the	three	entities	of	the	inheritance	hierarchy

to	the	publication	table.

If	you	want	to	use	this	inheritance	strategy,	you	need	to	annotate	the	superclass
with	 an	@Inheritance	 annotation	 and	 provide	 the

InheritanceType.SINGLE_TABLE	 as	 the	 value	 of	 the	strategy

attribute.

You	 can	 also	 annotate	 the	 superclass	 with	 a	@DiscriminatorColumn

annotation	 to	 define	 the	 name	 of	 the	 discriminator	 value.	 Hibernate	 uses	 this
value	 to	determine	 the	 entity	 to	which	 it	 has	 to	map	 a	database	 record.	 If	 you
don’t	 define	 a	 discriminator	 column,	 as	 I	 do	 in	 the	 following	 code	 snippet,
Hibernate,	and	all	other	JPA	implementations	use	the	column	DTYPE.

@Entity

@Inheritance(strategy	=	InheritanceType.SINGLE_TABLE)

public	abstract	class	Publication	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				private	Long	id;

				@Version

				private	int	version;

				private	String	title;

				private	LocalDate	publishingDate;

				@ManyToMany

				@JoinTable(name="PublicationAuthor",

								joinColumns={@JoinColumn(name="publicationId",

																																	referencedColumnName="id")},

								inverseJoinColumns={@JoinColumn(name="authorId",

																																	referencedColumnName="id")})

				private	Set<Author>	authors	=	new	HashSet<Author>();

				...

}

The	 subclasses	 need	 to	 extend	 the	 superclass,	 and	 you	 need	 to	 annotate	 them
with	 a	@Entity	 annotation.	 The	 JPA	 specification	 also	 recommends	 to

annotate	 it	 with	 a	@DiscriminatorValue	 annotation	 to	 define	 the

discriminator	 value	 for	 this	 entity	 class.	 If	 you	 don’t	 provide	 this	 annotation,
your	 JPA	 implementation	 generates	 a	 discriminator	 value.	 But	 the	 JPA
specification	 doesn’t	 define	 how	 to	 generate	 the	 discriminator	 value,	 and	 your
application	might	not	be	portable	to	other	JPA	implementations.	Hibernate	uses
the	simple	entity	name	as	the	discriminator.

@Entity

@DiscriminatorValue("Book")

public	class	Book	extends	Publication	{

				private	int	numPages;

				...

}

The	SingleTable	strategy	doesn’t	require	Hibernate	to	generate	any	complex

queries	 if	you	want	 to	select	a	specific	entity,	perform	a	polymorphic	query	or

traverse	a	polymorphic	association.	All	entities	are	stored	in	the	same	table,	and
Hibernate	can	select	them	from	there	without	an	additional	JOIN	clause.

Author	a	=	em.find(Author.class,	1L);

List<Publication>	publications	=	a.getPublications();

14:29:53,723	DEBUG	[org.hibernate.SQL]	-

				select

								publicatio0_.authorId	as	authorId2_2_0_,

								publicatio0_.publicationId	as	publicat1_2_0_,

								publicatio1_.id	as	id2_1_1_,

								publicatio1_.publishingDate	as	publishi3_1_1_,

								publicatio1_.title	as	title4_1_1_,

								publicatio1_.version	as	version5_1_1_,

								publicatio1_.numPages	as	numPages6_1_1_,

								publicatio1_.url	as	url7_1_1_,

								publicatio1_.DTYPE	as	DTYPE1_1_1_

				from

								PublicationAuthor	publicatio0_

				inner	join

								Publication	publicatio1_

												on	publicatio0_.publicationId=publicatio1_.id

				where

								publicatio0_.authorId=?

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
InheritanceSingleTable	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
You	can	also	map	the	entities	of	 the	inheritance	hierarchy	to	multiple	database
tables.	 I	 show	 you	 how	 to	 do	 that	 in	How	 to	map	 an	 inheritance	 hierarchy	 to

http://www.hibernate-tips.com/download-examples

multiple	tables.

▪

▪

▪

HIBERNATE	SPECIFIC	QUERIES	AND	MAPPINGS

Most	of	the	Hibernate	Tips	in	this	book	use	features	defined	by	the

JPA	 specification.	 But	 Hibernate	 also	 provides	 a	 set	 of	 very	 useful

extensions	of	the	standard.	The	most	commonly	used	ones	are:

How	to	join	unassociated	entities	in	a	query

How	to	map	natural	IDs

How	to	load	multiple	entities	by	their	primary	key

If	you’re	using	Hibernate	5,	you	should	also	have	a	 look	at	 the	chapter

about	 the	Java	 8	 support	 in	 Hibernate.	 It	 shows	 some	 additional

extensions	to	the	JPA	standard.

How	to	join	unassociated	entities	in	a	query

Problem
JPQL	 requires	 a	 mapped	 association	 to	 join	 two	 entities.	 Is	 there	 any	 other
option	to	join	unassociated	entities	in	a	query?

Solution
Hibernate	 extends	 JPQL’s	 limited	 join	 feature	with	 the	proprietary	 support	 for
joins	of	unassociated	entities.	You	can	see	an	example	of	such	a	JOIN	clause	in

the	following	code	snippet.

Query	q	=	em.createQuery("SELECT	b.title,	count(r.id)	"

				+	"FROM	Book	b	JOIN	Review	r	ON	r.fkBook	=	b.id	"

				+	"GROUP	BY	b.title");

Object[]	r	=	(Object[])	q.getSingleResult();

Hibernate	uses	the	same	syntax	as	you	probably	know	from	SQL.	You	reference
the	 two	 entities	 you	 want	 to	 join	 and	 the	 kind	 of	 join	 you	 want	 to	 perform.
Hibernate	supports	an	 inner	JOIN,	 a	LEFT	outer	 join	and	a	RIGHT	outer	 join.

You	also	need	to	define	a	join	condition	in	the	ON	clause	of	the	JOIN	clause.

The	previous	code	snippet	shows	an	inner	join	of	all	Book	and	Review	entities

so	that	I	can	count	the	number	of	reviews	for	each	book.	When	you	execute	this
query,	Hibernate	 transforms	 the	JPQL	JOIN	clause	into	a	similar	looking	SQL

JOIN	clause.

19:48:12,518	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.title	as	col_0_0_,

								count(review1_.id)	as	col_1_0_

				from

								Book	book0_

				inner	join

								Review	review1_

												on	(

																review1_.fkBook=book0_.id

)

				group	by

								book0_.title

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
HibernateJoinUnassociatedEntities	 module	 of	 the	 example

project.	 If	 you	 haven’t	 already	 done	 so,	 you	 can	 download	 it	 at
http://www.hibernate-tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

How	to	map	natural	IDs

Problem
My	 domain	 model	 contains	 several	 natural	 IDs	 which	 I	 need	 to	 use	 to	 find
objects	 in	 my	 business	 logic.	What’s	 the	 best	 way	 to	 models	 these	 IDs	 with
Hibernate?

Solution
Hibernate	provides	proprietary	 support	 for	natural	 IDs.	 It	 allows	you	 to	model
them	 as	 a	 natural	 identifier	 of	 an	 entity	 and	 provides	 an	 additional	 API	 for
retrieving	them	from	the	database.

The	only	thing	you	have	to	do	to	model	an	attribute	as	a	natural	id	is	to	add	the
@NaturalId	annotation	to	it.	If	your	natural	id	consists	of	multiple	attributes,

you	have	to	add	this	annotation	to	each	of	 the	attributes.	You	can	see	a	simple
example	of	such	a	mapping	in	the	following	code	snippet.	The	ISBN	number	is	a
common	natural	id	that	is	often	used	in	the	business	logic	to	identify	a	book.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				@NaturalId

				private	String	isbn;

				...

}

Natural	 IDs	 are	 immutable	 by	 default.	 If	 you	 need	mutable,	 natural	 identifier,
you	have	to	set	the	mutable	attribute	of	the	@NaturalId	annotation	to	true.

Hibernate’s	Session	 interface	 provides	 the	 methods	byNaturalId	 and

bySimpleNaturalId	 to	 read	 an	 entity	 by	 its	 natural	 identifier	 from	 the

database.	 The	byNaturalId	 method	 allows	 you	 to	 use	 complex	 natural

identifiers	that	consist	of	multiple	attributes.

Book	b	=	session.byNaturalId(Book.class)

																.using(Book_.isbn.getName(),	"123-4567890123")

																.load();

You	have	 to	 provide	 the	 class	 or	 the	 name	of	 the	 entity	 as	 a	 parameter	 to	 the
byNaturalId	method	to	tell	Hibernate	which	entity	you	want	to	retrieve.	The

following	 call	 of	 the	using	 method	 provides	 the	 name	 of	 the	 natural	 ID

attribute	and	its	value.	If	the	natural	ID	consists	of	multiple	attributes,	you	have
to	 call	 this	 method	 for	 each	 part	 of	 the	 ID.	 In	 this	 example,	 I	 use	 the	 JPA
metamodel	to	reference	the	name	of	the	isbn	attribute	in	a	type-safe	way.

After	 you’ve	 provided	 the	 value	 of	 the	 natural	 id,	 you	 can	 call	 the	load,

getReference	or	loadOptional	method	to	get	the	entity	identified	by	it.

When	your	natural	 identifier	consists	of	only	one	entity	attribute,	you	can	also
use	 the	bySimpleNaturalId	 method	 to	 load	 it.	 As	 you	 can	 see	 in	 the

following	code	snippet,	it	provides	a	more	convenient	way	to	load	entities	with
simple	natural	ids.

Book	b	=	session.bySimpleNaturalId(Book.class)

																.load("123-4567890123");

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
HibernateNaturalId	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

How	to	load	multiple	entities	by	their	primary	key

Problem
I	need	to	load	multiple	entities	by	their	primary	key.	Is	there	an	easier	way	to	do
that	than	writing	a	JPQL	query?

Solution
Loading	 multiple	 entities	 by	 their	 primary	 keys	 is	 a	 very	 common	 use	 case.
Since	version	5.1,	Hibernate	offers	a	proprietary	API	that	makes	it	a	lot	easier	to
load	multiple	entities	and	provides	additional	benefits,	like	fetching	huge	lists	in
multiple	batches.

You	just	need	to	call	the	byMultipleIds(Class	entityClass)	method

on	the	Hibernate	Session	and	provide	the	class	of	the	entities	you	want	to	load

as	 a	 parameter.	 You	 then	 get	 a	 typed	 instance	 of	 the
MultiIdentifierLoadAccess	 interface.	You	can	use	 it	 to	 load	multiple

entities	at	once	and	to	configure	the	database	interaction.

MultiIdentifierLoadAccess<Book>	multi	=

				session.byMultipleIds(Book.class);

List<Book>	books	=	multi.multiLoad(1L,	2L,	3L);

The	 call	 of	 the	multiLoad	 method	 in	 this	 example	 loads	 the	 three	Book

entities	with	the	given	primary	keys.	Hibernate	creates	one	query	for	this	method
call	and	provides	the	three	primary	keys	as	parameters	to	an	IN	statement.

06:25:30,202	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_0_0_,

								book0_.publishingDate	as	publishi2_0_0_,

								book0_.title	as	title3_0_0_,

								book0_.version	as	version4_0_0_

				from

								Book	book0_

				where

								book0_.id	in	(

												?,?,?

)

Hibernate	performs	one	or	more	queries	to	load	the	requested	entities,	when	you
provide	more	primary	keys	than	the	default	batch	size	defined	in	your	database-
specific	Hibernate	dialect	or	the	batch	size	you	defined	yourself.	The	following
code	 snippet	 shows	 an	 example	 in	 which	 I	 call	 the	withBatchSize(int

batchSize)	method	 to	set	 the	batch	size	 to	2	and	Hibernate	has	 to	perform

two	queries	to	select	the	three	Book	entities.

MultiIdentifierLoadAccess<Book>	multi	=

				session.byMultipleIds(Book.class);

List<Book>	books	=	multi.withBatchSize(2).multiLoad(1L,	2L,	3L);

06:28:24,330	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_0_0_,

								book0_.publishingDate	as	publishi2_0_0_,

								book0_.title	as	title3_0_0_,

								book0_.version	as	version4_0_0_

				from

								Book	book0_

				where

								book0_.id	in	(

												?,?

)

06:28:24,359	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_0_0_,

								book0_.publishingDate	as	publishi2_0_0_,

								book0_.title	as	title3_0_0_,

								book0_.version	as	version4_0_0_

				from

								Book	book0_

				where

								book0_.id	in	(

												?

)

You	can	also	tell	Hibernate	not	to	load	any	entities	that	are	already	stored	in	the
first-level	cache.	That	behavior	is	deactivated	by	default	to	avoid	any	overhead
that	could	slow	down	your	application.	If	you	know	that	most	of	 the	requested
entities	are	already	in	the	cache,	you	can	activate	the	additional	check	by	calling
the	enableSessionCheck	method.

MultiIdentifierLoadAccess<Book>	multi	=

				session.byMultipleIds(Book.class);

List<Book>	books	=	multi.enableSessionCheck(true)

																								.multiLoad(1L,	2L,	3L);

When	 the	Book	 entity	 with	id	 1	 is	 already	 stored	 in	 the	 first-level	 cache,

Hibernate	doesn’t	add	its	primary	key	to	the	IN	clause.

06:27:47,864	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_0_0_,

								book0_.publishingDate	as	publishi2_0_0_,

								book0_.title	as	title3_0_0_,

								book0_.version	as	version4_0_0_

				from

								Book	book0_

				where

								book0_.id	in	(

												?,?

)

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
HibernateMultipleId	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

▪

▪

▪

JAVA	8

Java	 8	 introduced	 a	 lot	 of	 powerful	 and	 convenient	 changes	 to	 the

Java	 world.	 Hibernate	 supports	 the	 new	 concepts	 and	 data	 type	 since

version	5.	It	started	with	the	support	of	the	classes	of	the	Date	and	Time

API	 as	BasicTypes	 in	 version	 5.0.	 The	 required	 changes	 were

packaged	 into	 the	 optional	hibernate-java8.jar	 file	 which	 you

needed	to	add	to	the	classpath	of	your	application.	Since	version	5.1,	this

is	no	longer	required.	The	Hibernate	team	switched	the	code	base	of	their

core	project	to	Java	8	and	started	to	use	Java	8	in	their	APIs.

I	 show	 you	 how	 to	 use	 some	 of	 the	most	 popular	 new	 data	 types	 and

concepts	in	the	following	Hibernate	tips:

How	to	map	an	association	to	an	Optional

How	to	map	classes	of	Java	8’s	Date	and	Time	API

How	to	retrieve	a	query	result	as	a	Java	8	Stream

How	to	map	an	association	to	an	Optional

Problem
How	do	I	map	an	optional	to-one	association	to	a	Java	8	Optional?

Solution
Hibernate	does	not	support	Optional	as	an	attribute	type.	But	you	can	implement
your	own	getter	method	to	wrap	the	attribute	in	an	Optional<T>,	if	Hibernate

uses	 field	 access.	 This	 provides	 you	 the	 option	 to	 wrap	 the	 attribute	 which
represents	the	to-one	association	into	an	Optional.	You	can	see	an	example	of	it
in	the	following	code	snippet.

@Entity

public	class	Book	implements	Serializable	{

	 ...

	 @ManyToOne

	 @JoinColumn(name="publisherid")

	 private	Publisher	publisher;

	 ...

	 public	Optional	getPublisher()	{

	 	 return	Optional.ofNullable(this.publisher);

	 }

	 public	void	setPublisher(final	Publisher	publisher)	{

	 	 this.publisher	=	publisher;

	 }

}

▪

▪

As	you	can	see	in	the	code	snippet,	I	wrap	the	publisher	into	an	Optional

in	 the	getPublisher	 method	 and	 return	 an	Optional	 instead	 of	 a

Publisher	 entity.	 The	 caller	 of	 this	 method	 immediately	 sees	 that	 the

publisher	might	be	null	and	that	she	needs	to	handle	it.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
MapOptionalAssociations	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
Hibernate	 5	 also	 provides	 proprietary	 support	 for	 other	 Java	 8	 features,	 like
Streams	and	the	Date	and	Time	API.	You	can	read	more	about	it	in:

How	to	retrieve	a	query	result	as	a	Java	8	Stream

How	to	map	classes	of	Java	8’s	Date	and	Time	API

http://www.hibernate-tips.com/download-examples

How	to	map	classes	of	Java	8’s	Date	and	Time	API

Problem
I	want	to	use	the	Date	and	Time	API	in	my	domain	model	but	I	can’t	annotate
them	 with	 JPA’s	@Temporal	 annotation.	How	do	 I	use	 the	new	classes	with

Hibernate?

Solution
The	 good	 news	 is,	 that	 since	 Hibernate	 5,	 you	 don’t	 need	 any	 additional
annotations	 to	map	classes	of	 the	Date	and	Time	API.	If	you’re	using	an	older
Hibernate	version	you	need	to	implement	your	own	mapping.	I	show	you	how	to
do	that	in	How	to	map	the	Date	and	Time	API	with	Hibernate	4.4.

Hibernate	5	supports	the	classes	of	the	Date	and	Time	API	as	BasicType.	 In

contrast	 to	 the	 old	java.util.Date,	 the	classes	of	 the	Date	and	Time	API

provide	all	information	Hibernate	needs	to	map	them	to	the	correct	JDBC	types.
The	following	table	shows	to	which	JDBC	types	Hibernate	maps	the	new	Java
classes.

Table	1.	JDBC	Mappings

Java	type JDBC	type

java.time.Duration BIGINT

java.time.Instant TIMESTAMP

java.time.LocalDateTime TIMESTAMP

java.time.LocalDate DATE

java.time.LocalTime TIME

java.time.OffsetDateTime TIMESTAMP

java.time.OffsetTime TIME

java.time.ZonedDateTime TIMESTAMP

As	 you	 can	 see	 in	 the	 following	 code	 snippet,	 you	 don’t	 need	 to	 provide	 any
additional	 annotations	when	 you	 use	 the	Date	 and	Time	API	 classes	 as	 entity
attribute	types.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				@Column(name	=	"id",	updatable	=	false,	nullable	=	false)

				private	Long	id;

				private	LocalDate	publishingDate;

				...

