Vlad Mihalcea

Java Persistence

Get the most out of your persistence layer

To my wife and kids

Contents

Preface ii
The database server and the connectivity layer iii
The application data accesslayer iii

The ORM framework iii
The native query builder framework iv
Video COoUTSeo o it \
Testimonials v

I JDBC and Database Essentials 1

1. PerformanceandScaling 2
11 Response time and throughput 2

1.2 Database connections boundaries L 4

1.3 Scalingupandscalingout 5
1.31 Master-Slave replication 6

1.3.2 Multi-Master replication 7

1.3.3 Sharding 8

2. JDBC Connection Managementouuiieeeeeeen... 12
21 DriverManager 13

22 DataSource. 15
2.21 Whyispoolingsomuchfaster? 18

2.3 Queuing theory capacity planning 20

2.4 Practical database connection provisioning 23
241 Areal-life connection pool monitoring example 24

2411 Concurrent connection request count metric 25

2412 Concurrent connection count metric 26

2413 Maximum poolsizemetric 27

2414 Connection acquisition time metric 27

2415 Retryattemptsmetric 28

2416 Overall connection acquisition time metric 28

2.4.17 Connection lease time metric 29

3. BatchUpdates 30
3.1 Batching Statements 30

3.2 Batching PreparedStatements 33

CONTENTS

6.

3.21 Choosing the right batchsize 35

3.22 Bulkprocessing oo e 36

3.3 Retrieving auto-generated keys 37
3.31 Sequencestotherescue................. 40
Statement Caching 43
41 Statementlifecycle. 43
411 Parser e 44

4.1.2 OPLIMIZET o e e e 44
4121 Execution planvisualization 45

4.1.3 EXECUtOr e 48

42 Caching performancegain. 48
4.3 Server-side statementcaching L. 49
4.3.1 Bind-sensitive executionplans 51

44 Client-side statement caching 55
ResultSet Fetching 59
5.1 ResultSetscrollability 60
5.2 ResultSetchangeability 62
5.3 ResultSetholdability 63
54 Fetchingsize. 63
5.5 ResultSetsize 66
551 TOOMANY TOWS . . . v e e e e e e 66
5,5.11 SQLIlimitclause 67

5512 JDBCMAXTOWS . . . vttt ittt 68

5513 Lessismore 70

552 Toomany COIUMNSttt 71
Transactions 72
6.1 AtOmICIty 73
6.2 CONSIStENCY o 75
6.3 Isolation 77
6.3.1 Concurrencycontrol 77
6.3.1.1 Two-phaselocking 77

6.3.1.2 Multi-Version Concurrency Control 81

6.3.2 Phenomena 84
6.3.21 Dirtywrite 85

6.322 Dirtyread 86

6.3.2.3 Non-repeatableread 87

6.3.24 Phantomread 88

6.3.25 Readskew 89

6.326 Writeskew 90

6.3.27 Lostupdate........... 91

6.3.3 Isolationlevels o 92
6.3.31 Read Uncommitted 93

6.3.3.2 Read Committed 94

CONTENTS

6.4
6.5

6.6

6.7

6.3.3.3 RepeatableRead............... 96
6.3.34 Serializable 97
Durability 99
Read-only transactions o oo .. 101
6.51 Read-only transactionrouting 103
Transactionboundaries. 104
6.6.1 Distributed transactions. oo oo L. 108
6.6.1.1 Two-phasecommit. 108
6.6.2 Declarative transactions oo .. 109
Application-level transactions 112
6.7.1 Pessimistic and optimistic locking 114
6.71.1 Pessimisticlocking L. 114
6.7.1.2 Optimisticlocking 114

II JPA and Hibernate 117

7. Why JPA and Hibernatematter 118
71 Theimpedance mismatch 119

7.2 JPAvs.Hibernate 120

73 Schemaownership. 122

74 Entity state transitions 124

7.5 Write-based optimizations 126

76 Read-based optimizations 129

TT WIADUP .« . v v o e e e e e e e e e e 132

8. Connection Management and Monitoring 133
8.1 JPAconnection management 133

8.2 Hibernate connection providers 134
8.2.1 DriverManagerConnectionProvider 135

8.2.2 C3POConnectionProvider i 135

8.2.3 HikariCPConnectionProvider 136

8.2.4 DatasourceConnectionProvider, 137

8.2.5 Connectionrelease modes i 137

8.3 Monitoring connections 139
8.3.1 Hibernate statiStics o i e 141

8.3.11 Customizingstatistics 143

84 Statementlogging 146
84.1 Statement formatting 147

8.4.2 Statement-level comments 148

8.4.3 Logging parameters 149

8.4.3.1 DataSource-proxXy 149

8432 POSPY . .. 150

9. Mapping Types and Identifiers 152
91 TYPES .« v o 154

CONTENTS

9.11 Primitive types 154

912 Strin@tyPes e 154

913 Dateand Timetypes 155

914 NUMETICLYPES . . . o vttt e e e e e 156

915 Binarytypes 156

916 UUIDEYPES . . oo o e e e e e e e e 156

9.1.7 Othertypes o i i 157

9.1.8 CUSLOMUEYPES . . . o e e 157

9.2 Identifiers 163
9.21 UUIDidentifiers 164
9.211 Theassignedgenerator 166

9.22 Thelegacy UUID generatoro iii ... 167
9.2.21 Thenewer UUID generator 167

9.23 Numericalidentifiers. o L 168
9.23.1 Identity generator 168

9.2.3.2 Sequence generator 170

9.23.3 Tablegenerator 1m

9.234 Optimizers 173

9.2341 Thehi/loalgorithm 174

9.2.3.4.2 The default sequence identifier generator 176

9.2.3.4.3 The default table identifier generator 177

9.2.34.4 The pooled optimizer 178

9.2.3.4.5 The pooled-lo optimizer 180

9.23.5 Optimizergain. 181

9.2.3.5.1 Sequence generator performance gain. 181

9.2.3.5.2 Table generator performancegain 182

9.2.3.6 Identifier generator performance 182

10. Relationships 185
10.1 Relationship types 186
10.2 @ManyToOne 188
10.3 @OneToMany 189
10.3.1 Bidirectional @OneToManyo 190
10.3.2 Unidirectional @OneToMany 195
10.3.3 Ordered unidirectional @OneToMany 197
10.34 @OneToMany with @JoinColumn 199
10.3.5 Unidirectional @OneToMany Set 201

104 @ElementCollection 204
1041 @ElementCollection List 204
104.2 @ElementCollectionSet 206

10.5 @OneToOne 207
10.5.1 Unidirectional @OneToOne 207
10.5.2 Bidirectional @OneToOne 210

10.6 @ManyToMany 212
10.6.1 Unidirectional @ManyToMany List 212

10.6.2 Unidirectional @ManyToMany Set 214

CONTENTS

11.