}

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
DateAndTime	module	of	the	example	project.	If	you	haven’t	already	done	so,

you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
Hibernate	 5	 also	 provides	 proprietary	 support	 for	 other	 Java	 8	 features,	 like
Optional	and	the	Stream	API.	You	can	read	more	about	it	in:

http://www.hibernate-tips.com/download-examples

▪

▪

How	to	map	an	association	to	an	Optional

How	to	retrieve	a	query	result	as	a	Java	8	Stream

If	 you	 can’t	 use	 Hibernate	 5	 or	 if	 you’re	 not	 allowed	 to	 use	 any	 proprietary
features,	you	can	 implement	an	AttributeConverter	which	converts	 the	class	of
the	Date	and	Time	API	to	a	supported	Java	type.	I	show	you	how	to	do	that	in
How	to	map	the	Date	and	Time	API	with	Hibernate	4.4.

How	to	retrieve	a	query	result	as	a	Java	8	Stream

Problem
I	want	to	use	a	Java	8	Stream	to	process	the	result	of	a	query.	What	is	the	best
way	to	get	a	query	result	as	a	Stream?

Solution
The	most	obvious	but	not	the	most	efficient	approach	is	to	just	call	the	stream

method	 on	 the	List	 interface.	You	can	 see	an	example	of	 it	 in	 the	 following

code	snippet.	I	first	call	the	getResultList	method	on	the	Query	 interface

to	get	the	query	result	as	a	List	and	then	call	the	stream	method	of	the	List

interface.

List<Book>	books	=	session.createQuery("SELECT	b	FROM	Book	b",

																																							Book.class).getResultList();

books.stream()

					.map(b	->	b.getTitle()	+	"	was	published	on	"

												+	b.getPublishingDate())

					.forEach(m	->	log.info(m));

That	approach	might	look	OK	but	it	has	a	drawback	that	can	create	performance
issues	for	huge	result	sets.	In	this	example,	Hibernate	gets	all	the	selected	Book

entities	 from	 the	 database,	 stores	 them	 in	memory,	 and	 puts	 them	 into	 a	 List.
Then	I	call	the	stream	method	and	process	the	results	one	by	one.

There	 is	 no	 need	 to	 fetch	 all	 records	 of	 the	 query	 result	 at	 the	 beginning.	 For
huge	result	sets	it’s	better	to	scroll	through	the	records	and	fetch	them	in	smaller
chunks.

▪

▪

You	 might	 already	 know	 the	 concept	 from	 JDBC	 result	 sets	 or	 Hibernate’s
ScrollableResults.	 Scrolling	 through	 the	 records	 of	 a	 result	 set	 and

processing	 them	 as	 a	Stream	 are	 a	 great	 fit.	 Both	 approaches	 process	 one

record	after	the	other,	and	there	is	no	need	to	fetch	all	of	them	upfront.

Since	 Hibernate	 5.2,	 you	 can	 do	 exactly	 that	 with	 the	stream	 method	 of

Hibernate’s	Query	 interface.	 It	 returns	a	Stream	of	the	query	result	and	uses

Hibernate’s	ScrollableResults	 internally.	 That	 allows	 you	 to	 scroll

through	the	result	set	without	fetching	all	records	in	the	beginning.

Stream<Book>	books	=	session.createQuery("SELECT	b	FROM	Book	b",

																																									Book.class).stream();

books.map(b	->	b.getTitle()	+	"	was	published	on	"

													+	b.getPublishingDate())

					.forEach(m	->	log.info(m));

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
ResultsAsStreams	module	of	 the	example	project.	 If	you	haven’t	 already

done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-tips.com/download-
examples.

Learn	More
Hibernate	 5	 also	 provides	 proprietary	 support	 for	 other	 Java	 8	 features,	 like
Optional	and	the	Date	and	Time	API.	You	can	read	more	about	it	in:

How	to	map	an	association	to	an	Optional

How	to	map	classes	of	Java	8’s	Date	and	Time	API

http://www.hibernate-tips.com/download-examples

▪

▪

▪

LOGGING

Logging	 is	 an	 often	 ignored	 but	 important	 topic.	 A	 good	 logging

configuration	 can	 help	 you	 to	 find	 potential	 issues	 during	 development

and	doesn’t	slow	down	your	application	in	production.

The	 definition	 of	 a	 good	 production	 configuration	 is	 simple.	 You	 just

need	 to	 set	 the	 log	 level	 of	Hibernate’s	org.hibernate	 category	 to

ERROR	to	avoid	any	unnecessary	log	messages.

The	development	configuration	is	more	complex.	You	need	more	internal

information	 while	 you	 implement	 new	 or	 change	 existing	 use	 cases.	 I

show	you	how	to	get	these	information	in	the	following	Hibernate	tips:

How	to	log	SQL	statements	and	their	parameters

How	to	count	the	executed	queries	in	a	Session

How	to	use	query	comments	to	identify	a	query

▪

▪

How	to	log	SQL	statements	and	their	parameters

Problem
How	do	you	configure	Hibernate	so	that	it	writes	the	executed	SQL	statements
and	used	bind	parameters	to	the	log	file?

Solution
Hibernate	 uses	 two	 different	 log	 categories	 and	 log	 levels	 to	 log	 the	 executed
SQL	statements	and	their	bind	parameters:

The	 SQL	 statements	 are	 written	 as	DEBUG	 messages	 to	 the	 category

org.hibernate.SQL.

The	 bind	 parameter	 values	 are	 logged	 to	 the
org.hibernate.type.descriptor.sql	 category	 with	 log	 level

TRACE.

You	 can	 activate	 and	deactivate	 them	 independently	 of	 each	other	 in	 your	 log
configuration.

Logging	all	SQL	queries	and	 their	bind	parameter	bindings	can	slow	down	your	application
and	create	huge	log	files.	You	shouldn’t	activate	these	log	messages	in	production.

The	following	code	snippet	shows	an	example	of	a	log4j	configuration	which

activates	both	of	them.

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.Target=System.out

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%d{HH:mm:ss,SSS}	%-5p	

[%c]	-	%m%n

log4j.rootLogger=info,	stdout

#	basic	log	level	for	all	messages

log4j.logger.org.hibernate=info

#	SQL	statements	and	parameters

log4j.logger.org.hibernate.SQL=debug

log4j.logger.org.hibernate.type.descriptor.sql=trace

Hibernate	then	writes	log	messages	like	the	following	ones	to	your	log	file.

17:34:50,353	DEBUG	[org.hibernate.SQL]	-	select	author0_.id	as	

id1_0_,	author0_.firstName	as	firstNam2_0_,	author0_.lastName	as	

lastName3_0_,	author0_.version	as	version4_0_	from	Author	author0_	

where	author0_.id=1

17:34:50,362	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([id1_0_]	:	[BIGINT])	-	[1]

17:34:50,373	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([firstNam2_0_]	:	[VARCHAR])	-	[Thorben]

17:34:50,373	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([lastName3_0_]	:	[VARCHAR])	-	[Janssen]

17:34:50,374	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([version4_0_]	:	[INTEGER])	-	[0]

The	SQL	statement	in	the	code	snippet	isn’t	easy	to	read.	That	gets	a	lot	better
when	 you	 tell	 Hibernate	 to	 format	 it.	 You	 can	 do	 that	 by	 setting	 the
configuration	 parameter	hibernate.format_sql	 to	 true.	You	can	provide

it	 as	 a	 system	 property	 or	 set	 it	 in	 the	persistence.xml	 file,	 like	 in	 the

following	code	snippet,	or	in	the	hibernate.cfg.xml	file.

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>

<persistence>

				<persistence-unit	name="my-persistence-unit">

								<description>Hibernate	Tips</description>

								<provider>

												org.hibernate.jpa.HibernatePersistenceProvider

								</provider>

								<exclude-unlisted-classes>false</exclude-unlisted-classes>

								<properties>

												<property	name="hibernate.format_sql"	value="true"	/>

												...

								</properties>

				</persistence-unit>

</persistence>

The	following	code	snippet	shows	the	formatted	SQL	statement	which	is	much
better	to	read	than	the	previous	message.

16:42:56,873	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	id1_0_,

								author0_.firstName	as	firstNam2_0_,

								author0_.lastName	as	lastName3_0_,

								author0_.version	as	version4_0_

				from

								Author	author0_

				where

								author0_.id=?

16:42:56,926	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[BIGINT]	-	[1]

16:42:56,950	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([id1_0_]	:	[BIGINT])	-	[1]

16:42:56,965	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([firstNam2_0_]	:	[VARCHAR])	-	[Thorben]

16:42:56,965	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([lastName3_0_]	:	[VARCHAR])	-	[Janssen]

16:42:56,966	TRACE	

[org.hibernate.type.descriptor.sql.BasicExtractor]	-	extracted	value	

([version4_0_]	:	[INTEGER])	-	[0]

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
LogSQLStatements	module	of	 the	example	project.	 If	you	haven’t	 already

done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-tips.com/download-
examples.

http://www.hibernate-tips.com/download-examples

How	to	count	the	executed	queries	in	a	Session

Problem
Some	of	my	use	cases	are	slow	and	seem	to	perform	too	many	queries.	How	do	I
count	all	queries	executed	within	a	Hibernate	Session?

Solution
The	easiest	way	to	count	all	executed	queries	is	to	activate	Hibernate’s	statistics
component.	Hibernate	then	collects	a	lot	of	internal	statistics	and	provides	them
as	a	log	message	and	via	the	Statistics	API.

Do	not	use	 this	 in	production!	Collecting	 the	statistical	 information	creates	an	overhead	 that
slows	down	your	application.

Hibernate’s	statistics	component	is	deactivated	by	default.	You	can	activate	it	by
setting	 the	hibernate.generate_statistics	 parameter	 to	true.	You

can	 either	 do	 this	 by	 providing	 a	 system	 property	 with	 the	 same	 name	 or	 by
setting	the	parameter	in	the	persistence.xml	file.

<persistence>

				<persistence-unit	name="my-persistence-unit">

								<description>Hibernate	Tips</description>

								<provider>

												org.hibernate.jpa.HibernatePersistenceProvider

								</provider>

								<properties>

												<property	name="hibernate.generate_statistics"

																						value="true"	/>

												…

								</properties>

				</persistence-unit>

</persistence>

You	have	two	options	to	access	the	statistics.	Hibernate	can	write	a	subset	with
the	most	important	information	of	each	session	to	the	log	file	or	you	can	access
them	via	the	Statistics	API.

Let’s	 take	 a	 look	 at	 the	 log	 messages	 first.	 Hibernate	 writes	 a	 log	 message,
similar	to	the	following	one,	at	the	end	of	each	session.	It	shows	the	number	of
SQL	 statements,	 the	 time	 spent	 for	 their	 preparation	 and	 execution	 and	 the
interaction	with	the	second-level	cache.

16:24:55,318	INFO	

[org.hibernate.engine.internal.StatisticalLoggingSessionEventListene

r]	–	Session	Metrics	{

25659	nanoseconds	spent	acquiring	1	JDBC	connections;

22394	nanoseconds	spent	releasing	1	JDBC	connections;

1091216	nanoseconds	spent	preparing	12	JDBC	statements;

11118842	nanoseconds	spent	executing	12	JDBC	statements;

0	nanoseconds	spent	executing	0	JDBC	batches;

0	nanoseconds	spent	performing	0	L2C	puts;

0	nanoseconds	spent	performing	0	L2C	hits;

0	nanoseconds	spent	performing	0	L2C	misses;

16999942	nanoseconds	spent	executing	1	flushes	(flushing	a	total	of	

17	entities	and	17	collections);

63915	nanoseconds	spent	executing	1	partial-flushes	(flushing	a	

total	of	0	entities	and	0	collections)

You	can	also	access	the	Statistics	API	via	Hibernate’s	Statistics	 interface.

You	can	get	it	from	the	SessionFactory.	It	provides	several	getter	methods

that	give	you	access	to	more	detailed	information	than	the	log	output.

Statistics	stats	=	sessionFactory.getStatistics();

long	queryCount	=	stats.getQueryExecutionCount();

long	collectionFetchCount	=	stats.getCollectionFetchCount();

▪

▪

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CheckSQLStatementCount	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
If	you	want	to	learn	more	about	Hibernate’s	logging	features,	you	should	have	a
look	at	these	tips:

How	to	log	SQL	statements	and	their	parameters

How	to	use	query	comments	to	identify	a	query

http://www.hibernate-tips.com/download-examples

How	to	use	query	comments	to	identify	a	query

Problem
My	application	performs	a	lot	of	similar	queries	and	I	need	to	find	the	output	of
a	 specific	 query	 in	 my	 log	 file.	 Is	 there	 any	 way	 to	 make	 it	 easier	 to	 find	 a
specific	query	in	the	log	output?

Solution
Hibernate	can	add	a	comment	when	it	generates	an	SQL	statement	for	a	JPQL	or
Criteria	query	or	executes	a	native	SQL	query.	You	can	see	it	in	your	application
log	file,	when	you	activate	SQL	statement	logging	and	in	your	database	logs.

You	 need	 to	 activate	 SQL	 comments	 by	 setting	 the	 configuration	 parameter
hibernate.use_sql_comments	 to	 true.	 The	 following	 code	 snippet

shows	an	example	configuration	in	the	persistence.xml	file.

<persistence>

	 <persistence-unit	name="my-persistence-unit">

	 	 <description>Hibernate	Tips</description>

	 	 <provider>

	 	 				org.hibernate.jpa.HibernatePersistenceProvider

								</provider>

	 	 <exclude-unlisted-classes>false</exclude-unlisted-

classes>

	 	 <properties>

	 	 	 <property	name="hibernate.dialect"

																value="org.hibernate.dialect.PostgreSQLDialect"	/>

	 	 	 <property	name="hibernate.use_sql_comments"

	 	 	 				value="true"	/>

	 	 	

	 	 </properties>

	 </persistence-unit>

</persistence>

When	 you	 activate	 SQL	 comments,	 Hibernate	 generates	 a	 comment	 for	 each
query.	These	are	often	not	useful	to	find	a	specific	query.	It’s	better	to	provide
your	own	comment	with	the	org.hibernate.comment	query	hint.

I	use	it	in	the	following	example	to	set	the	SQL	comment	for	my	query	to	"This
is	my	comment".

TypedQuery	q	=	em.createQuery(

				"SELECT	a	FROM	Author	a	WHERE	a.id	=	:id",

				Author.class);

q.setParameter("id",	1L);

q.setHint("org.hibernate.comment",	"This	is	my	comment");

Author	a	=	q.getSingleResult();

Hibernate	adds	this	comment	to	the	generated	SQL	statement	and	writes	it	to	the
log	file.

08:14:57,432	DEBUG	[org.hibernate.SQL]	–	/*	This	is	my	comment	*/	

select	author0_.id	as	id1_0_,	author0_.firstName	as	firstNam2_0_,	

author0_.lastName	as	lastName3_0_,	author0_.version	as	version4_0_	

from	Author	author0_	where	author0_.id=?

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CommentSQLStatements	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

Learn	More
Hibernate	and	JPA	support	several	other	hints.	I	summarized	the	most	interesting
ones	in	11	JPA	and	Hibernate	query	hints	every	developer	should	know.

http://www.thoughts-on-java.org/11-jpa-hibernate-query-hints-every-developer-know/

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

JPQL

JPQL	is	a	query	language	defined	by	the	JPA	specification	that	you

can	use	to	read,	update	or	delete	entities.	Its	syntax	is	very	similar	to	SQL

but	the	queries	are	defined	based	on	the	entity	object	model	instead	of	the

table	model.	That	makes	it	easier	to	use	for	most	Java	developers.

The	following	Hibernate	tips	show	you	several	example	use	cases:

How	to	create	a	JPQL	query	at	runtime

How	to	create	a	named	JPQL	query

How	to	select	a	POJO	with	a	JPQL	query

How	to	select	multiple	scalar	values	with	a	JPQL	query

How	to	initialize	lazy	relationships	within	a	JPQL	query

How	to	downcast	entities	in	JPQL	queries

How	to	call	a	standard	function	in	a	JPQL	query

How	to	call	a	user-defined	function	in	a	JPQL	query

How	to	use	pagination	with	JPQL

How	to	define	a	timeout	for	a	JPQL	query

How	to	delete	multiple	entities	with	one	JPQL	query

▪ How	to	update	multiple	entities	with	one	JPQL	query

JPQL	is	comfortable	to	use	but	it	also	has	two	main	disadvantages.	The

most	 noticeable	 one	 is	 that	 it	 is	 not	 as	 powerful	 as	 SQL.	 And	 it	 also

introduces	an	additional	abstraction	on	top	of	SQL	and	it’s	not	supported

by	relational	databases.	Hibernate	needs	to	generate	an	SQL	query	based

on	the	JPQL	query	to	interact	with	the	database.

How	to	create	a	JPQL	query	at	runtime

Problem
I	need	to	create	a	JPQL	query	based	on	user	input.	How	do	I	do	that	at	runtime?

Solution
You	can	call	the	createQuery	method	of	the	EntityManager	with	a	JPQL

query	as	a	String	to	create	an	ad	hoc	query.	The	following	code	snippet	shows

an	example	of	such	a	query.	It	selects	the	Book	entity	with	a	given	id.

TypedQuery<Book>	q	=	em.createQuery(

				"SELECT	b	FROM	Book	b	WHERE	b.id	=	:id",	Book.class);

q.setParameter("id",	1L);

Book	b	=	q.getSingleResult();

As	you	can	see,	I	provide	a	String	with	the	JPQL	query	and	the	class	of	the

Book	entity	as	parameters	 to	 the	createQuery	method.	The	JPQL	syntax	is

pretty	 similar	 to	 SQL.	But	 it	 uses	 the	 entity	 object	model	 instead	 of	 database
tables	 to	 define	 the	 query.	 That	 makes	 it	 very	 comfortable	 for	 us	 Java
developers,	 but	 you	 have	 to	 keep	 in	 mind	 that	 the	 database	 still	 uses	 SQL.
Hibernate,	and	any	other	JPA	implementation	has	to	transform	the	JPQL	query
into	 SQL.	 It	 is,	 therefore,	 a	 good	 practice	 to	 activate	 the	logging	 of	 the	 SQL
statements	during	development	to	check	the	generated	SQL	statements.

The	 query	 selects	 a	Book	 entity	 with	 a	 given	id,	 and	 I	 use	 the	 named	 bind

parameter	:id	 as	 a	 placeholder	 in	 the	WHERE	 clause	 of	 the	 query.	 Bind

parameters	 provide	 huge	 benefits	 compared	 to	 putting	 the	 parameter	 values
directly	into	the	query	String.	Hibernate	maps	the	bind	parameter	value	to	the

correct	 type	and	escapes	 it	 if	necessary.	That	makes	 them	easier	 to	handle	and

prevents	 SQL	 injection	 vulnerabilities.	 You	 can	 set	 the	 value	 of	 each	 bind
parameter	 by	 calling	 the	setParameter	 method	 of	 the	Query	 or

TypedQuery	interface	with	the	parameter	name	and	its	value.

I	 also	 provide	 the	 class	 of	 the	Book	 entity	 as	 the	 second	 parameter	 to	 the

createQuery	method.	This	parameter	 is	optional.	 It	 tells	Hibernate	 the	 type

of	the	query	results	and	allows	it	to	use	the	strongly	typed	TypedQuery	instead

of	 the	 untyped	Query	 interface.	You	can	see	 the	main	benefit	of	 it	 in	 the	 last

line	 of	 the	 code	 sample.	 The	getSingleResult	 method	 of	 the

TypedQuery	 interface	 returns	 a	Book	 entity	 instead	 of	 an	Object,	 and	 I

don’t	need	to	cast	the	query	result.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JPQLAdHocQuery	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
Ad-hoc	 queries	 are	 just	 one	 option	 to	 create	 a	 JPQL	 query.	You	 can	 also	 use
named	queries	 that	you	 statically	define	via	annotations	and	 reference	by	 their
name.	I	explain	them	in	more	detail	in	How	to	create	a	named	JPQL	query.

http://www.hibernate-tips.com/download-examples

How	to	create	a	named	JPQL	query

Problem
I	have	queries	that	I	want	to	use	in	multiple	places	in	my	business	logic.	What	is
the	best	way	to	define	these	queries	once	and	use	them	when	needed?

Solution
Named	queries	provide	a	good	solution	if	you	want	to	define	a	query	once	and
use	 it	 in	multiple	parts	of	your	business	 logic.	You	define	a	named	query	with
the	@NamedQuery	 annotation.	 The	 following	 code	 snippet	 shows	 a	 simple

example	of	such	a	query	definition.

@Entity

@NamedQuery(

				name	=	Book.QUERY_SELECT_BY_ID,

				query	=	"SELECT	b	FROM	Book	b	WHERE	b.id	=	:"	+	Book.PARAM_ID)

public	class	Book	{

				public	static	final	String	QUERY_SELECT_BY_ID	=

								"Book.selectById";

				public	static	final	String	PARAM_ID	=	"id";

				...

}

The	@NamedQuery	 annotation	 requires	 two	 parameters:	 The	name	 and	 the

JPQL	query	String.	As	you	can	see,	I	use	a	static	String	as	the	name	of

the	query	and	the	bind	parameter.	That	makes	it	easier	to	reference	them	in	the
business	logic.

The	JPQL	query	is	the	same	as	you	would	use	in	an	ad-hoc	JPQL	query	and	it
looks	 very	 similar	 to	 an	 SQL	 query.	 The	 main	 difference	 between	 SQL	 and
JPQL	is	that	SQL	uses	database	tables	and	JPQL	the	entity	model	to	define	the
query.	 That	makes	 JPQL	 easier	 to	 use	 for	most	 Java	 developers,	 but	 you	 still
need	to	be	familiar	with	SQL.	Hibernate	transforms	the	JPQL	statement	to	SQL,
and	 you	 should	 always	 check	 the	 generated	 statements	 after	 you	 created	 or
adapted	a	JPQL	query.

That’s	all	you	need	to	do	to	define	a	named	JPQL	query.	You	can	use	its	name	to
instantiate	it	in	your	business	logic.

TypedQuery<Book>	q	=	em.createNamedQuery(Book.QUERY_SELECT_BY_ID,

																																									Book.class);

q.setParameter(Book.PARAM_ID,	1L);

Book	b	=	q.getSingleResult();

As	you	can	see	in	the	code	snippet,	you	can	use	a	named	JPQL	query	in	a	similar
way	 as	 an	 ad-hoc	 query.	 The	 only	 difference	 is	 the	 way	 you	 instantiate	 the
TypedQuery.	 You	 already	 defined	 the	 query	 with	 the	@NamedQuery

annotation,	 and	 you	 only	 need	 to	 provide	 its	name	 to	 the

createNamedQuery	method	of	the	EntityManager	to	instantiate	it.	That

is	the	point	where	the	usage	of	the	static	String	for	the	query	name	pays	off.

It’s	a	lot	easier	to	use	the	static	String	in	your	business	code,	and	it	allows	you

to	refactor	the	query	name	easily.

I	 also	 provided	 the	 class	 of	 the	Book	 entity	 as	 the	 second	 parameter	 to	 the

createNamedQuery	 method	 to	 get	 a	TypedQuery	 instance.	 This	 one	 is

strongly	typed	and	doesn’t	require	any	type	casting	of	the	query	result.

The	named	query	in	this	example	selects	a	Book	entity	with	a	given	id,	and	I

used	a	named	bind	parameter	in	the	WHERE	clause	of	the	query.	I	need	to	set	its

value	before	I	can	execute	the	query.	I	do	that	by	calling	the	setParameter

method	of	the	TypedQuery	method	with	the	parameter	name	and	its	value.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JPQLNamedQuery	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
Named	queries	are	just	one	option	to	create	a	JPQL	query.	You	can	also	use	ad-
hoc	queries	to	define	queries	at	runtime.	I	explain	them	in	more	detail	in	How	to
create	a	JPQL	query	at	runtime.

http://www.hibernate-tips.com/download-examples

How	to	select	a	POJO	with	a	JPQL	query

Problem
The	entity	projection	doesn’t	 fit	my	use	 case.	 Is	 there	 an	easy	option	 to	 select
POJOs	instead	of	entities?

Solution
JPQL	supports	constructor	expressions	that	allow	you	to	define	a	constructor	call
in	the	SELECT	clause	of	your	query.	You	can	see	an	example	of	such	a	query	in

the	following	code	snippet.

TypedQuery<BookValue>	q	=	em.createQuery(

				"SELECT	new	org.thoughts.on.java.model.BookValue("

				+	"b.id,	b.title,	b.publisher.name)	FROM	Book	b	"

				+	"WHERE	b.id	=	:id",	BookValue.class);

q.setParameter("id",	1L);

BookValue	b	=	q.getSingleResult();

Instead	of	selecting	an	entity,	 I	define	a	constructor	expression	 in	 the	SELECT

clause.	It	consists	of	the	keyword	new,	the	fully	qualified	name	of	the	class	you

want	to	instantiate	and	a	comma	separated	list	of	parameters.	The	example	in	the
previous	 code	 snippet	 calls	 the	 constructor	 of	 the	BookValue	 class	 and

provides	 the	id	and	the	title	of	the	book	and	the	name	of	 the	Publisher

as	parameters.

public	class	BookValue	{

				public	Long	id;

				public	String	title;

				public	String	publisherName;

				public	BookValue(Long	id,	String	title,	String	publisherName)	{

								this.id	=	id;

								this.title	=	title;

								this.publisherName	=	publisherName;

				}

				...

}

Hibernate	maps	this	statement	to	a	SQL	query	that	selects	the	required	columns
from	 the	database	and	performs	 the	defined	constructor	call	 for	each	 record	of
the	result	set.

15:25:38,544	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	col_0_0_,

								book0_.title	as	col_1_0_,

								publisher1_.name	as	col_2_0_

				from

								Book	book0_,

								Publisher	publisher1_

				where

								book0_.publisherid=publisher1_.id

								and	book0_.id=?

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JPQLConstructorExpression	 module	 of	 the	 example	 project.	 If	 you

haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
POJOs	 are	 just	 one	 of	 the	 projections	 you	 can	 use	 with	 JPQL.	 You	 can	 also
select	managed	entities	or	multiple	scalar	values:

http://www.hibernate-tips.com/download-examples

▪

▪

How	to	create	a	JPQL	query	at	runtime

How	to	select	multiple	scalar	values	with	a	JPQL	query

How	to	select	multiple	scalar	values	with	a	JPQL	query

Problem
I	 only	need	 a	 few	attributes	of	my	entity.	How	do	 I	 select	 one	or	more	 scalar
values	in	a	JPQL	query	instead	of	entities?

Solution
You	can	select	scalar	values	in	the	same	way	as	you	select	managed	entities.	The
following	code	snippet	shows	a	JPQL	query	that	selects	the	title	of	the	Book

entity	and	the	name	of	the	associated	Publisher	entity.

TypedQuery<Object[]>	q	=	em.createQuery(

			"SELECT	b.title,	b.publisher.name	FROM	Book	b	WHERE	b.id	=	:id",

			Object[].class);

q.setParameter("id",	1L);

Object[]	result	=	q.getSingleResult();

As	 you	 can	 see,	 you	 can	 reference	 entity	 attributes	 instead	 of	 entities	 in	 the
SELECT	 clause	of	 your	 query.	Hibernate	maps	 this	 statement	 to	 a	SQL	query

that	only	selects	the	required	columns	from	the	database	and	returns	them	as	an
Object[].	 You	 can	 see	 the	 generated	 SQL	 query	 in	 the	 following	 code

snippet.

15:37:16,708	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.title	as	col_0_0_,

								publisher1_.name	as	col_1_0_

				from

								Book	book0_,

								Publisher	publisher1_

▪

▪

				where

								book0_.publisherid=publisher1_.id

								and	book0_.id=?

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JPQLScalarValues	module	of	 the	example	project.	 If	you	haven’t	 already

done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-tips.com/download-
examples.

Learn	More
Scalar	values	 are	 just	 one	of	 the	projections	you	 can	use	with	 JPQL.	You	can
also	select	managed	entities	or	POJOs:

How	to	create	a	JPQL	query	at	runtime

How	to	select	a	POJO	with	a	JPQL	query

http://www.hibernate-tips.com/download-examples

How	to	initialize	lazy	relationships	within	a	JPQL	query

Problem
How	 do	 I	 initialize	 a	 lazy	 relationship	 within	 a	 query	 to	 avoid
LazyInitializationExceptions?

Solution
Hibernate	throws	a	LazyInitializationException	if	you	try	to	use	the

attribute	 of	 a	 lazily	 fetched	 relationship	 outside	 of	 an	 active	 Hibernate
Session.

EntityManager	em	=	emf.createEntityManager();

em.getTransaction().begin();

Author	a	=	em.createQuery("SELECT	a	FROM	Author	a	WHERE	id	=	1",

																										Author.class).getSingleResult();

log.info("Commit	transaction	and	close	Session");

em.getTransaction().commit();

em.close();

log.info(a.getFirstName()+"	"+a.getLastName()+"	wrote	"

									+a.getBooks().size()+"	book.");

06:23:38,969	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	id1_0_,

								author0_.firstName	as	firstNam2_0_,

								author0_.lastName	as	lastName3_0_,

								author0_.version	as	version4_0_

				from

								Author	author0_

				where

								author0_.id=1

06:23:38,993	INFO		[org.thoughts.on.java.model.TestJoinFetch]	-	

Commit	transaction	and	close	Session

06:23:39,008	ERROR	[org.thoughts.on.java.model.TestJoinFetch]	-	

org.hibernate.LazyInitializationException:	failed	to	lazily	

initialize	a	collection	of	role:	

org.thoughts.on.java.model.Author.books,	could	not	initialize	proxy	

-	no	Session

You	 can	 avoid	 that	 by	 initializing	 the	 relationship	 before	 you	 close	 the
Session.	 The	 easiest	 way	 to	 do	 that	 is	 a	JOIN	FETCH	 statement	within	 a

query,	like	the	one	in	the	following	code	snippet.

EntityManager	em	=	emf.createEntityManager();

em.getTransaction().begin();

Author	a	=	em.createQuery(

				"SELECT	a	FROM	Author	a	JOIN	FETCH	a.books	WHERE	a.id	=	1",

				Author.class).getSingleResult();

em.getTransaction().commit();

em.close();

log.info(a.getFirstName()+"	"+a.getLastName()+"	wrote	"

									+a.getBooks().size()+"	book.");

The	additional	FETCH	keyword	tells	Hibernate	not	only	to	join	the	entity	for	the

query	 but	 also	 to	 fetch	 it	 from	 the	 database	 to	 initialize	 the	 attribute.	 That
prevents	LazyInitializationExceptions	if	you	access	the	relationship

attribute	outside	of	an	active	Hibernate	Session.

06:25:10,081	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	id1_0_0_,

								book2_.id	as	id1_1_1_,

								author0_.firstName	as	firstNam2_0_0_,

								author0_.lastName	as	lastName3_0_0_,

								author0_.version	as	version4_0_0_,

								book2_.publisherid	as	publishe5_1_1_,

								book2_.publishingDate	as	publishi2_1_1_,

								book2_.title	as	title3_1_1_,

								book2_.version	as	version4_1_1_,

								books1_.authorId	as	authorId2_2_0__,

								books1_.bookId	as	bookId1_2_0__

				from

								Author	author0_

				inner	join

								BookAuthor	books1_

												on	author0_.id=books1_.authorId

				inner	join

								Book	book2_

												on	books1_.bookId=book2_.id

				where

								author0_.id=1

06:25:10,128	INFO		[org.thoughts.on.java.model.TestJoinFetch]	-	

Commit	transaction	and	close	Session

06:25:10,147	INFO		[org.thoughts.on.java.model.TestJoinFetch]	-	

Thorben	Janssen	wrote	1	book.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JoinFetch	module	 of	 the	 example	 project.	 If	 you	 haven’t	 already	 done	 so,

you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	more
Join	Fetch	statements	are	only	one	option	 to	initialize	 lazy	relationships.	Other
interesting	 options	 are	@NamedEntityGraphs	 and	dynamic	 entity	 graphs,

which	allow	you	to	define	a	query-independent	graph	of	entities	that	is	fetched
with	a	query.

Initializing	 a	 required	 lazy	 relationship	 does	 not	 only	 prevent
LazyInitializationExceptions,	 but	 it	 also	 can	 improve	 the

http://www.hibernate-tips.com/download-examples
http://www.thoughts-on-java.org/5-ways-to-initialize-lazy-relations-and-when-to-use-them/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-1-named-entity/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-2-define/

performance	 by	 avoiding	 n+1	 select	 issues.	 You	 should	 always	 fetch	 the

necessary	 relationships	with	 the	 initial	 query.	 I	 explain	 the	n+1	 select	 issue	 in
more	detail	and	show	you	how	to	find	and	fix	it	in	this	free	mini-course.

http://www.thoughts-on-java.org/free-mini-course-find-fix-n1-select-issues-hibernate/

How	to	downcast	entities	in	JPQL	queries

Problem
My	domain	model	contains	an	inheritance	structure,	and	I	need	to	limit	my	query
to	a	specific	subclass.	How	do	I	do	that	with	JPQL?

Solution
JPA	 2.1	 introduced	 the	TREAT	 operator	 to	 JPQL,	 which	 you	 can	 use	 to

downcast	an	entity	within	your	query.

You	can,	for	example,	create	a	domain	model	with	Authors	who	have	written

different	 kinds	 of	Publications,	 like	Books	 and	BlogPosts.

Publication	is	the	super	class	of	Book	and	BlogPost	and	you	can	model

the	relationship	between	the	Author	and	the	Publication	entity.

You	can	now	use	the	TREAT	operator	to	downcast	the	Publication	to	Book

and	 select	 all	Authors	 who	 have	 written	 a	Book	 about	 Java.	 The	 following

code	snippet	shows	an	example	of	such	a	query.

List<Object[]>	result	=	em.createQuery(

				"SELECT	a,	p	FROM	Author	a	JOIN	a.publications	p	"

				+	"WHERE	treat(p	AS	Book).title	LIKE	'%Java%'")

																										.getResultList();

I	use	the	inheritance	strategy	SINGLE_TABLE	in	this	example,	which	maps	all

entities	 of	 the	 inheritance	 hierarchy	 to	 the	Publication	 database	 table.	As

you	can	see	in	the	generated	SQL	statement,	Hibernate	joins	the	records	in	the

Author	 table	 only	 with	 records	 in	 the	Publication	 that	 have	 the	 value

Book	in	the	DTYPE	column.	These	are	the	records	that	represent	a	Book	entity.

06:10:59,866	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	id1_0_0_,

								publicatio2_.id	as	id2_1_1_,

								author0_.firstName	as	firstNam2_0_0_,

								author0_.lastName	as	lastName3_0_0_,

								author0_.version	as	version4_0_0_,

								publicatio2_.publishingDate	as	publishi3_1_1_,

								publicatio2_.title	as	title4_1_1_,

								publicatio2_.version	as	version5_1_1_,

								publicatio2_.DTYPE	as	DTYPE1_1_1_

				from

								Author	author0_

				inner	join

								PublicationAuthor	publicatio1_

												on	author0_.id=publicatio1_.authorId

				inner	join

								Publication	publicatio2_

												on	publicatio1_.publicationId=publicatio2_.id

												and	publicatio2_.DTYPE='Book'

				where

								publicatio2_.title	like	'%Java%'

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
Treat	module	of	the	example	project.	If	you	haven’t	already	done	so,	you	can

download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	more
The	TREAT	operator	is	just	one	of	several	interesting	new	features	introduced	in

JPA	 2.1.	You	 can	 get	 an	 overview	 of	 the	 different	 features	 and	 links	 to	more
detailed	tutorials	in	JPA	2.1	–	12	features	every	developer	should	know.

The	mapping	 of	 an	 inheritance	 structure	 is	 a	 complex	 task	 because	 relational
table	 models	 provide	 no	 support	 for	 it.	 Hibernate	 and	 JPA	 support	 different
strategies	to	map	a	hierarchy	to	one	or	more	database	tables.

You	can	learn	more	about	it	in	How	to	map	an	inheritance	hierarchy	to	one	table
and	How	to	map	an	inheritance	hierarchy	to	multiple	tables.

http://www.hibernate-tips.com/download-examples
http://www.thoughts-on-java.org/jpa-21-overview/

How	to	call	a	standard	function	in	a	JPQL	query

Problem
How	do	I	call	a	database	function	in	a	JPQL	query?

Solution
JPQL	 supports	 the	 following	 set	 of	 database	 functions	 that	 you	 can	use	 in	 the
SELECT	and	WHERE	clause	of	your	queries.