12.

13.

14.

10.6.3 Bidirectional @ManyToManyt 215
10.6.4 The @OneToMany alternative 216

10.7 Hypersistence Optimizer. it 222
10.71 Testimonials 222
Inheritance 223
111 Singletable. 227
1111 Data integrity constraints o 231

11.2 Jointable 234
11.3 Table-per-class 238
114 Mapped superclass. 242
Flushing 247
121 Flushmodes 248
12.2 Events and the actionqueue 250
12.21 Flushoperationorder 251

12.3 Dirty Checking 253
12.3.1 The default dirty checking mechanism 253
12.3.11 Controlling the Persistence Contextsize 254

12.3.2 Bytecode enhancement, 256
Batching 260
13.1 Batchinginsertstatements, 262
13.2 Batching update statements. 263
13.3 Batching delete statements 266
Fetching 27
141 DTODProjection e 272
1411 DTO projection pagination 273

14.1.2 Native query DTO projection. 275

142 Queryfetchsize 284
14.3 Fetchingentities 285
14.3.1 Directfetching 285
14.3.11 Fetchinga Proxyreference...................... 286

14.3.1.2 Natural identifier fetching 287

1432 Queryfetching 289
14.3.3 Fetching associations 291
14.3.3.1 FetchType EAGER. 292

14.3.3.2 FetchType.LAZY i 296

14.3.3.21 The N+lqueryproblem 298

14.3.3.2.2 How to catch N+1 query problems during testing 300

14.3.3.2.3 LazylnitializationException 303

14.3.3.2.4 The Open Session in View Anti-Pattern 304

14.3.3.2.5 Temporary Session Lazy Loading Anti-Pattern 307

14.3.3.3 Associations and pagination 308

14.3.4 Attribute lazy fetching 310

CONTENTS

15.

14.3.5 Fetching subentities

14.4 Entity reference deduplication L.
145 Queryplancache.
Caching
151 Cachingflavors
15.2 Cache synchronization strategies
1521 Cache-aside
15.2.2 Read-through
15.2.3 Write-invalidate L
15.24 Write-through
15.2.5 Write-behind o

15.3 Databasecaching.
15.4 Application-level caching
15.4.1 Entity aggregatest

15.4.2 Distributed key-value stores
15.4.3 Cache synchronization patterns.
15.4.4 Synchronousupdates
15.4.5 Asynchronousupdates
15.4.5.1 Changedatacapture...............

15.5 Second-levelcaching
15.5.1 Enabling the second-levelcache

15.5.2 Entity cache loading flow
15.5.3 Entitycacheentry.
15.5.3.1 Entity reference cachestore.

15.54 Collectioncacheentry
15.5.5 Querycacheentry
15.5.6 Cache concurrency strategies
15.5.6.1 READ_ONLY e

15.5.6.1.1 Inserting READ_ONLY cache entries

15.5.6.1.2 Updating READ_ONLY cacheentries

15.5.6.1.3 Deleting READ_ONLY cache entries

15.5.6.2 NONSTRICT_READ_WRITE

15.5.6.2.1 Inserting NONSTRICT_READ_WRITE cache entries
15.5.6.2.2 Updating NONSTRICT_READ_WRITE cache entries
15.5.6.2.3 Risk of inconsistencies
15.5.6.2.4 Deleting NONSTRICT_READ_WRITE cache entries
15.5.6.3 READ_WRITE i
15.5.6.3.1 Inserting READ_WRITE cache entries
15.5.6.3.2 Updating READ_WRITE cache entries
15.5.6.3.3 Deleting READ_WRITE cache entries
15.5.6.3.4 Soft locking concurrency control
15.5.6.4 TRANSACTIONAL.
15.5.6.4.1 XA_Strictmode
155642 XAmode
15.5.6.4.3 Inserting TRANSACTIONAL cache entries.

CONTENTS

15.5.6.4.4 Updating TRANSACTIONAL cache entries 368

15.5.6.4.5 Deleting TRANSACTIONAL cache entries 370

15.5.7 Querycachestrategy 3N
15.5.71 Tablespace query cache invalidation 373

15.5.7.2 Native SQL statement query cache invalidation 375

16. Concurrency Control 379
16.1 Hibernate optimistic locking 379
16.1.1 The implicit optimistic locking mechanism. 379
16.1.1.1 Resolving optimistic locking conflicts 382

16.1.1.2 Splittingentities 384

16.1.1.3 Versionless optimistic locking 386

16.1.1.3.1 OptimisticLockType.DIRTY update caveat 389

16.2 The explicit locking mechanism 392
16.2.1 PESSIMISTIC_READ and PESSIMISTIC_WRITE 393
16.2.11 Lockscope 396

16.2.1.2 Locktimeout............ 401

16.2.2 LockModeType.OPTIMISTIC e 409
16.2.2.1 Inconsistencyrisk oo, 411

16.2.3 LockModeType.OPTIMISTIC_FORCE_INCREMENT 412
16.2.4 LockModeType . PESSIMISTIC_FORCE_INCREMENT 416
IIT JOOQ 422
17. Why jJOOQ matters 423
171 HowjOOQWOTKS o o i 423
172 DML statements 423
173 Java-basedschema........ 425
174 UpSert 427
1741 Oracle 428

174.2 SQL Server i e 429

1743 PostgreSQL 429

1744 MySQL 430

175 Batchupdates 430
17.6 Inlining bind parameters 431
177 Complex QUETIES i 432
17.8 Stored procedures and functions 435
179 Streaming 437

1710 Keyset pagination 441

CONTENTS i

Publisher:

Vlad Mihalcea

Jupiter 9/27

900492 Cluj-Napoca

Romania

mihalcea.vlad@gmail.com

Copyright © 2015 - 2018 Vlad Mihalcea

All rights reserved. No part of this publication may be reproduced, stored, or transmitted in
any form or by any means — electronic, mechanical, photocopying, recording, or otherwise —
without the prior consent of the publisher.

Many of the names used by manufacturers and sellers to distinguish their products are
trademarked. Wherever such designations appear in this book, and we were aware of a
trademark claim, the names have been printed in all caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors and omissions, or for any damage resulting from
the use of the information contained herein. The book solely reflects the author’s views. This
book was not financially supported by any relational database system vendors mentioned in
this work, and no database vendor has verified the content.