Table	1.	JPQL	Functions

Function Description

upper(String	s) Transforms	String	s	to	upper	case

lower(String	s) Transforms	String	s	to	lower	case

current_date() Returns	the	current	date	of	the	database

current_time() Returns	the	current	time	of	the	database

current_timestamp() Returns	a	timestamp	of	the	current	date	and	time	of	the
database

substring(String	s,	int

offset,	int	length)

Returns	a	substring	of	the	given	String	s

trim(String	s) Removes	leading	and	trailing	whitespaces	from	the	given
String	s

length(String	s) Returns	the	length	of	the	given	String	s

locate(String	search,	String

s,	int	offset)

Returns	the	position	of	the	String	search	in	s.	The

search	starts	at	the	position	offset

abs(Numeric	n) Returns	the	absolute	value	of	the	given	number

sqrt(Numeric	n) Returns	the	square	root	of	the	given	number

mod(Numeric	dividend,	Numeric

divisor)

Returns	the	remainder	of	a	division

treat(x	as	Type) Downcasts	x	to	the	given	Type

size(c) Returns	the	size	of	a	given	Collection	c

index(orderdCollection) Returns	the	index	of	the	given	value	in	an	ordered
Collection

The	 following	code	snippet	 shows	a	query	 that	calls	 the	size	 function	on	 the

books	association.

Query	q	=	em.createQuery(

				"SELECT	a,	size(a.books)	FROM	Author	a	GROUP	BY	a.id");

List<Object[]>	results	=	q.getResultList();

The	size	 function	 is	 JPA	specific.	You	can	use	 it	 to	 count	 the	 elements	 in	 a

mapped	association.	As	you	can	see	 in	 the	 log	message,	Hibernate	generates	a
JOIN	statement	to	join	the	associated	table	and	calls	the	SQL	count	 function

to	count	the	number	of	associated	records	in	the	book	table.

05:47:23,682	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	col_0_0_,

								count(books1_.authorId)	as	col_1_0_,

								author0_.id	as	id1_0_,

								author0_.firstName	as	firstNam2_0_,

								author0_.lastName	as	lastName3_0_,

								author0_.version	as	version4_0_

				from

								Author	author0_	cross

				join

								BookAuthor	books1_

				where

								author0_.id=books1_.authorId

				group	by

								author0_.id

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JpqlStandardFunction	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
JPQL	supports	only	a	subset	of	the	functions	supported	by	the	SQL	standard	and
no	 database-specific	 functions.	 Since	 JPA	 2.1,	 you	 can	 use	 the	 function
function	 to	 call	 functions	 unsupported	 by	 the	 JPA	 standard	 in	 a

CriteriaQuery	How	to	call	a	user-defined	function	in	a	CriteriaQuery.

http://www.hibernate-tips.com/download-examples

How	to	call	a	user-defined	function	in	a	JPQL	query

Problem
How	do	I	call	a	user-defined	database	function	in	the	WHERE	clause	of	a	JPQL
query?

Solution
JPA	 2.1	 added	 the	 function	function(function_name	 {,

function_arg})	 to	 JPQL	 to	 provide	 a	 way	 to	 call	 user-defined	 and

database-specific	functions.	You	need	to	provide	the	name	of	the	function	as	the
first	 parameter	 and	you	can	provide	 additional	 parameters	 that	will	 be	used	 as
function	arguments.

The	 following	 code	 snippet	 shows	 an	 example	 that	 calls	 the	 custom	 database
function	calculate.	The	function	returns	a	Double	and	I	provide	the	price

of	the	Book	and	a	query	parameter	as	function	arguments.

TypedQuery<Book>	q	=	em.createQuery(

				"SELECT	b	FROM	Book	b	"

				+	"WHERE	:double2	>	function('calculate',	b.price,	:double1)",

				Book.class);

q.setParameter("double1",	10.0D);

q.setParameter("double2",	40.0D);

List<Book>	books	=	q.getResultList();

You	can	use	this	approach	in	the	WHERE	clause	to	call	all	functions	supported	by

your	database.

You	can	also	use	the	function	function	in	the	SELECT	clause	of	your	query.	But	you	then

need	to	register	the	database	function	so	that	Hibernate	knows	it’s	result	type.	This	makes	the
function	function	superfluous	because	you	can	use	all	registered	functions	directly	in	your

query.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JPQLCustomFunction	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
You	can	also	use	the	function	function	in	a	CriteriaQuery.	I	show	you	how	in

How	to	call	a	user-defined	function	in	a	CriteriaQuery.

http://www.hibernate-tips.com/download-examples

How	to	use	pagination	with	JPQL

Problem
JPQL	 does	 not	 support	 the	LIMIT	 keyword.	 How	 do	 I	 use	 pagination	 with

Hibernate?

Solution
With	 JPA	 and	 Hibernate,	 you	 have	 to	 set	 the	 pagination	 information	 on	 the
Query	interface	and	not	in	the	query	String	as	you	would	do	it	in	SQL.	You

can	do	 that	by	calling	 the	setFirstResult(int	startPosition)	and

setMaxResults(int	maxResults)	methods.

The	 following	 code	 snippet	 shows	 a	 simple	 example	 that	 returns	 the	 first	 five
Authors	 from	 the	database.	The	 result	 set	 index	 is	 0	 based	 and	you	need	 to

provide	0	as	a	startPosition	to	begin	with	the	first	element.

List<Author>	authors	=	em.createQuery(

				"SELECT	a	FROM	Author	a	ORDER	BY	a.id",	Author.class)

																									.setMaxResults(5)

																									.setFirstResult(0)

																									.getResultList();

To	select	the	next	five	Authors	from	the	database,	you	only	need	to	change	the

startPosition	to	5.

List<Author>	authors	=	em.createQuery(

				"SELECT	a	FROM	Author	a	ORDER	BY	a.id",	Author.class)

																									.setMaxResults(5)

																									.setFirstResult(5)

																									.getResultList();

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
QueryPagination	 module	 of	 the	 example	 project.	 If	 you	 haven’t	 already

done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-tips.com/download-
examples.

Learn	more
You	can	use	the	same	approach	to	paginate	the	result	of	a	CriteriaQuery.	I

explain	it	in	more	detail	in	How	to	use	pagination	with	a	CriteriaQuery.

http://www.hibernate-tips.com/download-examples

How	to	define	a	timeout	for	a	JPQL	query

Problem
I	want	to	make	sure	that	my	query	gets	canceled	after	a	certain	time.	Is	there	a
way	to	define	a	timeout	for	queries?

Solution
JPA	 and	 Hibernate	 support	 the	javax.persistence.query.timeout

query	hint	to	define	a	query	timeout	in	milliseconds.	Hibernate	uses	it	to	call	the
setTimeout	 method	 on	 the	 JDBC	Statement	 and	 doesn’t	 handle	 the

timeout	 itself.	 It,	 therefore,	 depends	 on	 the	 JDBC	 driver	 and	 the	 database
capabilities,	if	the	query	hint	has	any	effect.

The	 following	 two	 code	 snippets	 show	you	 how	 to	 provide	 the	 query	 timeout
hint	to	a	Query	and	the	EntityManager.find	method.

List<Author>	authors	=	em.createQuery("SELECT	a	FROM	Author	a")

																	.setHint("javax.persistence.query.timeout",	1)

																	.getResultList();

HashMap<String,	Object>	hints	=	new	HashMap<>();

hints.put("javax.persistence.query.timeout",	1);

em.find(Author.class,	1L,	hints);

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
QueryTimeout	module	of	 the	 example	project.	 If	 you	haven’t	 already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

Learn	more
The	 query	 timeout	 is	 just	 one	 of	 multiple	 query	 hints	 supported	 by	 JPA	 and
Hibernate.	 I	 explain	more	 of	 them	 in	11	 JPA	and	Hibernate	 query	hints	 every
developer	should	know.

http://www.thoughts-on-java.org/11-jpa-hibernate-query-hints-every-developer-know/

How	to	delete	multiple	entities	with	one	JPQL	query

Problem
I	need	to	delete	multiple	entities.	Is	there	a	way	to	do	that	with	one	JPQL	query
like	in	SQL?

Solution
You	can	use	a	JPQL	DELETE	statement	to	remove	multiple	entities	at	once.	It’s

syntax	 is	 similar	 to	 an	 SQL	DELETE	 statement.	You	can	 see	 an	example	of	 a

JPQL	 statement	 that	 deletes	 all	 records	 from	 the	Book	 table	 in	 the	 following

code	snippet.

Query	query	=	em.createQuery("DELETE	Book	b");

query.executeUpdate();

You	just	need	to	call	the	createQuery	method	of	the	EntityManager	with

a	 JPQL	DELETE	 statement.	 The	 JPQL	 syntax	 looks	 very	 similar	 to	 the	 SQL

syntax.	It	starts	with	the	keyword	DELETE	and	a	reference	to	the	kind	of	entity

you	want	to	delete.	You	can	also	add	an	optional	WHERE	clause,	like	you	use	in

a	 JPQL	SELECT	statement,	 if	you	just	want	 to	delete	a	specific	set	of	entities.

After	 you	defined	 the	query,	 you	 can	 call	 the	setParameter	method	of	 the

Query	 interface	to	set	bind	parameter	values	and	execute	the	query	by	calling

the	executeUpdate	method.	I	didn’t	use	any	bind	parameters	in	my	DELETE

statement	and,	therefore,	skip	the	call	of	the	setParameter	method.

Hibernate	 generates	 a	 SQL	DELETE	 statement	based	on	your	 JPQL	statement.

In	 this	 example,	 it	 also	manages	 the	mapped	 associations.	 It	 first	 performs	 an

SQL	DELETE	 statement	 to	 remove	 all	 references	 to	 the	 deleted	Book	entities

from	the	association	table	BookAuthor.	When	that	is	done,	Hibernate	executes

another	SQL	statement	to	remove	the	Book	entities.

17:42:55,154	DEBUG	[org.hibernate.SQL]	-	delete	from	BookAuthor	

where	(bookId)	in	(select	id	from	Book)

17:42:55,155	DEBUG	[org.hibernate.SQL]	-	delete	from	Book

Deleting	 multiple	 entities	 with	 a	 JPQL	DELETE	 statement	 is	more	 efficient	 than	 removing

them	one	by	one.	But	Hibernate	doesn’t	know	which	database	 records	 the	statement	deletes
and	 doesn’t	 remove	 any	 entities	 from	 the	 first-level	 cache.	You	 need	 to	make	 sure	 that	 the
cache	 doesn’t	 contain	 any	 deleted	 entities	 or	 you	 need	 to	 invalidate	 the	 cache
programmatically.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JPQLDelete	module	of	 the	example	project.	 If	you	haven’t	already	done	so,

you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
A	JPQL	DELETE	statement	is	just	one	option	to	delete	multiple	entities	with	one

query.	You	can	also	use	the	CriteriaDelete	statement	as	I	explain	in	How

to	delete	multiple	entities	with	the	Criteria	API

http://www.hibernate-tips.com/download-examples

How	to	update	multiple	entities	with	one	JPQL	query

Problem
I	 have	 to	 update	multiple	 entities.	With	SQL,	 I	 can	do	 that	with	 one	UPDATE

statement.	Is	there	a	way	to	do	the	same	with	a	JPQL	query?

Solution
You	 can	 create	 a	 JPQL	UPDATE	 statement	with	a	similar	 syntax	as	you	know

from	SQL.	The	following	code	snippet	shows	an	example	of	such	a	statement.	It
increases	the	price	of	all	Books	by	10%.

Query	query	=	em.createQuery(

				"UPDATE	Book	b	SET	b.price	=	b.price*1.1");

query.executeUpdate();

As	 you	 can	 see,	 the	 JPQL	UPDATE	 statement	 looks	 pretty	 similar	 to	 an	 SQL

UPDATE	 statement.	 I	 first	define	which	entity	 I	want	 to	update	and	define	 the

update	operation	in	the	SET	clause.

This	 statement	updates	 all	Book	entities.	If	you	only	want	to	update	a	specific

set	of	entities,	you	can	add	a	WHERE	clause	to	the	statement.	You	can	define	it	in

the	same	way	as	you	do	it	for	a	JPQL	SELECT	statement.

You	 can	 check	 the	 generated	 SQL	 statement	 in	 the	 log	 file	 if	 you	 activate
logging	for	the	SQL	statements.

18:57:25,118	DEBUG	[org.hibernate.SQL]	-	update	Book	set	

price=price*1.1

Updating	multiple	entities	with	a	JPQL	UPDATE	statement	is	more	efficient	than	updating	the

entities	 one	 by	 one.	 But	 Hibernate	 doesn’t	 know	 which	 database	 records	 get	 changed	 and
doesn’t	 update	 any	 entities	 in	 the	 first-level	 cache.	 You	 need	 to	 make	 sure	 that	 the	 cache
doesn’t	 contain	 any	 entities	 affected	 by	 the	 update	 statement	 or	 you	 need	 to	 invalidate	 the
cache	programmatically.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JPQLUpdate	module	of	 the	example	project.	 If	you	haven’t	already	done	so,

you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
A	JPQL	UPDATE	statement	is	just	one	option	to	update	multiple	entities	with	1

query.	You	can	create	 the	same	statement	with	 the	Criteria	API	as	I	explain	 in
How	to	update	multiple	entities	with	the	Criteria	API.

http://www.hibernate-tips.com/download-examples

▪

▪

▪

▪

NATIVE	SQL	QUERIES

JPQL	 is	 the	 preferred	 query	 language	 of	 most	 Hibernate	 users

because	 it	 operates	 on	 the	 entity	 model	 and	 the	 defined	 associations

instead	of	the	table	model.	But	it	implements	only	a	small	subset	of	the

SQL	 feature	 set	 and	 that	 is	 most	 often	 not	 enough	 to	 implement	 all

queries	of	complex	business	applications.

That	 is	 the	 point	 when	 native	 SQL	 queries	 come	 into	 play.	 JPA	 and

Hibernate	 are	 designed	 as	 a	 leaky	 abstraction	 and	 allow	 you	 to

implement	and	execute	native	SQL	queries	within	your	current	context.

The	following	Hibernate	tips	show	you	how	to	do	that:

How	to	create	a	native	SQL	query	at	runtime

How	to	create	a	named	native	SQL	query

How	to	map	the	result	of	a	native	SQL	query	to	entities

How	to	map	the	result	of	a	native	SQL	query	to	a	POJO

How	to	create	a	native	SQL	query	at	runtime

Problem
I	need	to	adapt	a	native	query	based	on	user	input.	How	do	I	create	a	native	SQL
query	at	runtime?

Solution
You	can	create	ad-hoc	native	queries	in	a	similar	way	as	you	create	ad-hoc	JPQL
queries.	 You	 just	 need	 to	 provide	 a	String	 with	 the	 SQL	 statement	 to	 the

createNativeQuery	method	of	the	EntityManager.

I	do	that	in	the	following	code	snippet	with	an	SQL	query	that	selects	a	record
from	the	book	table	with	an	id	equal	to	a	bind	parameter	value.	The	?	you	can

see	 at	 the	 end	 of	 the	 query	 is	 the	 placeholder	 for	 a	 positional	 bind	 parameter.
You	can	set	the	bind	parameter	values	of	a	native	query	in	the	same	way	as	you
set	 the	 bind	 parameters	 of	 a	 JPQL	 query.	 You	 just	 need	 to	 call	 the
setParameter	 method	 of	 the	Query	 interface	with	 the	 parameter	 position

and	its	value.

The	index	of	positional	parameters	in	ad-hoc	native	queries	starts	at	1.

I	 also	 provide	 the	 class	 of	 the	Book	 entity	 as	 an	 additional	 parameter	 to	 tell

Hibernate	 to	map	 the	 query	 result	 to	 a	Book	 entity.	 I	 explain	 the	mapping	 of

native	query	results	to	entities	in	more	detail	in	How	to	map	the	result	of	a	native
SQL	query	to	entities.

▪

▪

Query	q	=	em.createNativeQuery("SELECT	*	FROM	book	b	WHERE	id	=	?",

																															Book.class);

q.setParameter(1,	1);

Book	b	=	(Book)	q.getSingleResult();

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
NativeQuery	module	of	the	example	project.	If	you	haven’t	already	done	so,

you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
Native	 queries	 don’t	 return	 the	 strongly	 typed	 results	 you	 know	 from	 JPQL
queries.	They	 return	 an	Object[]	 or	 a	List<Object[]>	and	you	need	 to

cast	them	yourself	or	tell	Hibernate	how	to	handle	the	result.	Hibernate	can	map
the	query	result	to	entities	or	POJOs,	as	I	show	you	in:

How	to	map	the	result	of	a	native	SQL	query	to	entities

How	to	map	the	result	of	a	native	SQL	query	to	a	POJO

http://www.hibernate-tips.com/download-examples

How	to	create	a	named	native	SQL	query

Problem
I	don’t	want	to	define	the	native	query	in	my	business	logic.	Is	there	an	option	to
specify	a	named	native	query	similar	to	JPQL?

Solution
You	 can	 define	 named	 native	 SQL	 queries	 with	 the	@NamedNativeQuery

annotation.	As	you	can	see	in	the	following	code	snippet,	it’s	very	similar	to	the
@NamedQuery	annotation	you	use	to	define	a	named	JPQL	query.

@Entity

@NamedNativeQuery(name=Book.QUERY_SELECT_BY_ID,

																		query="SELECT	*	FROM	book	b	WHERE	id	=	?",

																		resultClass	=	Book.class)

public	class	Book	{

				public	static	final	String	QUERY_SELECT_BY_ID	=

								"Book.selectById";

				...

}

You	need	to	provide	a	name	and	a	native	SQL	query.	As	you	can	see,	I	use	a

static	String	as	the	name	of	the	query.	That	makes	it	easier	to	reference	it	in

the	 business	 logic.	 The	 SQL	 query	 in	 this	 example	 is	 very	 simple.	 It	 uses	 a
positional	bind	parameter	to	select	a	record	from	the	book	table.	Hibernate	also

supports	 named	 bind	 parameters	 for	 native	 SQL	 queries	 but	 the	 JPA
specification	 does	 not.	 So,	 you	 should	 use	 positional	 bind	 parameters,	 if	 you
want	to	be	able	to	use	your	application	with	a	different	JPA	implementation.

I	 also	 provide	 a	resultClass	 in	 this	 example	 to	 tell	Hibernate	 to	map	 the

query	result	to	a	Book	entity.	That’s	all	you	need	to	do	to	define	a	named	native

query.

You	can	use	this	query	in	the	same	way	as	a	named	JPQL	query.