Cover design:
Dan Mihalcea danmihalcea@gmail.com
Cover photo:

Carlos ZGZ! - CCO0 1.02

Thttps:/ /www.flickr.com /photos /carloszgz /19980799311 /
Zhttps:/ /creativecommons.org /publicdomain /zero /1.0 /

mailto:mihalcea.vlad@gmail.com
mailto:danmihalcea@gmail.com
https://www.flickr.com/photos/carloszgz/19980799311/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.flickr.com/photos/carloszgz/19980799311/
https://creativecommons.org/publicdomain/zero/1.0/

Preface

In an enterprise system, a properly designed database access layer can have a great impact
on the overall application performance. According to Appdynamics?

More than half of application performance bottlenecks originate in the database

Data is spread across various structures (table rows, index nodes), and database records can
be read and written by multiple concurrent users. From a concurrency point of view, this is
a very challenging task, and, to get the most out of a persistence layer, the data access logic
must resonate with the underlying database system.

Hibernate specific features

JPA

Type-safe dynamic queries (jJOOQ) | Object-relational structural patterns

JDBC

DB specific SQL enhancement DB specific concurrency control

SQL Standard Transactions / ACID

Figure L1: Data access skill stack

A typical RDBMS (Relational Database Management System) data access layer requires
mastering various technologies, and the overall enterprise solution is only as strong as the
team’s weakest skills. Before advancing to higher abstraction layers such as ORM (Object-
Relational Mapping) frameworks, it is better to conquer the lower layers first.

3http:/ /www.appdynamics.com /solutions /database-monitoring /

http://www.appdynamics.com/solutions/database-monitoring/
http://www.appdynamics.com/solutions/database-monitoring/

Preface iii

The database server and the connectivity layer

The database manual is not only meant for database administrators. Interacting with a
database, without knowing how it works, is like driving a racing car without taking any driving
lesson. Getting familiar with the SQL standard and the database-specific features can make
the difference between a high-performance application and one that barely crawls.

The fear of database portability can lead to avoiding highly effective features just because
they are not interchangeable across various database systems. In reality, it is more common
to end up with a sluggish database layer than having to port an already running system to a
new database solution.

All data access frameworks rely on JDBC (Java Database Connectivity) API for communicating
with a database server. JDBC offers many performance optimization techniques, aiming to
reduce transaction response time and accommodate more traffic.

The first part of the book is therefore dedicated to JDBC and database essentials, and it covers
topics such as database connection management, statement batching, result set fetching, and
database transactions.

The application data access layer

There are data access patterns that have proven their effectiveness in many enterprise
application scenarios. Martin Fowler’s Patterns of Enterprise Application Architecture? is a
must read for every enterprise application developer. Beside the object-relational mapping
pattern, most ORM frameworks also employ techniques such as Unit of Work, Identity Map,
Lazy Loading, Embedded Value, Entity Inheritance or Optimistic and Pessimistic Locking.

The ORM framework

ORM tools can boost application development speed, but the learning curve is undoubtedly
steep. The only way to address the inherent complexity of bridging relational data with the
application domain model is to fully understand the ORM framework in use.

Sometimes even the reference documentation might not be enough, and getting familiar with
the source code is inevitable when facing performance related problems. JPA (Java Persistence
API) excels in writing data because all DML (Data Manipulation Language) statements are
automatically updated whenever the persistence model changes, therefore speeding up the
iterative development process.

The second part of this book describes various Hibernate-specific optimization techniques
like identifier generators, effective entity fetching, and state transitions, application-level
transactions, and entity caching.

“4http:/ /www.amazon.com/Patterns- Enterprise-Application- Architecture-Martin /dp /0321127420

http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420

Preface iv

The native query builder framework

JPA and Hibernate were never meant to substitute SQL®, and native queries are unavoidable
in any non-trivial enterprise application. While JPA makes it possible to abstract DML
statements and common entity retrieval queries, when it comes to reading and processing
data, nothing can beat native SQL.

JPQL (Java Persistence Querying Language) abstracts the common SQL syntax that is sup-
ported by most relational databases. Because of this, JPQL cannot take advantage of Window
Functions, Common Table Expressions, Derived tables or PIVOT.

As opposed to JPA, jOOQ (Java Object Oriented Query)® offers a type-safe API, which
embraces any database-specific querying feature offered by the underlying database system.
Just like Criteria API protects against SQL injection attacks when generating entity queries
dynamically, jOOQ offers the same safety guarantee when building native SQL statements.

For this reason, the third part of the book is about advanced querying techniques with jOOQ.

About database performance benchmarks

Throughout this book, there are benchmarks aimed to demonstrate the relative gain of a
certain performance optimization. The benchmarks results are always dependent on the
underlying hardware, operating system and database server configuration, database size and
concurrency patterns. For this reason, the absolute values are not as important as the relative
optimization gain. In reality, the most relevant benchmark results are the ones against the
actual production system.

To prevent the reader from comparing one database against another and drawing a wrong
conclusion based on some use case specific benchmarks, the database names are obfuscated
as DB_A, DB_B, DB_C, and DB_D.

All the source code, for every example that was used in this book, is available on GitHub®.

Ahttps:/ /github.com /vladmihalcea /high-performance-java-persistence

5https://plus.google,com/+GavinKing/posts/LGJUlNorAvY
Bhttp:/ /www.jooq.org/

https://plus.google.com/+GavinKing/posts/LGJU1NorAvY
http://www.jooq.org/
https://github.com/vladmihalcea/high-performance-java-persistence
https://github.com/vladmihalcea/high-performance-java-persistence
https://plus.google.com/+GavinKing/posts/LGJU1NorAvY
http://www.jooq.org/

Preface \Y%

Video Course

Because you purchased this book, you have a 258 discount for my High-Performance Java
Persistence video course’.

Testimonials

“I am very satisfied with the High-Performance Java Persistence Mach 2 video course, the
information it contains is immediately applicable to any Hibernate/JPA project you are
currently working on.

The video/audio quality makes the content engaging and the presentations have the right
timing not to be overwhelming or too short.

It makes for a great supplement of the book because you can explore the topics more quickly
and read the book if you need more detail on any area.

Finally, I found the usage of tests and the accompanying GitHub project a killer feature as it
illustrates the concepts crystal clear in a reproducible fashion and allows you to experiment
with them on your own.”

— José Luis Noriega

“I found the High-Performance Java Persistence video course to be a comprehensive training
and an excellent addition to the ebook.