Query	q	=	em.createNamedQuery(Book.QUERY_SELECT_BY_ID);

q.setParameter(1,	100);

Book	b	=	(Book)	q.getSingleResult();

You	instantiate	a	new	Query	by	calling	the	createNamedQuery	method	of

the	EntityManager	with	 the	 name	 of	 the	@NamedNativeQuery.	That	 is

the	same	Query	interface	as	you	know	from	your	JPQL	queries.	You	can	use	it

to	set	bind	parameter	values	or	define	pagination.	In	this	example,	I	just	call	the
setParameter	method	to	set	the	value	for	the	positional	bind	parameter.

The	index	of	positional	parameters	in	named	native	queries	starts	at	1.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
NamedNativeQuery	module	of	 the	example	project.	 If	you	haven’t	 already

done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-tips.com/download-
examples.

Learn	More
Native	 queries	 don’t	 return	 the	 strongly	 typed	 results	 you	 know	 from	 JPQL
queries.	They	 return	 an	Object[]	 or	 a	List<Object[]>	and	you	need	 to

http://www.hibernate-tips.com/download-examples

▪

▪

cast	them	yourself	or	tell	Hibernate	how	to	handle	the	result.	Hibernate	can	map

the	query	result	to	entities	or	POJOs,	as	I	show	you	in:

How	to	map	the	result	of	a	native	SQL	query	to	entities

How	to	map	the	result	of	a	native	SQL	query	to	a	POJO

How	to	map	the	result	of	a	native	SQL	query	to	entities

Problem
My	query	is	too	complex	for	JPQL,	and	I	have	to	use	a	native	query.	Is	there	a
way	to	map	the	result	of	the	query	to	managed	entities?

Solution
If	 your	 query	 returns	 all	 columns	 that	 are	 mapped	 to	 an	 entity,	 you	 can	 tell
Hibernate	 to	 map	 the	 result	 to	 a	 managed	 entity.	 Afterward,	 you	 can	 use	 the
entity	in	the	same	way	as	any	other	managed	entity.

There	are	two	options	to	define	the	mapping:

1.	 You	can	use	an	implicit	mapping	if	your	query	result	uses	the	same	column
names	as	your	entity	mapping.

2.	 You	 can	 create	 a	 custom	mapping	 if	 the	 column	 names	 do	 not	match	 the
entity	mapping.

Implicit	Mapping

If	you	can	use	it,	the	implicit	mapping	is	the	easier	to	use	and	better	approach	for
most	use	cases.	You	only	need	 to	provide	 the	class	of	 the	entity	as	 the	second
parameter	to	the	createNativeQuery	method.

Book	b	=	(Book)	em.createNativeQuery(

				"SELECT	*	FROM	book	b	WHERE	id	=	1",	Book.class)

																		.getSingleResult();

Explicit	Mapping

If	 the	 column	 names	 of	 your	 query	 result	 do	 not	match	 the	 column	 names	 of
your	 entity	mapping,	 you	 have	 to	 define	 the	mapping	 yourself.	 The	 following
query	shows	a	very	simple	example	of	such	a	situation.	It	 renames	the	column
id	to	bookId	so	that	Hibernate	can	not	use	the	implicit	mapping.

Book	b	=	(Book)	em.createNativeQuery(

				"SELECT	id	as	bookId,	version,	title,	"

				+	"publishingDate,	publisherid	"

				+	"FROM	book	b	WHERE	id	=	1",	"BookMapping")

																		.getSingleResult();

You	 can	 define	 a	 custom	 result	 mapping	 with	 a	@SqlResultSetMapping

annotation.	It	specifies	the	entity	class	and	a	mapping	for	each	entity	attribute.

@SqlResultSetMapping(

				name	=	"BookMapping",

				entities	=	@EntityResult(

								entityClass	=	Book.class,

								fields	=	{

												@FieldResult(name	=	"id",	column	=	"bookId"),

												@FieldResult(name	=	"version",	column	=	"version"),

												@FieldResult(name	=	"title",	column	=	"title"),

												@FieldResult(name	=	"publishingDate",

																									column	=	"publishingDate"),

												@FieldResult(name	=	"publisher",

																									column	=	"publisherid")}))

As	 you	 can	 see	 in	 the	 code	 snippet,	 I	 set	 a	name	 and	 a	@EntityResult

annotation	on	the	@SqlResultSetMapping	annotation.	To	use	the	mapping,

you	 need	 to	 provide	 its	name	 as	 the	 second	 parameter	 to	 the

createNativeQuery	method.	So,	make	sure	to	choose	a	name	that	describes

the	mapping	and	is	easy	to	remember.

The	@EntityResult	annotation	defines	to	which	entity	the	query	result	will

be	mapped.	Therefore,	 you	need	 to	 specify	 the	 class	of	 the	 entity	 and	a	 set	 of
@FieldResult	 annotations.	 Each	@FieldResult	 annotation	 defines	 the

mapping	 between	 a	 result	 set	 column	 and	 an	 entity	 attribute.	 You	 can	 define
multiple	@EntityResult	mappings	for	a	@SqlResultSetMapping	if	you

want	to	map	the	query	result	to	multiple	entities.

You	can	then	use	this	mapping	by	providing	its	name	as	the	second	parameter	to
the	createNativeQuery	method.	The	defined	@SqlResultSetMapping

tells	Hibernate	 to	map	 the	query	 result	 to	a	Book	entity,	but	 it	doesn’t	change

the	return	type	of	the	getSingleResult	method.	It	still	returns	an	Object

and	you	need	to	cast	it	to	a	Book	entity.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
MapNativeQueryToEntity	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
@SqlResultSetMapping	 is	 a	 powerful	 feature	 that	 allows	 you	 to	 define

complex	mappings	for	native	query	results.	You	can	also	use	it	to	map	the	query
result	to	a	POJO	as	I	show	in	How	to	map	the	result	of	a	native	SQL	query	to	a
POJO.

http://www.hibernate-tips.com/download-examples

How	to	map	the	result	of	a	native	SQL	query	to	a	POJO

Problem
My	query	is	too	complex	for	JPQL,	and	I	have	to	use	a	native	query.	What	is	the
easiest	way	to	map	the	result	of	the	query	to	a	POJO?

Solution
JPA	 supports	@SqlResultSetMappings,	 which	 you	 can	 use	 to	 map	 the

query	result	to	a	POJO.	In	the	following	example,	I	want	to	map	the	result	of	a
native	SQL	query	to	BookValue	objects.

public	class	BookValue	{

				private	String	title;

				private	Date	publishingDate;

				public	BookValue(String	title,	Date	publishingDate)	{

								this.title	=	title;

								this.publishingDate	=	publishingDate;

				}

				...

}

You	can	use	a	@SqlResultSetMapping	to	define	a	constructor	call	similar

to	 the	 constructors	 expressions	 you	 know	 from	 JPQL.	 The	 following	 code
snippet	shows	an	example	of	such	a	mapping.

@SqlResultSetMapping(

				name	=	"BookValueMapping",

				classes	=	@ConstructorResult(

								targetClass	=	BookValue.class,

								columns	=	{@ColumnResult(name	=	"title"),

																			@ColumnResult(name	=	"date")}))

The	mapping	consist	of	a	name	and	a	@ConstructorResult	annotation.	To

use	 the	mapping,	you	need	 to	provide	 its	name	as	 the	second	parameter	 to	 the

createNativeQuery	method.	So,	make	sure	to	choose	a	name	that	describes

the	mapping	and	is	easy	to	remember.

T h e	@ConstructorResult	 annotation	 defines	 a	 constructor	 call	 of	 the

BookValue	class.	The	@ColumnResult	annotations	describe	how	Hibernate

shall	map	the	columns	of	the	result	to	the	parameters	of	the	constructor.	In	this
example,	 Hibernate	 performs	 a	 constructor	 call	 using	 the	 value	 of	 the	title

column	as	the	first	and	the	value	of	the	date	column	as	the	second	parameter.

When	you	provide	the	name	of	 the	@SqlResultSetMapping	as	the	second

parameter	 to	 the	createNativeQuery	 method,	 Hibernate	 applies	 the

mapping	to	the	query	result.	You	can	use	it	to	map	the	results	of	all	queries	that
return	at	least	the	parameters	defined	by	the	@ColumnResult	annotations.

BookValue	b	=	(BookValue)	em.createNativeQuery(

				"SELECT	b.publishingDate	as	date,	b.title,	b.id	"

				+	"FROM	book	b	WHERE	b.id	=	1",	"BookValueMapping")

																												.getSingleResult();

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
MapNativeQueryToPojo	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

Learn	More
@SqlResultSetMapping	 is	 a	 powerful	 feature	 that	 allows	 you	 to	 define

complex	mappings	for	native	query	results.	You	can	also	use	it	to	map	the	query
result	to	multiple	POJOs	or	managed	entities	as	I	show	in	How	to	map	the	result
of	a	native	SQL	query	to	entities.

▪

▪

▪

▪

▪

▪

CREATE	QUERIES	PROGRAMMATICALLY	WITH	THE
CRITERIA	API

Like	 all	 JPA	 implementations,	 Hibernate	 implements	 the	 Criteria

API.	 It	 supports	 the	same	feature	set	as	JPQL	and	 is	a	good	solution	 if

you	need	 to	 dynamically	 define	queries	 at	 runtime.	Common	use	 cases

for	that	are	complex	search	operations	based	on	user	input.	For	these	use

cases,	the	dynamic	approach	of	the	Criteria	API	is	often	a	better	solution

than	defining	multiple	JPQL	queries.

But	as	you’ll	see	in	the	examples,	the	definition	of	a	query	can	become

complex.	I	therefore	recommend	using	JPQL	for	all	use	cases	that	allow

the	static	definition	of	a	query.

This	chapter	includes	the	following	Hibernate	tips:

How	to	select	entities	with	a	CriteriaQuery

How	to	select	POJOs	with	a	CriteriaQuery

How	to	select	multiple	scalar	values	in	a	CriteriaQuery

How	to	call	a	standard	database	function	in	a	CriteriaQuery

How	to	call	a	user-defined	function	in	a	CriteriaQuery

How	to	update	multiple	entities	with	the	Criteria	API

▪

▪

▪

How	to	delete	multiple	entities	with	the	Criteria	API

How	to	use	pagination	with	a	CriteriaQuery

How	to	reference	entity	attributes	in	a	type-safe	way

How	to	select	entities	with	a	CriteriaQuery

Problem
I	 need	 to	 define	 a	 query	 based	 on	 user	 input.	 What	 is	 the	 best	 way	 to
programmatically	create	a	query	at	runtime	with	Hibernate?

Solution
You	can	use	JPA’s	Criteria	API	to	define	queries	programmatically.	It	provides
a	type-safe	way	to	create	a	query	and	supports	the	same	features	as	JPQL.

Hibernate’s	proprietary	Criteria	API	is	deprecated.	You	should	use	JPA’s	Criteria	API	instead.

The	following	code	snippet	shows	the	definition	of	a	CriteriaQuery,	which

selects	all	Books	written	by	an	Author	with	a	given	first	and	last	name.

You	 first	 need	 to	 get	 a	CriteriaBuilder	 instance	 from	 the

EntityManager.	It’s	a	factory	class	that	helps	you	to	define	different	parts	of

your	query,	like	bind	parameters,	function	calls,	and	predicates.

You	then	create	a	CriteriaQuery	instance	that	is	the	root	of	the	object	graph

that	represents	your	query.	I	recommend	providing	the	return	type	of	your	query
as	a	parameter	to	the	createQuery	method.	It	creates	a	typed	instance	of	the

CriteriaQuery	interface.	I	want	to	select	Book	entities	in	this	example	and,

therefore,	provide	Book.class	as	the	parameter.

In	the	next	step,	you	define	the	FROM	clause	of	the	query.	In	this	example,	I	use

the	Book	 entity	 as	 the	 root	 of	 the	 query.	 Then	 I	 call	 the	 join	method	 on	 the

Root	 interface	 to	 join	 the	Book	 entity	with	 the	Author	entity.	I	use	the	JPA

Metamodel	class	Book_	to	reference	the	authors	attribute	of	the	Book	entity.

If	you’re	not	familiar	with	the	JPA	Metamodel,	take	a	look	at	How	to	reference
entity	attributes	in	a	type-safe	way,	which	provides	a	comfortable	and	type-safe
way	to	reference	entity	attributes.

The	definition	of	the	WHERE	clause	is	optional.	If	you	want	to	select	all	records

from	the	database,	you	can	skip	this	block	and	execute	your	query.	I	only	want
to	 get	 the	Books	 written	 by	Authors	 with	 a	 given	 first	 and	 last	 name	 and

define	a	WHERE	clause	for	my	query.

The	first	 thing	you	should	do	 is	define	 the	bind	parameters	you	want	 to	use	 in
your	query.	I	create	two	parameters	of	type	String.	One	for	the	first	name	and

one	 for	 the	 last	 name.	 Then	 I	 define	 the	WHERE	 clause	 by	 calling	 the	where

method	 on	 the	CriteriaQuery	 interface	 with	 a	Predicate.	 The

Predicate	in	this	example	checks	that	the	firstName	and	 the	lastName

attribute	are	equal	to	the	values	of	the	bind	parameters.

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);

//	define	FROM	clause

Root<Book>	root	=	cq.from(Book.class);

SetJoin<Book,	Author>	authors	=	root.join(Book_.authors);

//	define	WHERE	clause	with	bind	parameters

ParameterExpression<String>	paramFirstName	=

				cb.parameter(String.class);

ParameterExpression<String>	paramLastName	=

				cb.parameter(String.class);

cq.where(

				cb.and(

								cb.equal(authors.get(Author_.firstName),	paramFirstName),

								cb.equal(authors.get(Author_.lastName),	paramLastName)));

//	execute	query

TypedQuery<Book>	query	=	em.createQuery(cq);

query.setParameter(paramFirstName,	"Thorben");

query.setParameter(paramLastName,	"Janssen");

List<Book>	books	=	query.getResultList();

I’ve	 defined	 my	 query,	 and	 now	 I	 want	 to	 execute	 it.	 That	 requires	 multiple
steps,	as	you	can	see	in	the	code	sample.

You	 first	 need	 to	 call	 the	createQuery	 method	 of	 the	EntityManager

with	 your	CriteriaQuery	 instance.	 Hibernate	 returns	 an	 instance	 of	 the

TypedQuery	interface.	That	is	the	same	interface	as	you	get	when	you	create	a

JPQL	 query	 and	 you’re	 probably	 familiar	 with	 the	 following	 steps.	 I	 set	 the
values	for	the	two	bind	parameters	by	calling	the	setParameter	method	for

each	 of	 them	 and	 call	 the	getResultList	 method	 on	 the	TypedQuery

interface	to	execute	the	query.

Hibernate	 then	 generates	 a	 SQL	 query	 based	 on	 the	CriteriaQuery	 and

executes	it	with	the	provided	bind	parameter	values.

13:43:58,566	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_1_,

								book0_.price	as	price2_1_,

								book0_.publisherid	as	publishe6_1_,

								book0_.publishingDate	as	publishi3_1_,

								book0_.title	as	title4_1_,

								book0_.version	as	version5_1_

				from

								Book	book0_

▪

▪

				inner	join

								BookAuthor	authors1_

												on	book0_.id=authors1_.bookId

				inner	join

								Author	author2_

												on	authors1_.authorId=author2_.id

				where

								author2_.firstName=?

								and	author2_.lastName=?

13:43:58,571	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[1]	as	[VARCHAR]	-	[Thorben]

13:43:58,572	TRACE	[org.hibernate.type.descriptor.sql.BasicBinder]	-	

binding	parameter	[2]	as	[VARCHAR]	-	[Janssen]

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CriteriaQuery	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
The	CriteriaQuery	in	this	example	selects	only	one	entity	class.	That	is	the

most	 common	 projection.	 But	 you	 can	 also	 use	 POJOs	 or	 more	 complex
projections	 that	 select	 multiple	 entities,	 POJOs	 or	 scalar	 values.	 I	 provide
examples	for	that	in:

How	to	select	POJOs	with	a	CriteriaQuery

How	to	select	multiple	scalar	values	in	a	CriteriaQuery

http://www.hibernate-tips.com/download-examples

How	to	select	POJOs	with	a	CriteriaQuery

Problem
JPQL	 supports	 constructor	 expressions	 to	 select	 POJOs	 instead	 of	 entities	 or
scalar	values.	Can	I	do	the	same	with	the	Criteria	API?

Solution
You	can	use	a	similar	constructor	expression	with	the	Criteria	API	as	you	use	in
JPQL	 queries.	 In	 the	 following	 example,	 I	 want	 to	 select	AuthorValue

objects.

public	class	AuthorValue	{

				private	String	firstName;

				private	String	lastName;

				public	AuthorValue(String	firstName,	String	lastName)	{

								this.firstName	=	firstName;

								this.lastName	=	lastName;

				}

				...

}

The	definition	of	 the	CriteriaQuery	follows	the	same	approach	as	you	use

to	select	entities.

You	 first	 need	 to	 get	 a	CriteriaBuilder	 instance	 from	 the

EntityManager.	It’s	a	factory	class	that	helps	you	to	define	different	parts	of

your	query,	like	bind	parameters,	function	calls,	and	predicates.

You	then	create	a	CriteriaQuery	instance	that	is	the	root	of	the	object	graph

that	represents	your	query.	I	recommend	providing	the	return	type	of	your	query
as	a	parameter	to	the	createQuery	method.	It	creates	a	typed	instance	of	the

CriteriaQuery	 interface.	 I	 want	 to	 select	AuthorValue	 objects	 in	 this

example	and,	therefore,	provide	AuthorValue.class	as	the	parameter.

In	the	next	step,	you	define	the	FROM	clause	of	the	query.	In	this	example,	I	use

the	Author	entity	as	the	root	of	the	query.

Then	you	can	define	the	projection	of	your	query.	In	this	example,	it’s	a	call	of
t h e	AuthorValue	 constructor.	 The	construct	 method	 of	 the

CriteriaBuilder	 allows	you	 to	 define	 constructor	 calls.	Call	 this	method

using	the	class	that	Hibernate	instantiates	as	the	first	parameter	and	an	optional
list	of	Selections	that	are	used	as	constructor	parameters.

In	 this	 example,	 I	 use	 the	 JPA	 Metamodel	 class	Author_	 to	 reference	 the

firstName	 and	lastName	 attributes	 of	 the	Author	 entity.	 If	 you’re	 not

familiar	 with	 the	 JPA	 Metamodel,	 take	 a	 look	 at	How	 to	 reference	 entity
attributes	in	a	type-safe	way,	which	provides	a	comfortable	and	type-safe	way	to
reference	entity	attributes.