It is an effective way to get to the next stage of JPA knowledge”

— Zenko Turek

“Thanks a ton for the video series, Vlad Mihalcea.

Not only this video course equips you to undertake day-to-day work, but it provides under-
standing and compliments you with reasons of what JPA means.”

— Amitabh Mandal

"https:/ /courses.vladmihalcea.com /p /high-performance-java- persistence-mach-2-online?coupon_ code=MACH250FF

https://courses.vladmihalcea.com/p/high-performance-java-persistence-mach-2-online?coupon_code=MACH25OFF
https://courses.vladmihalcea.com/p/high-performance-java-persistence-mach-2-online?coupon_code=MACH25OFF
https://courses.vladmihalcea.com/p/high-performance-java-persistence-mach-2-online?coupon_code=MACH25OFF

Preface

vi

“With High-Performance Java Persistence Mach 1, Vlad takes us on a wonderful journey into
the world of Java and databases.

With videos, slides and a huge repository?, Vlad guides us through the pitfalls of the different
technologies and gives us lots of tips and tricks on our way that you would not find elsewhere.

From a software developer’s perspective, I highly recommend High-Performance Java Per-
sistence Mach 1. And best of all: the journey continues with Mach 27

— Jean-Claude Brantschen
Ahttps:/ /github.com/vladmihalcea /high-performance-java-persistence

https://github.com/vladmihalcea/high-performance-java-persistence
https://github.com/vladmihalcea/high-performance-java-persistence

| JDBC and Database Essentials

1. Performance and Scaling

An enterprise application needs to store and retrieve data as fast as possible. In application
performance management, the two most important metrics are response time and through-
put.

The lower the response time, the more responsive an application becomes. Response time
is, therefore, the measure of performance. Scaling is about maintaining low response times
while increasing system load, so throughput is the measure of scalability.

1.1 Response time and throughput

Because this book is focused on high-performance data access, the boundaries of the system
under test are located at the transaction manager level. The transaction response time is
measured as the time it takes to complete a transaction, and so it encompasses the following
time segments:

the database connection acquisition time

the time it takes to send all database statements over the wire

the execution time for all incoming statements

the time it takes for sending the result sets back to the database client

the time the transaction is idle due to application-level computations prior to releasing
the database connection.

T= tacq + t'r‘eq + tezec t tres + tidie

Throughput is defined as the rate of completing incoming load. In a database context,
throughput can be calculated as the number of transactions executed within a given time
interval.

D transaction count

time

From this definition, we can conclude that by lowering the time it takes to execute a
transaction, the system can accommodate more requests.

Testing against a single database connection, the measured throughput becomes the baseline
for further concurrency-based improvements.

Performance and Scaling 3

Ideally, if the system were scaling linearly, adding more database connections would yield a
proportional throughput increase. Due to contention on database resources and the cost of
maintaining coherency across multiple concurrent database sessions, the relative throughput
gain follows a curve instead of a straight line.

USL (Universal Scalability Law)! can approximate the maximum relative throughput (system
capacity) in relation to the number of load generators (database connections).

7 N
S 14+a(N—-1)+BN(N-1)

C (N)

* C - the relative throughput gain for the given concurrency level

* o - the contention coefficient (the serializable portion of the data processing routine)

* 3 - the coherency coefficient (the cost of maintaining consistency across all concurrent
database sessions).

When the coherency coefficient is zero, USL overlaps with Amdahl's Law?. The contention
has the effect of leveling up scalability. On the other hand, coherency is responsible for the
inflection point in the scalability curve, and its effect becomes more significant as the number
of concurrent sessions increases.

The following graph depicts the relative throughput gain when the USL coefficients («, j)
are set to the following values (0.1, 0.0001). The x-axis represents the number of concurrent
sessions (N), and the y-axis shows the relative capacity gain (C).

Amdahl's Law vs USL

' ' ‘ ' ' Amdahl(x)'
USL(x)
Cmax

\

1 1 1 1 1 1
0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00
N

Figure 1.1: Universal Scalability Law

33.56

C(N)

The number of load generators (database connections), for which the system hits its maxi-
mum capacity, depends on the USL coefficients solely.

Thttp:/ /www.perfdynamics.com /Manifesto /USLscalability.html
Zhttp:/ /en.wikipedia.org /wiki /Amdahl%27s_law

http://www.perfdynamics.com/Manifesto/USLscalability.html
http://en.wikipedia.org/wiki/Amdahl's_law
http://www.perfdynamics.com/Manifesto/USLscalability.html
http://en.wikipedia.org/wiki/Amdahl's_law

Performance and Scaling 4

(1-a)
B

Nmazx =

The resulting capacity gain is relative to the minimum throughput, so the absolute system
capacity is obtained as follows:

Xmazx = X (1) x C(Nmazx)

1.2 Database connections boundaries

Every connection requires a TCP socket from the client (application) to the server (database).

The total number of connections offered by a database server depends on the underlying
hardware resources, and finding how many connections a server can handle is possible
through measurements and proven scalability models.

SQL Server 2016% and MySQL 5.7° use thread-based connection handling.
PostgreSQL 9.5¢ uses one operating system process for each individual connection.

On Windows systems, Oracle uses threads, while on Linux, it uses process-based connec-
tions. Oracle 12¢? comes with a thread-based connection model for Linux systems too.

Ahttps://msdn.microsoft.com/en-us/library /ms190219.aspx
bhttps:/ /dev.mysql.com/doc/refman /5.7 /en /connection-threads.html
Chttp:/ /www.postgresql.org/docs/current/static /connect-estab.html
dhttp://docs.oracle.com /database /121/CNCPT /process.htm

A look into database system internals reveals the tight dependency on CPU, Memory, and
Disk resources. Because 1/0 operations are costly, the database uses a buffer pool to map
into memory the underlying data and index pages. Changes are first applied in memory and
flushed to disk in batches to achieve better write performance.

Evenif all indexes are entirely cached in memory, disk access might still occur if the requested
data blocks are not cached into the memory buffer pool. Not just queries may generate /0
traffic, but the transaction and the redo logs require flushing in-memory data structures
periodically so that durability is not compromised.

To provide data integrity, any relational database system must use exclusive locks to pro-
tect data blocks (rows and indexes) from being updated concurrently. This is true even if
the database system uses MVCC (Multi-Version Concurrency Control) because otherwise
atomicity would be compromised. This topic is going to be discussed in greater detail in the
Transactions chapter.

https://msdn.microsoft.com/en-us/library/ms190219.aspx
https://dev.mysql.com/doc/refman/5.7/en/connection-threads.html
http://www.postgresql.org/docs/current/static/connect-estab.html
http://docs.oracle.com/database/121/CNCPT/process.htm
https://msdn.microsoft.com/en-us/library/ms190219.aspx
https://dev.mysql.com/doc/refman/5.7/en/connection-threads.html
http://www.postgresql.org/docs/current/static/connect-estab.html
http://docs.oracle.com/database/121/CNCPT/process.htm

Performance and Scaling 5

This means that high-throughput database applications experience contention on CPU,
Memory, Disk, and Locks. When all the database server resources are in use, adding more
workload only increases contention, therefore lowering throughput.

Resources might get saturated due to improper system configuration, so the first step to
improving a system throughput is to tune it according to the current data access patterns.

Lowering response time not only makes the application more responsive, but it can
also increase throughput.

However, response time alone is not sufficient in a highly concurrent environment.
To maintain a fixed upper bound response time, the system capacity must increase
relative to the incoming request throughput. Adding more resources can improve
scalability up to a certain point, beyond which the capacity gain starts dropping.

At the Velocity conference®, both Google Search and Microsoft Bing teams have concluded
that higher response times can escalate and even impact the business metrics.

Capacity planning is a feedback-driven mechanism, and it requires constant application
monitoring, and so, any optimization must be reinforced by application performance metrics.

Ahttp:/ /radar.oreilly.com /2009 /06 /bing-and-google-agree-slow-pag.html

1.3 Scaling up and scaling out

Scaling is the effect of increasing capacity by adding more resources. Scaling vertically
(scaling up) means adding resources to a single machine. Increasing the number of available
machines is called horizontal scaling (scaling out).

Traditionally, adding more hardware resources to a database server has been the preferred
way of increasing database capacity. Relational databases have emerged in the late seventies,
and, for two and a half decades, the database vendors took advantage of the hardware
advancements following the trends in Moore’s Law.

Distributed systems are much more complex to manage than centralized ones, and that is why
horizontal scaling is more challenging than scaling vertically. On the other hand, for the same
price of a dedicated high-performance server, one could buy multiple commodity machines
whose sum of available resources (CPU, Memory, Disk Storage) is greater than of the single
dedicated server. When deciding which scaling method is better suited for a given enterprise
system, one must take into account both the price (hardware and licenses) and the inherent
developing and operational costs.

http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html

Performance and Scaling 6

Being built on top of many open source projects (e.g. PHP, MySQL), Facebook® uses a
horizontal scaling architecture to accommodate its massive amounts of traffic.

StackOverflow* is the best example of a vertical scaling architecture. In one of his blog posts®,
Jeff Atwood explained that the price of Windows and SQL Server licenses was one of the
reasons for not choosing a horizontal scaling approach.

No matter how powerful it might be, one dedicated server is still a single point of failure,
and throughput drops to zero if the system is no longer available. For this reason, database
replication is not optional in many enterprise systems.

1.3.1 Master-Slave replication

For enterprise systems where the read /write ratio is high, a Master-Slave replication scheme
is suitable for increasing availability.

Data Import
Web Node DB Slave .
K -
e b
e 'F read-only—> } Ii,;j
) Load § /Y. TN i read-lwrite
Balancer Wel_) Node read-only rephcahon\ v
XN read-write }{:i
— I
/
. DB Master
read-only replication
g _
E i read-only—>%&
[Ei & J<—read-only _
Web Node DB Slave .

Email Sender
Figure 1.2: Master-Slave replication

The Master is the system of record and the only node accepting writes. All changes recorded
by the Master node are replayed onto Slaves as well. A binary replication uses the Master node
WAL (Write Ahead Log) while a statement-based replication replays on the Slave machines
the exact statements executed on Master.

Asynchronous replication is very common, especially when there are more Slave nodes to
update.

3https:/ /www.facebook.com /note.php?note_id=409881258919
4http:/ /stackexchange.com /performance
Shttp:/ /blog.codinghorror.com /scaling-up-vs-scaling-out-hidden-costs /

https://www.facebook.com/note.php?note_id=409881258919
http://stackexchange.com/performance
http://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/
https://www.facebook.com/note.php?note_id=409881258919
http://stackexchange.com/performance
http://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/

Performance and Scaling 7

The Slave nodes are eventual consistent as they might lag behind the Master. In case the
Master node crashes, a cluster-wide voting process must elect the new Master (usually the
node with the most recent update record) from the list of all available Slaves.

The asynchronous replication topology is also referred as warm standby because the election
process does not happen instantaneously.

Most database systems allow one synchronous Slave node, at the price of increasing trans-
action response time (the Master has to block waiting for the synchronous Slave node to
acknowledge the update). In case of Master node failure, the automatic failover mechanism
can promote the synchronous Slave node to become the new Master.

Having one synchronous Slave allows the system to ensure data consistency in case of Master
node failures since the synchronous Slave is an exact copy of the Master. The synchronous
Master-Slave replication is also called a hot standby topology because the synchronous Slave
is readily available for replacing the Master node.

When only asynchronous Slave nodes are available, the newly elected Slave node might
lag behind the failed Master, in which case consistency and durability are traded for lower
latencies and higher throughput.

Aside from eliminating the single point of failure, database replication can also increase
transaction throughput without affecting response time. In a Master-Slave topology, the
Slave nodes can accept read-only transactions, therefore routing read traffic away from the
Master node.

The Slave nodes increase the available read-only connections and reduce Master node
resource contention, which, in turn, can also lower read-write transaction response time. If
the Master node can no longer keep up with the ever-increasing read-write traffic, a Multi-
Master replication might be a better alternative.

1.3.2 Multi-Master replication

In a Multi-Master replication scheme, all nodes are equal and can accept both read-only
and read-write transactions. Splitting the load among multiple nodes can only increase
transaction throughput and reduce response time as well.

However, because distributed systems are all about trade-offs, ensuring data consistency is
challenging in a Multi-Master replication scheme because there is no longer a single source of
truth. The same data can be modified concurrently on separate nodes, so there is a possibility
of conflicting updates. The replication scheme can either avoid conflicts or it can detect them
and apply an automatic conflict resolution algorithm.

To avoid conflicts, the two-phase commit protocol can be used to enlist all participating
nodes in one distributed transaction. This design allows all nodes to be in sync at all time,
at the cost of increasing transaction response time (by slowing down write operations).

Performance and Scaling 8

Data Import

Web Node DB Master

read-write

read-write —>ll ‘1
— Load / ——

Balancer read-write replication

J—> sammam read-write | >0 1{

replication

. DB Master
read-write ¢ replication

DB Master

Email Sender
Figure 1.3: Multi-Master replication

If nodes are separated by a WAN (Wide Area Network), synchronization latencies may increase
dramatically. If one node is no longer reachable, the synchronization will fail, and the
transaction will roll back on all Masters.