The	definition	of	the	WHERE	clause	is	optional.	If	you	want	to	select	all	records

from	the	database,	you	can	skip	this	block	and	execute	your	query.	That’s	what	I
do	 in	 this	 example.	 You	 can	 see	 an	 example	 of	 a	WHERE	 clause	 definition	 in

How	to	select	entities	with	a	CriteriaQuery.

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaQuery<AuthorValue>	q	=	cb.createQuery(AuthorValue.class);

Root<Author>	root	=	q.from(Author.class);

q.select(

				cb.construct(

								AuthorValue.class,

								root.get(Author_.firstName),

								root.get(Author_.lastName)));

That’s	all	you	need	to	do	to	define	the	CriteriaQuery.	You	can	now	execute

it	 in	 two	 steps.	 You	 first	 need	 to	 call	 the	createQuery	 method	 of	 the

EntityManager	 with	 your	CriteriaQuery.	This	method	call	 returns	 the

same	TypedQuery	interface	as	you	use	in	your	JPQL	queries.	You	can	use	it

to	set	bind	parameter	values	or	to	paginate	the	query	result.	I	don’t	use	any	bind
parameters	in	this	example	and	therefore,	can	skip	this	part.	In	the	final	step,	you
need	 to	 call	 the	getResultList	 method	 on	 the	TypedQuery	 interface	 to

execute	the	query	and	retrieve	a	List	of	AuthorValue	objects.

TypedQuery<AuthorValue>	query	=	em.createQuery(q);

List<AuthorValue>	authors	=	query.getResultList();

When	 I	 created	 the	 query,	 I	 referenced	 the	firstName	 and	lastName

attributes	in	the	constructor	call	definition.	As	you	can	see	in	the	following	log
messages,	Hibernate	used	these	reference	to	generates	an	SQL	query	that	selects
the	firstName	and	lastName	columns	from	the	Author	table.

13:43:09,884	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.firstName	as	col_0_0_,

								author0_.lastName	as	col_1_0_

				from

								Author	author0_

Source	Code

You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CriteriaConstructor	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
If	you	don’t	want	to	create	a	POJO	to	represent	your	query	result,	you	can	also
select	a	set	of	scalar	values.	I	show	you	how	to	do	that	in	How	to	select	multiple
scalar	values	in	a	CriteriaQuery.

And	if	you	want	to	use	the	Criteria	API	in	your	project,	you	should	also	have	a
look	at	the	JPA	metamodel.	It	provides	a	great	way	to	create	queries	in	a	type-
safe	way.	 I	 show	you	how	 to	 use	 and	generate	 the	 required	 classes	 in	How	to
reference	entity	attributes	in	a	type-safe	way.

http://www.hibernate-tips.com/download-examples

How	to	select	multiple	scalar	values	in	a	CriteriaQuery

Problem
How	do	I	select	a	list	of	scalar	values	in	a	Criteria	query?

Solution
You	can	 select	multiple	 scalar	values	using	 the	multiselect	method	of	 the

CriteriaQuery	 interface.	The	following	code	snippet	shows	an	example	of

such	a	query.

//	Prepare	query

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaQuery<Tuple>	q	=	cb.createTupleQuery();

Root<Author>	author	=	q.from(Author.class);

//	Select	multiple	scalar	values

q.multiselect(

				author.get(Author_.firstName).alias("firstName"),

				author.get(Author_.lastName).alias("lastName"));

The	definition	of	 the	CriteriaQuery	follows	the	same	approach	as	you	use

to	select	entities.

You	 first	 need	 to	 get	 a	CriteriaBuilder	 instance	 from	 the

EntityManager.	It’s	a	factory	class	that	helps	you	to	define	different	parts	of

your	query,	like	bind	parameters,	function	calls,	and	predicates.

You	 then	 create	 a	CriteriaQuery	 instance	 by	 calling	 the

createTupleQuery	 method	 of	 the	CriteriaBuilder.	 The

CriteriaQuery	is	the	root	of	the	object	graph	that	represents	your	query.

In	the	next	step,	you	define	the	FROM	clause	of	the	query.	In	this	example,	I	use

the	Author	entity	as	the	root	of	the	query.

After	 that	 is	 done,	 you	 can	 define	 the	 projection	 of	 your	 query	 by	 calling	 the
multiselect	 method.	 It	 expects	 a	List	 or	 an	 array	 of	Selection

interfaces	that	define	the	entity	attributes	you	want	to	fetch	from	the	database.	In
this	example,	 I	use	 the	 JPA	Metamodel	 to	 reference	 the	attribute	firstName

and	lastName	in	a	type-safe	way.

That’s	all	you	need	to	do	to	define	the	CriteriaQuery.	You	can	now	execute

the	query	in	two	steps.	You	first	need	to	call	the	createQuery	method	of	the

EntityManager	 with	 your	CriteriaQuery	 to	 get	 an	 instance	 of	 the

TypedQuery	 interface.	This	 is	 the	 same	 interface	 as	 you	 use	 for	 your	 JPQL

queries	and	you	can	use	it	to	set	bind	parameter	values	or	to	paginate	the	query
result.	You	can	the	execute	the	query	by	calling	the	getResultList	method

on	the	TypedQuery	interface.

T h e	getResultList	 method	 returns	 a	List	 of	Tuple	 interface

implementations.	 The	Tuple	 interface	 provides	 convenient	 access	 to	 the

selected	values	based	on	their	position	or	alias.	In	the	code	snippet,	I	defined	an
alias	for	each	attribute	in	the	query	and	use	it	to	get	them	from	the	Tuple	result.

TypedQuery<Tuple>	query	=	em.createQuery(q);

List<Tuple>	authorNames	=	query.getResultList();

for	(Tuple	authorName	:	authorNames)	{

				log.info(authorName.get("firstName")

								+	"	"

								+	authorName.get("lastName"));

}

As	 you	 can	 see	 in	 the	 log	 messages,	 Hibernate	 generated	 a	 SQL	SELECT

statement	for	the	CriteriaQuery.	It	selects	the	columns	that	are	mapped	by

the	firstName	and	lastName	attributes	of	the	Author	entity.

14:19:39,392	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.firstName	as	col_0_0_,

								author0_.lastName	as	col_1_0_

				from

								Author	author0_

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CriteriaTuples	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	more
If	you	want	to	select	a	POJO	instead	of	multiple	scalar	values,	you	can	define	a
constructor	 call	 with	 the	construct	 method	 of	 the	CriteriaBuilder.	 I

explain	it	in	more	detail	in	How	to	select	POJOs	with	a	CriteriaQuery.

And	if	you	want	to	use	the	Criteria	API	in	your	project,	you	should	also	have	a
look	at	the	JPA	metamodel.	It	provides	a	great	way	to	create	queries	in	a	type-
safe	way.	 I	 show	you	how	 to	 use	 and	generate	 the	 required	 classes	 in	How	to
reference	entity	attributes	in	a	type-safe	way.

http://www.hibernate-tips.com/download-examples

How	to	call	a	standard	database	function	in	a
CriteriaQuery

Problem
How	do	I	call	a	database	function	in	a	CriteriaQuery?

Solution
The	 Criteria	 API	 supports	 a	 set	 of	 database	 functions	 you	 can	 use	 in	 your
queries.	 You	 can	 define	 function	 calls	 with	 the	CriteriaBuilder.	 It

provides	a	method	for	each	supported	function.

Table	1.	Functions

CriteriaBuilder	method Description

upper(Expression<String>	x) Create	an	Expression	to	transform	String	x

to	upper	case

lower(Expression<String>	x) Create	an	Expression	to	transform	String	x

to	lower	case

currentDate() Create	an	Expression	to	return	the	current	date

of	the	database

currentTime() Create	an	Expression	to	return	the	current	time

of	the	database

currentTimestamp() Create	an	Expression	to	return	a	timestamp	of

the	current	date	and	time	of	the	database

substring(Expression<String>	s,

Expression<Integer>	from)

Create	an	Expression	to	return	a	substring	of

the	given	String

substring(Expression<String>	s,

Expression<Integer>	from,

Expression<Integer>	len)

Create	an	Expression	to	return	a	substring	of

the	given	String

substring(Expression<String>	s,	int

from)

Create	an	Expression	to	return	a	substring	of

the	given	String

substring(Expression<String>	s,	int

from,	int	len)

Create	an	Expression	to	return	a	substring	of

the	given	String

trim(char	t,	Expression<String>	x) Create	an	Expression	to	remove	leading	and

trailing	character	from	the	given	String

trim(CriteriaBuilder.Trimspec	ts,

char	t,	Expression<String>	x)

Create	an	Expression	to	remove	character	from

the	given	String

trim(CriteriaBuilder.Trimspec	ts,

Expression<String>	x)

Create	an	Expression	to	remove	whitespaces

from	the	given	String

trim(Expression<Character>	t,

Expression<String>	x)

Create	an	Expression	to	remove	leading	and

trailing	character	from	the	given	String

trim(Expression<String>	x) Create	an	Expression	to	remove	leading	and

trailing	whitespaces	from	the	given	String

length(Expression<String>	x) Create	an	Expression	to	return	the	length	of	the

given	String	x

locate(Expression<String>	x,

Expression<String>	pattern)

Create	an	Expression	to	return	the	position	of

the	String	pattern	in	x.

locate(Expression<String>	x,

Expression<String>	pattern,

Expression<Integer>	from)

Create	an	Expression	to	return	the	position	of

the	String	pattern	in	x.	The	search	starts	at	the

position	from

locate(Expression<String>	x,	String

pattern,	Expression<Integer>	from)

Create	an	Expression	to	return	the	position	of

the	String	pattern	in	x.	The	search	starts	at

the	position	from

locate(Expression<String>	x,	String

pattern,	int	from)

Create	an	Expression	to	return	the	position	of

the	String	pattern	in	x.	The	search	starts	at

the	position	from

abs(Expression<N>	x) Create	an	Expression	to	return	the	absolute

value	of	the	given	Expression

avg(Expression<N>	x) Create	an	Expression	to	return	the	average	of

the	given	Expression

sqrt(Expression<?	extends	Numeric>

x)

Create	an	Expression	to	return	the	square	root

of	the	given	number

mod(Expression<Integer>	x,

Expression<Integer>	y)

Create	an	Expression	to	return	the	remainder	of

a	division

mod(Expression<Integer>	x,	Integer

y)

Create	an	Expression	to	return	the	remainder	of

a	division

mod(Integer	x,	Integer	y) Create	an	Expression	to	return	the	remainder	of

a	division

treat(CollectionJoin<X,T>	join,

Class<E>	type)

Create	an	Expression	to	downcast	a

CollectionJoin	to	the	given	type

treat(Join<X,T>	join,	Class<V>

type)

Create	an	Expression	to	downcast	a	Join	to

the	given	type

treat(ListJoin<X,T>	join,	Class<E>

type)

Create	an	Expression	to	downcast	a

ListJoin	to	the	given	type

treat(MapJoin<X,K,T>	join,	Class<V>

type)

Create	an	Expression	to	downcast	a	MapJoin

to	the	given	type

treat(Path<X>	path,	Class<T>	type) Create	an	Expression	to	downcast	a	Path	to

the	given	type

treat(Root<X>	root,	Class<T>	type) Create	an	Expression	to	downcast	a	Root	to

the	given	type

treat(SetJoin<X,T>	join,	Class<E>

type)

Create	an	Expression	to	downcast	a	SetJoin

to	the	given	type

size(C	collection) Create	an	Expression	to	return	the	size	of	a

given	collection

size(Expression<C>	collection) Create	an	Expression	to	return	the	size	of	a

given	collection

The	 following	code	snippet	 shows	a	query	 that	calls	 the	size	 function	on	 the

books	association.

I	 first	 call	 the	getCriteriaBuilder	method	 on	 the	EntityManager	 to

get	 a	CriteriaBuilder	 instance.	 Then	 I	 create	 a	CriteriaQuery	 that

selects	 a	Tuple.	I	get	into	more	detail	about	this	kind	of	projection	in	How	to

select	multiple	scalar	values	in	a	CriteriaQuery.

The	definition	of	the	projection	is	the	important	part	of	this	code	sample.	As	you
can	 see	 in	 the	 code,	 I	 select	 the	Author	 entity	 and	 call	 the	size	 function	 to

count	 the	number	of	Books	 the	Author	 has	written.	The	size	 function	also

requires	 me	 to	 use	 a	GROUP	BY	 clause	 on	 the	 primary	 key	 of	 the	Author

entity.

That’s	 all	 you	 need	 to	 do	 to	 call	 a	 function	 in	 a	CriteriaQuery.	 You	 can

now	use	it	to	create	a	TypedQuery	and	execute	it.

//	Define	the	CriteriaQuery

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaQuery<Tuple>	cq	=	cb.createTupleQuery();

Root<Author>	root	=	cq.from(Author.class);

cq.multiselect(root,	cb.size(root.get(Author_.books)));

cq.groupBy(root.get(Author_.id));

//	Execute	the	Query

TypedQuery<Tuple>	q	=	em.createQuery(cq);

List<Tuple>	results	=	q.getResultList();

The	size	 function	 is	 JPA-specific.	You	can	use	 it	 to	 count	 the	 elements	 in	 a

mapped	association.	As	you	can	see	 in	 the	 log	message,	Hibernate	generates	a
JOIN	statement	to	join	the	associated	table	and	calls	the	SQL	count	 function

to	count	the	number	of	associated	records	in	the	BookAuthor	table.

05:47:23,682	DEBUG	[org.hibernate.SQL]	-

				select

								author0_.id	as	col_0_0_,

								count(books1_.authorId)	as	col_1_0_,

								author0_.id	as	id1_0_,

								author0_.firstName	as	firstNam2_0_,

								author0_.lastName	as	lastName3_0_,

								author0_.version	as	version4_0_

				from

								Author	author0_	cross

				join

								BookAuthor	books1_

				where

								author0_.id=books1_.authorId

				group	by

								author0_.id

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CriteriaStandardFunction	 module	 of	 the	 example	 project.	 If	 you

haven’t	 already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
The	Criteria	API	supports	only	a	subset	of	the	functions	supported	by	the	SQL
standard	 and	 no	 database-specific	 functions.	 Since	 JPA	 2.1,	 you	 can	 use	 the
function	function	 to	 call	 user-defined	 or	 database-specific	 functions	 in	 a

CriteriaQuery	How	to	call	a	user-defined	function	in	a	CriteriaQuery.

http://www.hibernate-tips.com/download-examples

How	to	call	a	user-defined	function	in	a	CriteriaQuery

Problem
How	 do	 I	 call	 a	 user-defined	 database	 function	 in	 the	WHERE	 clause	 of	 my

CriteriaQuery?

Solution
Since	 JPA	 2.1,	 you	 can	 use	 the	function(String	 name,	 Class<T>

type,	Expression<?>…		args)	method	 of	 the	CriteriaBuilder	 to
call	user-defined	or	database-specific	 functions.	You	need	 to	provide	 the	name
and	the	expected	result	type	of	the	function	as	the	first	two	parameters,	and	you
can	provide	one	or	more	Expression	that	will	be	used	as	function	arguments.

The	 following	 code	 snippet	 shows	 an	 example	 that	 calls	 the	 user-defined
database	 function	calculate.	 The	 definition	 of	 the	 query	 follows	 the	 same

structure	as	 the	definition	of	any	other	CriteriaQuery.	 I	explain	it	 in	more

detail	in	How	to	select	entities	with	a	CriteriaQuery.

The	definition	of	the	WHERE	clause	is	the	interesting	part	of	this	code	sample.	I

use	 it	 to	 call	 the	user-defined	database	 function	calculate.	Before	 I	 can	do

that,	I	need	to	define	the	two	parameters	of	type	Double	that	I	want	to	provide

to	 the	 database	 function.	 The	calculate	 function	 returns	 a	Double,	 and	 I

provide	the	price	of	the	Book	and	a	query	parameter	as	function	arguments.

//	Create	the	CriteriaQuery

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);

Root<Book>	root	=	cq.from(Book.class);

//	call	the	database	function	calculate

ParameterExpression<Double>	doubleParam1	=

				cb.parameter(Double.class);

ParameterExpression<Double>	doubleParam2	=

				cb.parameter(Double.class);

cq.where(

				cb.greaterThan(

								doubleParam2,

								cb.function("calculate",	Double.class,

												root.get(Book_.price),	doubleParam1)));

//	Set	bind	parameter	values	and	execute	the	Query

TypedQuery<Book>	q	=	em.createQuery(cq);

q.setParameter(doubleParam1,	10.0D);

q.setParameter(doubleParam2,	40.0D);

List<Book>	books	=	q.getResultList();

When	 you	 execute	 this	CriteriaQuery,	 Hibernate	 generates	 a	 SQL	 query

with	the	defined	function	call.

15:08:12,187	DEBUG	[org.hibernate.SQL]	-

				select

								book0_.id	as	id1_0_,

								book0_.price	as	price2_0_,

								book0_.publishingDate	as	publishi3_0_,

								book0_.title	as	title4_0_,

								book0_.version	as	version5_0_

				from

								Book	book0_

				where

								?>calculate(book0_.price,	?)

You	can	use	this	approach	in	the	WHERE	clause	to	call	all	functions	supported	by

your	database.

You	can	also	use	the	function	function	in	the	SELECT	clause	of	your	query.	But	you	then

need	to	register	the	database	function	so	that	Hibernate	knows	it’s	result	type.	That	makes	the
function	function	superfluous	because	you	can	use	all	registered	functions	directly	in	your

query.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CriteriaCustomFunction	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
You	can	also	use	the	function	function	in	a	JPQL	query.	I	show	you	how	in

How	to	call	a	user-defined	function	in	a	JPQL	query.

http://www.hibernate-tips.com/download-examples

How	to	update	multiple	entities	with	the	Criteria	API

Problem
I	 have	 to	 update	 a	 lot	 of	 entities.	 With	 SQL,	 I	 would	 only	 need	 1	UPDATE

statement	 to	update	all	entities.	 Is	 there	a	way	to	do	the	same	with	 the	Criteria
API?

Solution
The	CriteriaUpdate	interface	allows	you	to	define	an	update	statement	that

changes	multiple	entities.	The	following	code	snippet	shows	an	example	of	such
a	statement.	It	increases	the	price	of	all	Books	by	10%.