Although avoiding conflicts is better from a data consistency perspective, synchronous
replication might incur high transaction response times. On the other hand, at the price of
having to resolve update conflicts, asynchronous replication can provide better throughput,

The asynchronous Multi-Master replication requires a conflict detection and an automatic
conflict resolution algorithm. When a conflict is detected, the automatic resolution tries to
merge the two conflicting branches, and, in case it fails, manual intervention is required.

1.3.3 Sharding

When data size grows beyond the overall capacity of a replicated multi-node environment,
splitting data becomes unavoidable. Sharding means distributing data across multiple nodes,
so each instance contains only a subset of the overall data.

Traditionally, relational databases have offered horizontal partitioning to distribute data
across multiple tables within the same database server. As opposed to horizontal partitioning,
sharding requires a distributed system topology so that data is spread across multiple
machines.

Each shard must be self-contained because a user transaction can only use data from within
a single shard. Joining across shards is usually prohibited because the cost of distributed
locking and the networking overhead would lead to long transaction response times.

By reducing data size per node, indexes also require less space, and they can better fit into
main memory. With less data to query, the transaction response time can also get shorter
too.

Performance and Scaling

The typical sharding topology includes, at least, two separate data centers.

Load
Balancer

Load

Balancer

NonhAnwﬁcaShamt
Web Node DB Slave User
read-only —> 1_[John] US
v 4 |[Carlos| Cuba
— replication 7 |Mary| US
read-only DB Master
g
| Count
read-write4>{ ;{ v
|-
A us
read-only replication Cuba
\l - — Flrf\r:ce
read-only—>m 4 Y,
- Spain
DB Slave
asynchronous replication
“"'““”””"'“'”””""””””""”””Ehfbbéuéhéfd
Web Node DB Slave
: - Country
n
read-only—>wm Us
m
™ Cuba
lication
read-only rep v France
\\\\\ - Italy
. L | :
read-write —— > 7‘1 Spain
"
/
- DB Mast User
read-only replication aster
. ‘fi/ 2 | Jean [France|
read-only—>= { 5 Aldo | ltaly
DB Slave 8 Juan | Spain

Figure 1.4: Sharding

Each data center can serve a dedicated geographical region, so the load is balanced across
geographical areas. Not all tables need to be partitioned across shards, smaller size ones
being duplicated on each partition. To keep the shards in sync, an asynchronous replication
mechanism can be employed.

In the previous diagram, the country table is mirrored from one data center to the other,
and partitioning happens on the user table only. To eliminate the need for inter-shard data
processing, each user along with all user-related data are contained in one data center only.

In the quest for increasing system capacity, sharding is usually a last resort strategy, employed
after exhausting all other available options, such as:

* optimizing the data layer to deliver lower transaction response times
* scaling each replicated node to a cost-effective configuration
 adding more replicated nodes until synchronization latencies start dropping below an

acceptable threshold.

Performance and Scaling

10

MySQL cluster auto-sharding

MySQL Cluster® offers automatic sharding, so data is evenly distributed (using a primary key
hashing function) over multiple commodity hardware machines. Every node accepts both
read and write transactions and, just like Multi-Master replication, conflicts are automatically
discovered and resolved.

~ Auto-Sharding Database Cluster

User
1 John | US
Web Node DB Shard 4 |carlos| Cuba
7 Mary | US

read-write—>= }
a

N Load — - \
Balancer ~~ Web Node T replication DB Shard e
: . FeP”CIatiO” \t.) 3 |[Maria| ltaly
: read-write > { 6 | Ada [France| :
i /Yl 9 Roy | UK
replication
I: read-write—>= j' User
i -

) 2 | Jean |[France
DB Shard
Web Node 5 | Aldo | ltaly

8 | Juan | Spain

Figure 1.5: Auto-sharding

The auto-sharding topology is similar to the Multi-Master replication architecture as it can
increase throughput by distributing incoming load to multiple machines. While in a Multi-
Master replicated environment every node stores the whole database, the auto-sharding
cluster distributes data so that each shard is only a subset of the whole database.

Because the cluster takes care of distributing data, the application does not have to provide
a data shard routing layer, and SQL joins are possible even across different shards. MySQL
Cluster 7.3 uses the NDB storage engine, and so it lacks some features provided by InnoDB"
like multiple transaction isolation levels or MVCC (Multi-Version Concurrency Control).

Ahttps:/ /www.mysgl.com/products/cluster/scalability.html
bhttp:/ /dev.mysql.com/doc,/mysql-cluster-excerpt /5.6 /en /mysql- cluster-ndb-innodb-engines.html

https://www.mysql.com/products/cluster/scalability.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.6/en/mysql-cluster-ndb-innodb-engines.html
https://www.mysql.com/products/cluster/scalability.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.6/en/mysql-cluster-ndb-innodb-engines.html

Performance and Scaling

11

Little's Law

In any given system, the ultimate relationship between response time and throughput is given
by Little’s Law* and, high values of incoming throughput can cause an exponential growth in
response time due to resource saturation.

Nevertheless, when taking a single database connection, by lowering the average transaction
response time, more transactions can be accommodated in a given time unit. For this reason,
the following chapters explain in greater detail what is needed to be done in order to reduce
transaction response time as much as possible.

Ahttps:/ /people.cs.umass.edu/~emery/classes /cmpsci691st /readings /OS /Littles- Law-50-Years-Later.pdf

https://people.cs.umass.edu/~emery/classes/cmpsci691st/readings/OS/Littles-Law-50-Years-Later.pdf
https://people.cs.umass.edu/~emery/classes/cmpsci691st/readings/OS/Littles-Law-50-Years-Later.pdf

2. JDBC Connection Management

The JDBC (Java Database Connectivity) API provides a common interface for communicating
with a database server. All the networking logic and the database-specific communication
protocol are hidden away behind the vendor-independent JDBC API. For this reason, all the
JDBC interfaces must be implemented according to the database vendor-specific require-
ments. The java.sql.Driver is the main entry point for interacting with the JDBC API, defining
the implementation version details and providing access to a database connection.

JDBC
Oracle SQL Server PostgreSQL MySQL
Driver Driver Driver Driver
Oracle SQL Server PostgreSQL MySQL

Figure 2.1: JDBC plugin architecture

JDBC defines four driver types:

* Type 1: It is only a bridge to an actual ODBC driver implementation.

» Type 2: It uses a database-specific native client implementation (e.g. Oracle Call Inter-
face).

* Type 3: It delegates calls to an application server offering database connectivity support.

* Type 4: The JDBC driver implements the database communication protocol solely in

Java.

Being easier to setup and debug, the Type 4 driver is usually the preferred alternative.

To communicate with a database server, a Java program must first obtain a java.sql.Connection.
Although the java.sql.driver is the actual database connection provider, it is more convenient
to use the java.sql.DriverManager since it can also resolve the JDBC driver associated with the
current database connection URL.

JDBC Connection Management 13

Previously, the application required to load the driver prior to establishing a connection but,
since JDBC 4.0, the Service Provider Interfaces mechanism can automatically discover all the
available drivers in the current application classpath.

2.1 DriverManager

The priverManager defines the following methods:

public static Connection getConnection(
String url, Properties info) throws SQLException;

public static Connection getConnection(
String url, String user, String password) throws SQLException;

public static Connection getConnection(
String url) throws SQLException;

Every time the getConnection() method is called, the priverManager requests a new physical
connection from the underlying briver.

java.sql. java.sql. java.sql. java.net. java.net.

gl DriverManager Driver Connection SocketFactory Socket

| get
Connection(url)

—connect(url, info)—>|

> >
creates | create _ |
Socket() | ——new—> N

RDBMS

A

A

A
A

close() >

close()—> |
Figure 2.2: DriverManager connection
The first version of JDBC was launched in 1997, and it only supported the briverManager

utility for fetching database connections. Back then, Java was offering support for desktop
applications which were often employing a two-tier architecture:

JDBC Connection Management 14

java.sql.Connection
F_____— I
Y
java.sql.Connection —>{a
F______— I .
A
java.sgl.Connection
F______— e

Figure 2.3: Two-tier architecture

In a two-tier architecture, the application is run by a single user, and each instance uses a
dedicated database connection. The more users, the more database connections are required,
and based on the underlying resources (hardware, operating system or licensing restrictions),
each database server can offer a limited number of connections.

Oracle mainframe legacy

Oracle had gained its popularity in the era of mainframe computers when each client got a
dedicated database connection.

Oracle assigns a distinct schema for each individual user, as opposed to other database
systems where a schema is shared by multiple user accounts.

In PL/SQL, the Packaged public variables scope is bound to a session, instead of to the
currently running transaction. The application developer must be extra cautious to unbind
these variables properly since connections are often reused and old values might leak into
newer transactions.

JDBC Connection Management 15

2.2 DataSource

In 1999, J2EE was launched along with JDBC 2.0 and an initial draft of JTA (Java Transaction
API)!, marking the beginning of Enterprise Java. Enterprise applications use a three-tier
architecture, where the middle tier acts as a bridge between user requests and various data
sources (e.g. relational databases, messaging queues).

Data Import

3 DB Master

Load
Balancer

g Web Node

Email Sender
Figure 2.4: Three-tier architecture

Having an intermediate layer between the client and the database server has numerous
advantages.

In a typical enterprise application, the user request throughput is greater than the available
database connection capacity. As long as the connection acquisition time is tolerable (from
the end-user perspective), the user request can wait for a database connection to become
available. The middle layer acts as a database connection buffer that can mitigate user request
traffic spikes by increasing request response time, without depleting database connections
or discarding incoming traffic.

Because the intermediate layer manages database connections, the application server can
also monitor connection usage and provide statistics to the operations team.

For this reason, instead of serving physical database connections, the application server

Ihttps:/ /jcp.org/en/jsr/detail?id=907

https://jcp.org/en/jsr/detail?id=907
https://jcp.org/en/jsr/detail?id=907
https://jcp.org/en/jsr/detail?id=907

JDBC Connection Management 16

provides only logical connections (proxies or handles), so it can intercept and register how
the client API interacts with the connection object.

A three-tier architecture can accommodate multiple data sources or messaging queue
implementations. To span a single transaction over multiple sources of data, a distributed
transaction manager becomes mandatory. In a JTA environment, the transaction manager
must be aware of all logical connections the client has acquired as it has to commit or roll
them back according to the global transaction outcome. By providing logical connections,
the application server can decorate the database connection handles with JTA transaction
semantics.

If the priverManager is a physical connection factory, the javax.sql.DataSource interface is a
logical connection provider:

Connection getConnection() throws SQLException;
Connection getConnection(String username, String password) throws SQLException;

The simplest javax.sql.DataSource implementation could delegate connection acquisition
requests to the underlying driverManager, and the connection request workflow would look
like this:

java.sql. java.sql. java.sql. java.sql. java.net.

Al DataSource DriverManager Driver Connection Socket

T
1
1
I
I
I
I
I
I
1
1
I
I
I
I
I
I
1
L

T
I I
I i
I |
I |
I |
I |
I |
I |
I I
I i
I |
I |
I |
I |
I |
I |
I I
. L

get

Connection() ~ | |— get

]
]
I
I
I
I
I
I
]
]
I
I
I
I
I
I
!
I
Connection(url) —connect(url, info)—> i

——creates—>»

——uses—>| 9

RDBMS

A

A

A

A

Y

close()

| —close()—> |

Figure 2.5: DataSource without connection pooling

The application data layer asks the patasource for a database connection.

The patasource uses the underlying driver to open a physical connection.

A physical connection is created, and a TCP socket is opened.

The patasource under test does not wrap the physical connection, and it simply lends it
to the application layer.

The application executes statements using the acquired database connection.

6. When the connection is no longer needed, the application closes the physical connection
along with the underlying TCP socket.

W =

@

JDBC Connection Management 17

Opening and closing database connections is a very expensive operation, so reusing them has
the following advantages:

* It avoids both the database and the driver overhead for establishing a TCP connection.

* It prevents destroying the temporary memory buffers associated with each database
connection.

* It reduces client-side JVM object garbage.

To visualize the cumulated overhead of establishing and closing database connections, the
following test compares the total time it takes to open and close 1000 database connections
of four different RDBMS against HikariCP? (one of the fastest stand-alone connection pooling
solutions in the Java ecosystem).

Table 2.1: Database connection establishing overhead vs. connection pooling

Metric Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)

DB_A DB_B DB_C DB_D HikariCP
min 11.174 5.441 24.468 0.860 0.001230
max 129.400 26.110 74.634 74.313 1.014051
mean 13.829 6.477 28.910 1.590 0.003458
p99 20.432 9.944 54.952 3.022 0.010263

When using a connection pooling solution, the connection acquisition time is between two
and four orders of magnitude smaller. By reducing the connection acquisition interval, the
overall transaction response time gets shorter too. All in all, in an enterprise application,
reusing connections is a much better choice than always establishing them on a transaction
basis.