//	define	the	CriteriaUpdate

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaUpdate<Book>	update	=	cb.createCriteriaUpdate(Book.class);

Root<Book>	root	=	update.from(Book.class);

update.set(Book_.price,	cb.prod(root.get(Book_.price),	1.1));

//	create	and	execute	the	Query

Query	query	=	em.createQuery(update);

query.executeUpdate();

As	you	can	see,	I	define	the	CriteriaUpdate	statement	in	a	similar	way	as	a

CriteriaQuery.	 I	 first	 get	 a	CriteriaBuilder	 from	 the

EntityManager	and	use	it	to	create	a	CriteriaUpdate	instance.

Then	 I	 define	 the	Root	 of	 the	 query	 in	 the	 same	 way	 as	 I	 do	 it	 for	 a

CriteriaQuery.

In	the	next	step,	I	call	the	set	method	on	 the	CriteriaUpdate	interface	to

define	 the	 update	 operation.	The	 first	 parameter	 specifies	 the	 entity	 attribute	 I
want	 to	 change.	 Ìn	 this	 example,	 I	 want	 to	 update	 the	price	 attribute.	 The

second	parameter	is	an	Expression	that	calculates	the	new	price.	I	want	to

increase	the	price	by	10%	and	therefore	multiply	the	current	price	with	1.1.

That’s	all	you	need	to	do	to	define	a	CriteriaUpdate	statement.

If	 you	 don’t	 want	 to	 update	 all	 entities,	 you	 can	 add	 a	WHERE	 clause	 to	 the

statement.	 You	 can	 define	 it	 in	 the	 same	 way	 as	 you	 do	 it	 for	 a
CriteriaQuery.

The	only	step	that’s	left	is	to	create	a	Query	based	on	the	CriteriaUpdate

and	execute	it.	Hibernate	then	generates	a	SQL	UPDATE	statement	that	increases

the	price	of	all	Books	by	10%.	You	can	check	the	generated	SQL	statement

in	the	log	file	if	you	activate	logging	for	the	SQL	statements.

18:57:25,118	DEBUG	[org.hibernate.SQL]	-	update	Book	set	

price=price*1.1

Updating	 multiple	 entities	 with	 a	CriteriaUpdate	 statement	 is	 more	 efficient	 than

updating	 the	 entities	 one	 by	 one.	 But	 Hibernate	 doesn’t	 know	 which	 database	 records	 get
changed	and	doesn’t	update	any	entities	 in	 the	first-level	cache.	You	need	to	make	sure	 that
the	 cache	 doesn’t	 contain	 any	 outdated	 entities	 or	 you	 need	 to	 invalidate	 the	 cache
programmatically.

Source	Code

You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CriteriaUpdate	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
The	CriteriaUpdate	interface	is	just	one	option	to	update	multiple	entities

with	one	query.	You	can	also	use	a	JPQL	update	statement	as	I	explain	in	How
to	update	multiple	entities	with	one	JPQL	query.

http://www.hibernate-tips.com/download-examples

How	to	delete	multiple	entities	with	the	Criteria	API

Problem
I	need	to	delete	multiple	entities.	Is	there	a	way	to	do	that	with	the	Criteria	API
that	doesn’t	remove	the	entities	one	by	one?

Solution
You	can	use	the	CriteriaDelete	interface	to	remove	multiple	entities	with

one	SQL	statement.	The	definition	of	the	statement	is	similar	to	the	definition	of
a	CriteriaUpdate	or	a	CriteriaQuery.	You	can	see	an	example	in	the

following	code	snippet.	It	deletes	all	Book	entities	from	the	database.

//	define	the	CriteriaDelete

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaDelete<Book>	delete	=	cb.createCriteriaDelete(Book.class);

delete.from(Book.class);

//	create	and	execute	the	Query

Query	query	=	em.createQuery(delete);

query.executeUpdate();

You	first	need	to	get	the	CriteriaBuilder	from	the	EntityManager	and

create	a	CriteriaDelete	instance.	Then	you	need	to	define	the	FROM	clause

of	the	delete	statement,	and	you	can	add	an	optional	WHERE	clause.	You	do	that

in	the	same	way	as	you	do	it	for	a	CriteriaQuery.

That’s	 all	 you	 need	 to	 do	 to	 define	 a	CriteriaDelete	 statement.	You	can

now	use	it	to	create	a	Query	and	execute	it.

Hibernate	 generates	 a	 SQL	DELETE	 statement	 based	 on	 your

CriteriaDelete	 statement.	 In	 this	 example,	 it	 also	 manages	 the	 mapped

associations.	 It	 first	 performs	 an	 SQL	DELETE	 statement	 to	 remove	 all

references	 to	 the	 deleted	Book	 entities	 from	 the	 association	 table

BookAuthor.	When	that	is	done,	Hibernate	executes	another	SQL	statement	to

remove	the	Book	entities.

16:49:44,984	DEBUG	[org.hibernate.SQL]	-	delete	from	BookAuthor	

where	(bookId)	in	(select	id	from	Book)

16:49:44,986	DEBUG	[org.hibernate.SQL]	-	delete	from	Book

Deleting	 multiple	 entities	 with	 a	CriteriaDelete	 statement	 is	 more	 efficient	 than

removing	them	one	by	one.	But	Hibernate	doesn’t	know	which	database	records	the	statement
deletes	and	doesn’t	remove	any	entities	from	the	first-level	cache.	You	need	to	make	sure	that
the	 cache	 doesn’t	 contain	 any	 deleted	 entities	 or	 you	 need	 to	 invalidate	 the	 cache
programmatically.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CriteriaDelete	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
The	CriteriaDelete	 interface	 is	 just	one	option	 to	delete	multiple	entities

with	one	query.	You	can	also	use	a	JPQL	delete	statement	as	I	explain	in	How	to
delete	multiple	entities	with	one	JPQL	query.

http://www.hibernate-tips.com/download-examples

How	to	use	pagination	with	a	CriteriaQuery

Problem
The	Criteria	API	 does	 not	 provide	 a	method	 to	 define	 the	 number	 of	 returned
records.	How	do	I	paginate	the	result	of	a	CriteriaQuery?

Solution
Defining	pagination	for	a	CriteriaQuery	is	easy	but	not	intuitive,	if	you’re

familiar	 with	 SQL.	 The	 Criteria	 API	 doesn’t	 provide	 any	 method	 to	 define
pagination.	You	have	to	set	the	pagination	information	on	the	Query	and	not	on

t h e	CriteriaQuery	 interface.	 You	 can	 do	 that	 by	 calling	 the

setFirstResult(int	startPosition)	 and	setMaxResults(int

maxResults)	methods.	This	provides	the	advantage	that	you	can	also	use	this

approach	to	paginate	the	result	of	JPQL	queries.

The	 following	 code	 snippet	 shows	 a	 simple	 example	 that	 returns	 the	 first	 five
Author	entities	from	the	database.	The	result	set	index	is	0	based	and	you	need

to	provide	0	as	a	startPosition	to	begin	with	the	first	element.

//	Define	the	CriteriaQuery

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);

Root<Book>	root	=	cq.from(Book.class);

cq.orderBy(cb.asc(root.get(Book_.id)));

//	Execute	query	with	pagination

List<Book>	books	=	em.createQuery(cq)

																					.setMaxResults(5)

																					.setFirstResult(0)

																					.getResultList();

To	select	the	next	five	Authors	from	the	database,	you	only	need	to	change	the

startPosition	to	5.

//	Define	the	CriteriaQuery

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaQuery<Book>	cq	=	cb.createQuery(Book.class);

Root<Book>	root	=	cq.from(Book.class);

cq.orderBy(cb.asc(root.get(Book_.id)));

//	Execute	query	with	pagination

List<Book>	books	=	em.createQuery(cq)

																					.setMaxResults(5)

																					.setFirstResult(5)

																					.getResultList();

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
CriteriaQueryPagination	module	of	the	example	project.	If	you	haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	more
You	can	use	the	same	approach	to	paginate	the	result	of	a	JPQL	query.	I	explain
it	in	more	detail	in	How	to	use	pagination	with	JPQL.

http://www.hibernate-tips.com/download-examples

How	to	reference	entity	attributes	in	a	type-safe	way

Problem
Referencing	 entity	 attributes	 by	 their	 name	 is	 error-prone	 and	makes	 the	 code
hard	 to	 refactor.	 How	 do	 I	 reference	 an	 attribute	 in	 a	 type-safe	way	 so	 that	 I
don’t	run	into	problems	when	I	have	to	change	its	name?

Solution
I	 prefer	 to	use	 the	 JPA	Metamodel	 to	 reference	 entity	 attributes	 in	 a	 type-safe
way.	The	metamodel	consists	of	a	generated	class	for	each	managed	class	in	the
persistence	unit.	These	classes	are	stored	in	the	same	package	and	have	the	same
name	as	the	corresponding	managed	classes	with	an	added	"_"	at	the	end.

The	only	thing	you	have	to	do	to	generate	these	classes	is	to	add	a	dependency	to
Hibernate’s	Static	Metamodel	Generator	 to	 your	 build	 process	 like	 I	 do	 in	 the
following	Maven	pom.xml	file.

<project>

				<modelVersion>4.0.0</modelVersion>

				<dependencies>

								<dependency>

												<groupId>org.hibernate</groupId>

												<artifactId>hibernate-jpamodelgen</artifactId>

								</dependency>

								...

				</dependencies>

				...

</project>

Hibernate	 generates	 the	Metamodel	 classes	with	 each	Maven	 build	 and	 stores
them	in	the	target/generated-sources/annotations	folder	of	your

project.

Let’s	 have	 a	 look	 at	 an	 example	 of	 a	Metamodel	 class.	The	 first	 code	 snippet
shows	 the	Book	 entity	 that	 you	 know	 from	most	 examples	 in	 this	 book.	 The

second	one	shows	the	generated	metamodel	class	Book_.

@Entity

public	class	Book	{

				@Id

				@GeneratedValue(strategy	=	GenerationType.AUTO)

				private	Long	id;

				@Version

				private	int	version;

				private	String	title;

				private	Double	price;

				@Temporal(TemporalType.DATE)

				private	Date	publishingDate;

				@ManyToOne

				@JoinColumn(name="publisherid")

				private	Publisher	publisher;

				@ManyToMany

				@JoinTable(name="BookAuthor",

								joinColumns={

												@JoinColumn(name="bookId",	referencedColumnName="id")},

								inverseJoinColumns={

												@JoinColumn(name="authorId",	referencedColumnName="id")

								})

				private	Set<Author>	authors	=	new	HashSet<Author>();

				...

}

@Generated(

				value="org.hibernate.jpamodelgen.JPAMetaModelEntityProcessor")

@StaticMetamodel(Book.class)

public	abstract	class	Book_	{

				public	static	volatile	SingularAttribute<Book,	Double>	price;

				public	static	volatile	SingularAttribute<Book,	Publisher>	

publisher;

				public	static	volatile	SingularAttribute<Book,	Long>	id;

				public	static	volatile	SingularAttribute<Book,	String>	title;

				public	static	volatile	SingularAttribute<Book,	Date>	

publishingDate;

				public	static	volatile	SingularAttribute<Book,	Integer>	version;

				public	static	volatile	SetAttribute<Book,	Author>	authors;

}

As	 you	 can	 see,	 the	 generated	 class	Book_	 has	 a	 static	 attribute	 for	 each

attribute	of	the	Book	entity.	You	can	use	it	to	reference	the	entity	attribute	in	a

type-safe	way.	 I	 do	 that	 in	 the	 following	code	 snippet	 to	 reference	 the	title

and	publishingDate	attribute	of	the	Book	entity	in	a	CriteriaQuery.

//	Define	CriteriaQuery

CriteriaBuilder	cb	=	em.getCriteriaBuilder();

CriteriaQuery<Tuple>	cq	=	cb.createTupleQuery();

Root<Book>	root	=	cq.from(Book.class);

//	Use	metamodel	to	reference	attributes

cq.multiselect(root.get(Book_.title),

															root.get(Book_.publishingDate));

//	Execute	Query

List<Tuple>	results	=	em.createQuery(cq).getResultList();

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
JPAMetamodel	module	of	 the	 example	project.	 If	 you	haven’t	 already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
The	 folder	 of	 the	metamodel	 classes	 is	 not	 a	 source	 folder	 in	most	 IDEs	 or	 a
standard	maven	project.	You	can	use	a	maven	plugin	to	automatically	register	it
as	a	source	folder,	as	shown	in	How	to	automatically	add	Metamodel	classes	to
your	project.

http://www.hibernate-tips.com/download-examples

▪

▪

STORED	PROCEDURES

Stored	procedures	are	a	common	approach	to	 implement	 logic	 in	a

database.	But	 in	 the	past,	Hibernate	 and	 JPA	didn’t	 support	 them	well.

That	 changed	 with	 JPA	 2.1	 and	 the	 introduction	 of	 the

@NamedStoredProcedureQuery	 annotation	 and	 the

StoredProcedureQuery	 interface.	 You	 can	 now	 define	 named

queries	 or	 create	 ad-hoc	 queries	 at	 runtime	 to	 call	 stored	 procedures.	 I

show	you	how	to	do	that	in	these	Hibernate	tips:

How	to	create	an	ad-hoc	stored	procedure	call

How	to	call	a	stored	procedure	with	a	named	query

How	to	create	an	ad-hoc	stored	procedure	call

Problem
My	database	administrator	created	a	stored	procedure	 that	 I	need	 to	call	 in	my
business	code.	How	do	I	create	an	ad-hoc	stored	procedure	call	with	Hibernate?

Solution
Since	 JPA	 2.1,	 you	 can	 use	 the	createStoredProcedureQuery	method

of	the	EntityManager	to	create	an	ad-hoc	stored	procedure	call.

If	you’re	using	a	Hibernate	version	older	 than	4.3	 that	doesn’t	 implement	 JPA
2.1,	you	need	to	use	a	native	SQL	query	to	call	the	stored	procedure.

The	 following	 code	 snippet	 shows	 an	 example	 of	 an	 ad-hoc	 stored	 procedure
call.

//	define	the	stored	procedure

StoredProcedureQuery	query	=

				em.createStoredProcedureQuery("calculate");

query.registerStoredProcedureParameter("x",	Double.class,

																																							ParameterMode.IN);

query.registerStoredProcedureParameter("y",	Double.class,

																																							ParameterMode.IN);

query.registerStoredProcedureParameter("sum",	Double.class,

																																							ParameterMode.OUT);

//	set	input	parameter

query.setParameter("x",	1.23d);

query.setParameter("y",	4d);

//	call	the	stored	procedure	and	get	the	result

query.execute();

Double	sum	=	(Double)	query.getOutputParameterValue("sum");

You	can	split	an	ad-hoc	stored	procedure	call	into	three	parts.	You	first	need	to
define	the	stored	procedure	call,	set	the	input	parameters	in	the	second	part	and
then	call	the	stored	procedure	and	retrieve	its	return	value	in	the	final	part.

Let’s	start	with	the	definition	of	the	stored	procedure	call.	You	need	to	call	the
createStoredProcedureQuery	 method	 of	 the	EntityManager	 with

the	 name	 of	 the	 stored	 procedure	 you	want	 to	 execute.	 This	method	 returns	 a
StoredProcedureQuery	 interface	 that	 you	 can	 use	 to	 define	 a	 stored

procedure	call,	set	its	input	parameters	and	call	it.

In	this	example,	I	call	the	stored	procedure	calculate.	It’s	a	simple	procedure

that	expects	the	input	parameters	x	and	y	and	returns	the	sum	of	them.	I	call	the

registerStoredProcedureParameter	 method	 of	 the

StoredProcedureQuery	 for	 each	 of	 them	 and	 register	 them	 with	 their

name,	 type	 and	ParameterMode.	 The	ParameterMode	 specifies	 if	 the

parameter	 is	 used	 as	 an	 input	 (ParameterMode.IN),	 output

(ParameterMode.OUT),	input	and	output	(ParameterMode.INOUT)	or	as

a	result	set	cursor	(ParameterMode.REF_CURSOR).

That’s	 all	 you	 need	 to	 do	 to	 define	 the	 stored	 procedure	 call.	 The	 second	 and
third	 part	 of	 an	 ad-hoc	 stored	 procedure	 call	 is	 identical	 to	 the	 execution	 of	 a
@NamedStoredProcedureQuery.

I	 set	 the	 values	 for	 both	 input	 parameters	 by	 calling	 the	setParameter

method	 on	 the	StoredProcedureQuery	 interface	 for	 each	 of	 them.	 And

then	I	call	 the	execute	and	 the	getOutputParameterValue	methods	 to

execute	the	stored	procedure	and	to	read	the	return	value.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
StoredProcedureQuery	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

Learn	More
If	you	have	to	call	the	stored	procedure	multiple	times	in	your	business	logic	and
don’t	 need	 to	 adapt	 it	 based	 on	 user	 input,	 it	 might	 be	 better	 to	 use	 a
@NamedStoredProcedureQuery.	 Similar	 to	 a	 named	 JPQL	 query,	 it

allows	you	to	define	the	stored	procedure	call	via	annotations	and	instantiate	it
by	its	name.	I	explain	it	in	more	detail	in	How	to	call	a	stored	procedure	with	a
named	query.

http://www.hibernate-tips.com/download-examples

How	to	call	a	stored	procedure	with	a	named	query

Problem
My	database	 administrator	 created	 a	 stored	 procedure	 that	 I	 need	 to	 call	 from
multiple	places	in	my	Java	code.	What’s	the	best	way	to	do	that	with	Hibernate?

Solution
Before	JPA	2.0,	you	had	to	use	a	native	SQL	query	to	call	a	stored	procedure.	In
version	 2.1,	 JPA	 introduced	 an	 API	 and	 the
@NamedStoredProcedureQuery	 annotation	 to	 define	 stored	 procedure

calls.	The	annotation-based	approach	is	the	better	solution	if	you	have	to	call	the
stored	procedure	from	multiple	parts	of	your	business	logic	without	adapting	it
based	on	input	parameters.

The	 following	 code	 snippet	 shows	 an	 example	 of	 a
@NamedStoredProcedureQuery	definition.

@NamedStoredProcedureQuery(

				name	=	"calculate",

				procedureName	=	"calculate",

				parameters	=	{

								@StoredProcedureParameter(mode	=	ParameterMode.IN,

																																		type	=	Double.class,

																																		name	=	"x"),

								@StoredProcedureParameter(mode	=	ParameterMode.IN,

																																		type	=	Double.class,

																																		name	=	"y"),

								@StoredProcedureParameter(mode	=	ParameterMode.OUT,

																																		type	=	Double.class,

																																		name	=	"sum")

				}

)

This	query	calls	the	stored	procedure	calculate	with	the	input	parameters	x

and	y	and	the	output	parameter	sum.	As	you	can	see,	each	parameter	is	defined

by	a	@StoredProcedureParameter	annotation	that	defines	the	parameter

mode	and	its	name.	The	parameter	mode	specifies	if	the	parameter	is	used	as	an

input	 (ParameterMode.IN),	 output	 (ParameterMode.OUT),	 input	 and

output	 (ParameterMode.INOUT)	 or	 as	 a	 result	 set	 cursor

(ParameterMode.REF_CURSOR).

That’s	all	you	need	to	do	to	define	the	stored	procedure	call.	You	can	now	use	it
in	 your	 business	 code.	 You	 just	 have	 to	 provide	 its	 name	 to	 the
createNamedStoredProcedureQuery	method	of	the	EntityManager

to	instantiate	the	query,	set	the	input	parameters,	execute	it,	and	read	the	output
parameter.

//	Instantiated	NamedStoredProcedureQuery

StoredProcedureQuery	query	=

				this.em.createNamedStoredProcedureQuery("calculate");

//	Set	bind	parameter	values	and	execute	Query

query.setParameter("x",	1.23d);

query.setParameter("y",	4.56d);

query.execute();

//	Read	return	value

Double	sum	=	(Double)	query.getOutputParameterValue("sum");

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
StoredProcedureQuery	 module	 of	 the	 example	 project.	 If	 you	 haven’t

already	 done	 so,	 you	 can	 download	 it	 at	http://www.hibernate-
tips.com/download-examples.

http://www.hibernate-tips.com/download-examples

Learn	More
A	@NamedStoredProcedureQuery	is	easy	to	use,	but	you	can’t	adapt	it	at

runtime.	 If	 you	 need	 more	 flexibility,	 you	 should	 have	 a	 look	 at	 the
StoredProcedureQuery	API.	You	can	use	 it	 to	define	a	stored	procedure

call	 at	 runtime,	which	 requires	more	 code	but	 also	provides	more	 flexibility.	 I
explain	the	it	in	How	to	create	an	ad-hoc	stored	procedure	call.

▪

▪

CACHING

The	 general	 idea	 of	 caching	 is	 pretty	 simple:	You	 store	 often	 used

entities	or	query	results	in	the	memory	of	your	business	tier	instead	of	the

database.	If	done	correctly,	this	can	avoid	a	lot	of	database	requests	and

improve	the	performance	of	your	application.	The	Hibernate	tips	in	this

chapter	show	you	how	to	activate	and	use	Hibernate’s	second-level	and

query	cache:

How	to	store	an	entity	in	the	second-level	cache

How	to	use	the	query	cache	to	avoid	additional	queries

If	 you	 like	 to	 dive	 deeper	 into	 these	 topics,	 please	 take	 a	 look	 at	 my

Hibernate	Performance	Tuning	Online	Training.	 It	 gets	 into	 a	 lot	more

details	about	the	general	concept	of	Hibernate’s	different	caches	and	their

pitfalls.

http://www.thoughts-on-java.org/course-hibernate-performance-tuning

How	to	store	an	entity	in	the	second-level	cache

Problem
Several	 of	 my	 use	 cases	 read	 the	 same	 entities	 from	 the	 database	 without
changing	them.	How	do	I	cache	them	in	my	application	so	that	Hibernate	doesn’t
always	have	to	get	them	from	the	database?

Solution
You	 can	 use	 Hibernate’s	 session-independent	 second-level	 cache	 to	 cache
entities	that	are	used	by	multiple	Hibernate	Session.	The	cache	is	deactivated

by	default,	and	you	need	to	set	two	configuration	parameters	to	activate	it:

1.	 You	need	 to	define	 the	shared-cache-mode.	 It	 tells	Hibernate	how	to

select	entities	 for	 the	second-level	cache.	You	can	choose	between	ALL	 to

cache	all	entities,	NONE	to	don’t	cache	any	entities,	ENABLE_SELECTIVE

to	 select	 the	 entities	 that	 will	 be	 cached	 and	DISABLE_SELECTIVE	 to

select	 the	 entities	 that	will	 not	 be	 cached.	 I	 prefer	ENABLE_SELECTIVE

because	it	requires	me	to	explicitly	decide	which	entities	are	cached.

2.	 You	 need	 to	 specify	 the	 caching	 provider	 you	want	 to	 use	 by	 setting	 the
hibernate.cache.region.factory_class	property.

The	 following	 code	 snippet	 shows	parts	 of	 a	persistence.xml	 file	with	 a

second-level	 cache	 configuration.	 It	 uses	 the	shared_cache_mode

ENABLE_SELECTIVE	and	EhCache	as	the	caching	provider.

<persistence>

				<persistence-unit	name="my-persistence-unit">

								...

								<!--	enable	selective	2nd	level	cache	-->

								<shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>

								<properties>

												...

												<!--	configure	caching	-->

												<property	name="hibernate.cache.region.factory_class"

value="org.hibernate.cache.ehcache.EhCacheRegionFactory"/>

								</properties>

				</persistence-unit>

</persistence>

If	you	use	ENABLE_SELECTIVE	as	your	shared-cache-mode	you	need	to

annotate	the	entities	you	want	to	cache	with	JPA’s	@Cacheable	or	Hibernate’s

@Cache	annotation.

@Entity

@Cacheable

public	class	Author	{

				...

}

You	 can	 also	 use	 the	@Cacheable(false)	 annotation	 to	 exclude	 an	 entity

from	caching	if	you	use	shared_cache_mode	DISABLE_SELECTIVE.

That’s	all	you	need	to	do	to	activate	the	second-level	cache	for	your	application.
Hibernate	 now	 stores	 all	 cacheable	 entities	 you’ve	 used	 in	 the	 second-level
cache.	 When	 your	 next	 use	 case	 calls	 the	find	 method	 on	 the

EntityManager	or	when	Hibernate	needs	to	retrieve	an	entity	to	initialize	an

entity	association,	it	tries	to	get	it	from	the	second-level	cache	before	it	performs
a	database	query.

Hibernate	doesn’t	use	the	second-level	cache	with	a	JPQL	or	Criteria	query.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
2ndLevelCache	module	of	the	example	project.	If	you	haven’t	already	done

so,	you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
The	second-level	cache	stores	entities	and	no	query	results.	If	you	want	to	cache
the	result	of	a	query,	you	can	use	Hibernate’s	Query	Cache.	I	show	you	how	in
How	to	use	the	query	cache	to	avoid	additional	queries.

http://www.hibernate-tips.com/download-examples

How	to	use	the	query	cache	to	avoid	additional	queries

Problem
Hibernate	does	not	use	 the	 first-	 and	second-level	cache	 for	queries.	 Is	 there	a
way	to	cache	the	result	of	a	query?

Solution
Hibernate	also	supports	the	query	cache,	which	stores	query	results.

The	result	of	a	query	depends	on	the	executed	SQL	statement	and	the	used	parameter	values.
The	cache,	therefore,	stores	the	result	for	a	query	with	a	specific	set	of	parameters.	Make	sure
that	you	often	use	the	same	parameter	values	before	you	decide	to	cache	the	result	of	a	query.

If	you	 identify	a	query	 that	you	often	execute	with	 the	same	parameter	values,
you	need	 to	activate	 the	query	cache	 in	 the	persistence.xml	 file.	You	do

that	 by	 setting	 the	 parameter	hibernate.cache.use_query_cache	 to

true	and	defining	a	hibernate.cache.region.factory_class.

<persistence>

	 <persistence-unit	name="my-persistence-unit">

	 	 ...

	 	 <properties>

	 	 	 ...

	 	 	 <!--		configure	caching	-->

	 	 	 <property	

name="hibernate.cache.use_query_cache"

value="true"/>

	 	 	 <property	

name="hibernate.cache.region.factory_class"

value="org.hibernate.cache.ehcache.EhCacheRegionFactory"/>

	 	 </properties>

	 </persistence-unit>

</persistence>

You	also	need	to	activate	caching	for	the	query	whose	results	you	want	to	cache.
You	 can	 do	 that	 by	 calling	 the	setCacheable	 method	 of	 the	 Hibernate-

specific	Query	interface	using	the	parameter	true.

Session	s	=	(Session)	em.getDelegate();

Query	q	=	s.createQuery("SELECT	a	FROM	Author	a	WHERE	id	=	:id");

q.setParameter("id",	1L);

q.setCacheable(true);

Author	a	=	q.uniqueResult();

Hibernate	now	stores	the	result	of	this	query	in	the	query	cache.	When	your	next
use	 case	 executes	 this	 query,	 Hibernate	 checks	 if	 the	 query	 cache	 contains	 a
result	 for	 the	given	parameter	values.	 If	 the	cache	contains	 a	matching	 record,
Hibernate	gets	the	query	result	from	there.	Otherwise,	it	executes	the	query	and
store	its	result	in	the	cache.

Source	Code
You	 can	 find	 a	 project	with	 executable	 test	 cases	 for	 this	Hibernate	 tip	 in	 the
QueryCache	module	of	 the	example	project.	 If	you	haven’t	already	done	so,

you	can	download	it	at	http://www.hibernate-tips.com/download-examples.

Learn	More
The	query	cache	stores	query	results	and	no	entities.	If	you	want	to	cache	entities
that	you	often	use	in	your	business	code,	you	can	use	the	second-level	cache.	I
show	you	how	in	How	to	store	an	entity	in	the	second-level	cache.

http://www.hibernate-tips.com/download-examples

ACKNOWLEDGMENTS

I	 would	 like	 to	 thank	 all	 reviewers,	 and	 especially	 Frits	Walraven.	Writing	 a
book	is	just	the	first	step.	It	takes	a	lot	of	time,	effort,	and	technical	knowledge
to	get	from	the	first	version	to	the	final	book.	Thank	you	for	your	support	and	all
the	feedback	you	provided.

Thank	you	to	Steve	Ebersole,	who	immediately	agreed	to	write	the	foreword	and
provided	great	feedback	on	the	book.

I	 would	 also	 like	 to	 thank	 Michael	 Simons	 for	 helping	 me	 with	 the	How	 to
bootstrap	Hibernate	with	Spring	Boot	tip.

Thank	 you	 to	 all	 the	 readers	 of	 www.thoughts-on-java.org.	 Your	 support
convinced	 me	 to	 quit	 my	 day	 job	 and	 follow	 my	 passion	 for	 writing	 and
teaching.	Your	interest	and	feedback	on	the	Hibernate	Tips	series	and	this	book
kept	me	going	and	reasssured	me	that	I	was	doing	something	meaningful.

I	 also	 want	 to	 thank	 Nermina	Miller,	 who	 edited	 this	 book	 and	 fixed	 all	 my
spelling,	grammar,	and	punctuation	mistakes.

Thank	 you	 to	 Dan	 Allen,	 who	 helped	 me	 with	 Asciidoctor.	 Without	 your
incredible	support,	I	wouldn’t	have	been	able	to	finish	the	book	in	time.

Thank	you	to	Tom	Oberbichler,	who	guided	me	through	the	creation	process	of
this	 book	 and	 helped	 me	 to	 focus	 on	 the	 right	 tasks	 at	 the	 right	 time.	 Your
support	gave	me	 the	peace	of	mind	 that	 I	had	 the	most	 important	 things	under
control	even	when	it	felt	like	I	had	to	work	on	all	of	them	at	once.

And,	a	special	thank	you	goes	to	my	amazing	wife	Sandra,	who	encouraged	me
in	so	many	ways	over	the	years.	She’s	always	there	and	supports	me	in	any	way
she	can,	even	as	I	spend	nights	and	weekends	writing	books	or	recording	online
courses.	Without	you,	I	would	have	never	been	able	to	do	it	all.
Thanks	also	to	my	little	son,	Lars,	who	reminds	me	that	there	are	so	many	other
fantastic	things	in	life.
I	love	you	both!

Thorben

REVIEWERS

Special	 thanks	 to	my	technical	 reviewers	who	helped	me	immensely	with	 their
feedback.

Frits	Walraven

Frits	 has	 been	 a	 software	 engineer	 for	 about	 15	 years.	 He	 got	 his	 MSc	 in
Computer	Science	from	the	Technical	University	in	Twente,	Netherlands,	back
in	1996.	After	a	 few	years	of	coding	 in	C,	he	 jumped	 into	 the	big	Java	world.
Nowadays	 he	 is	 mostly	 involved	 with	 functional	 design	 but	 tries	 to	 keep	 his
coding	 alive	 through	 Oracle	 Certification.	 He	 currently	 holds	 the	 SCJP5,
SCWCD5,	 OCEEJB6,	 and	 OCEWSD6	 certificates	 and	 enjoys	 writing	 and
sharing	 his	 notes.	 He	 is	 the	 author	 of	 the	Enthuware	 Java	 Web	 Services
Developer	EE6	mock	exams.

Mark	Spritzler

Mark	Spritzler	is	a	former	JBoss	and	SpringSource	staff	member,	and	has	been
teaching	enterprise	software	for	more	than	25	years	as	a	software	developer.	He
has	 spent	 the	 last	 13	 years	 writing	 Hibernate/JPA	 applications	 on	 many
enterprise	applications.

Petri	Kainulainen

http://enthuware.com/index.php/mock-exams/oracle-certified-expert/oce-web-services-mock-questions

Petri	 Kainulainen	 is	 passionate	 about	 software	 development	 and	 continuous
improvement.	 He	 specialized	 in	 software	 development	 using	 the	 Spring
Framework	and	is	the	author	of	the	Test	With	Spring	online	course.

Sandra	Janssen

Sandra	 Janssen	 has	 studied	 technomathematics	 and	 worked	 several	 years	 at	 a
university	with	a	strong	focus	on	scientific	computing.	She	is	a	regular	reviewer
of	content	published	on	Thoughts	on	Java.	Together	with	Thorben	Janssen,	she
works	 on	 the	 strategic	 alignment	 of	 the	 Thoughts	 on	 Java	 platform	 and	 all
related	activities.

https://www.petrikainulainen.net/
https://www.testwithspring.com

THORBEN	JANSSEN

Thorben	Janssen	has	been	a	software	developer	and	architect	 for	more	 than	15
years.	More	 than	 a	 decade	 ago,	 he	 used	 one	 of	 the	 first	Hibernate	 releases	 to
implement	 the	 persistence	 layer	 of	 enterprise	 applications.	 Since	 then,	 he	 has
used	 the	 framework	 to	 implement	 applications	 of	 various	 sizes	 with	 complex
business	and	performance	requirements.

After	blogging	for	several	years	about	JPA	and	Hibernate,	he	decided	to	quit	his
day	 job	 in	October	2016	 to	 follow	his	 passion	 for	writing	 and	 teaching.	Since
then,	he	has	been	working	as	an	 independent	 trainer,	 author,	 and	consultant	 to
show	 software	 developers	 how	 to	 use	 Hibernate	 and	 JPA	 to	 avoid	 common
problems	and	implement	their	persistence	layer	with	ease.

	Hibernate Tips: More than 70 solutions to common Hibernate problems
	Foreword
	Preface
	What you get in this book
	How to get the example project
	Who this book is for

	Setting up Hibernate
	How to bootstrap Hibernate in a Java SE environment
	How to bootstrap Hibernate in a Java EE environment
	How to use Hibernate’s native bootstrapping API
	How to bootstrap Hibernate with Spring Boot
	How to access Hibernate APIs from JPA
	How to automatically add Metamodel classes to your project

	Basic Mappings
	How to define schema and table names
	How to map basic entity attributes to database columns
	How to map a util Date or Calendar to a database column
	How to map an enum to a database column
	How to map a simple primary key
	How to use an auto-incremented column to generate primary key values
	How to use a custom database sequence to generate primary key values
	How to use a database table to generate primary key values
	How to use a generated UUID as a primary key
	How to map a bidirectional many-to-one association
	How to map an unidirectional many-to-one association
	How to map an unidirectional one-to-many association
	How to map a bidirectional many-to-many association
	How to map an unidirectional many-to-many association
	How to map a bidirectional one-to-one association
	How to map an unidirectional one-to-one association

	Advanced Mappings
	How to map a view with Hibernate
	How to define a custom enum mapping
	How to map the Date and Time API with Hibernate 4.4
	How to map generated values
	How to calculate entity attributes with a @Formula
	How to cache preprocessed, non-persistent attributes
	How to automatically set an attribute before persisting it
	How to order the elements of a collection
	How to model a derived primary key with Hibernate
	How to model an association with additional attributes
	How to map an inheritance hierarchy to multiple tables
	How to map an inheritance hierarchy to one table

	Hibernate Specific Queries and Mappings
	How to join unassociated entities in a query
	How to map natural IDs
	How to load multiple entities by their primary key

	Java 8
	How to map an association to an Optional
	How to map classes of Java 8’s Date and Time API
	How to retrieve a query result as a Java 8 Stream

	Logging
	How to log SQL statements and their parameters
	How to count the executed queries in a Session
	How to use query comments to identify a query

	JPQL
	How to create a JPQL query at runtime
	How to create a named JPQL query
	How to select a POJO with a JPQL query
	How to select multiple scalar values with a JPQL query
	How to initialize lazy relationships within a JPQL query
	How to downcast entities in JPQL queries
	How to call a standard function in a JPQL query
	How to call a user-defined function in a JPQL query
	How to use pagination with JPQL
	How to define a timeout for a JPQL query
	How to delete multiple entities with one JPQL query
	How to update multiple entities with one JPQL query

	Native SQL Queries
	How to create a native SQL query at runtime
	How to create a named native SQL query
	How to map the result of a native SQL query to entities
	How to map the result of a native SQL query to a POJO

	Create queries programmatically with the Criteria API
	How to select entities with a CriteriaQuery
	How to select POJOs with a CriteriaQuery
	How to select multiple scalar values in a CriteriaQuery
	How to call a standard database function in a CriteriaQuery
	How to call a user-defined function in a CriteriaQuery
	How to update multiple entities with the Criteria API
	How to delete multiple entities with the Criteria API
	How to use pagination with a CriteriaQuery
	How to reference entity attributes in a type-safe way

	Stored Procedures
	How to create an ad-hoc stored procedure call
	How to call a stored procedure with a named query

	Caching
	How to store an entity in the second-level cache
	How to use the query cache to avoid additional queries

	Acknowledgments
	Reviewers
	Thorben Janssen