Oracle XE connection handling limitation

While the Enterprise Edition does not entail any limitations, the Oracle 11g Express Edition
throws the following exception when running very short transactions without using a
connection pooling solution:

ORA-12516, TNS:listener could not find available handler with matching protocol
stack

A connection pooling solution can prevent these intermittent connection establishment
failures and reduce the connection acquisition time as well.

Zhttp:/ /brettwooldridge.github.io /HikariCP/

http://brettwooldridge.github.io/HikariCP/
http://brettwooldridge.github.io/HikariCP/

18

JDBC Connection Management

2.2.1 Why is pooling so much faster?

To understand why the connection pooling solution performs so much better, it is important
to figure out the connection pooling mechanism:

getConnection()

Failure

cquirable?>—Yes

No

Yes Max Size? Yes >

Timeout

No

v

Increment
Pool Size

Figure 2.6: Connection acquisition request flow

When a connection is being requested, the pool looks for unallocated connections.

If the pool finds a free one, it will be handled to the client.

If there is no free connection, the pool will try to grow to its maximum allowed size.

If the pool already reached its maximum size, it will retry several times before giving up
with a connection acquisition failure exception.

5. When the client closes the logical connection, the connection is released and returns to
the pool without closing the underlying physical connection.

W =

Most connection pooling solutions expose a batasource implementation that either wraps an
actual database-specific Datasource or the underlying driverManager utility.

JDBC Connection Management 19

The logical connection lifecycle looks like this:

Application java.sql. Connection Logical java.sql.
PP DataSource Pool Connection Connection
i i i i i
1 I | | |
1 I | | |
1 I | | |
1 I | | |
1 I | | |
1 I | | |
1 I | | |
1 I | | |
1 I | | |
1 I | | |
1 I | | |
1 1 i 1 1
| get .
Connection() | acquire
Connection() acquire() /\
uses—>|

((

< NT—

A

A
Y
O
@
<
w

close() >

<€<—release()— v

Figure 2.7: DataSource connection

The connection pool does not return the physical connection to the client, but instead it
offers a proxy or a handle. When a connection is in use, the pool changes its state to allocated
to prevent two concurrent threads from using the same database connection. The proxy
intercepts the connection close method call, and it notifies the pool to change the connection
state to unallocated.

Apart from reducing connection acquisition time, the pooling mechanism can also limit the
number of connections an application can use at once.

The connection pool acts as a bounded buffer for the incoming connection requests. If there is
a traffic spike, the connection pool will level it, instead of saturating all the available database
resources.

All these benefits come at a price since configuring the right pool size is not a trivial thing
to do. Provisioning the connection pool requires understanding the application-specific
database access patterns and also connection usage monitoring.

Whenever the number of incoming requests surpasses the available request handlers, there
are basically two options to avoid system overloading:

* discarding the overflowing traffic (affecting availability)
* queuing requests and wait for busy resources to become available (increasing response
time).

Discarding the surplus traffic is usually a last resort measure, so most connection pooling
solutions first attempt to enqueue overflowing incoming requests.

JDBC Connection Management 20

By putting an upper bound on the connection request wait time, the queue is prevented from
growing indefinitely and saturating application server resources.

For a given incoming request rate, the relation between the queue size and the average
enqueuing time is given by one of the most fundamental laws of queuing theory.

2.3 Queuing theory capacity planning

Little’s Law? is a general-purpose equation applicable to any queueing system being in a stable
state (the arrival rate is not greater than the departure rate).

According to Little’s Law, the average time for a request to be serviced depends only on the
long-term request arrival rate and the average number of requests in the system.

L=XAxW

* L - average number of requests in the system (including both the requests being serviced
and the ones waiting in the queue)

*) - long-term average arrival rate

* W - average time a request spends in a system.

Assuming that an application-level transaction uses the same database connection through-
out its whole lifecycle, and the average transaction response time is 100 milliseconds:

W =100ms =0.1s
If the average connection acquisition rate is 50 requests per second:

connection requests
A =50 a

S

Then the average number of connection requests in the system will be:

L=XAxW =50 x 0.1 =>5connectionrequests

A pool size of 5 can accommodate the average incoming traffic without having to enqueue
any connection request. If the pool size is 3, then, on average, 2 requests will be enqueued
and waiting for a connection to become available.

Little’s Law operates with long-term averages, and that might not be suitable when taking
into consideration intermittent traffic bursts. In a real-life scenario, the connection pool must
adapt to short-term traffic spikes, and so it is important to consider the actual connection
pool throughput.

3http:/ /en.wikipedia.org /wiki/Little%27s_law

http://en.wikipedia.org/wiki/Little's_law
http://en.wikipedia.org/wiki/Little's_law

JDBC Connection Management 21

In queueing theory, throughput is represented by the departure rate (o), and, for a connection
pool, it represents the number of connections offered in a given unit of time:

Ls pool size

r= Ws — connection lease time
The following exercise demonstrates how queuing theory can help provisioning a connection
pool to support various incoming traffic spikes.

Reusing the previous example configuration, the connection pool defines the following
variables:

* There are at most 5 in-service requests (Ls), meaning that the pool can offer at most 5
connections.
* The average service time (Ws) or the connection lease time is 100 milliseconds.

As expected, the connection pool can deliver up to 50 connections per second.

Ls connection requests
u = —_——= 5
Ws s

When the arrival rate equals departure rate, the system is saturated with all connections being
in use.

_ Ls

A== gy

If the arrival rate outgrows the connection pool throughput, the overflowing requests must
wait for connections to become available.

A one-second traffic burst of 150 requests is handled as follows:

* The first 50 requests can be served in the first second.
* The next 100 requests are first enqueued and processed in the following 2 seconds.

F=Ws ™01 Wq 02
__ s
A‘)(Lq =10 O:—>Ls=5

Wq=0.2
Figure 2.8: Little’s Law queue

JDBC Connection Management 22

For a constant throughput, the number of enqueued connection requests (Lq) is proportional
to the connection acquisition time (Wq).

The total number of requests in any given spike is calculated as follows:
Lspike = Aspike x W spike
The total time required to process the spike is given by the following formula:

W Lspike Aspike x W spike

I A

The number of enqueued connection requests and the time it takes to process them is
expressed by the following equations:

Lq = Lspike — Ls

Wqg=W -1
Assuming there is a traffic spike of 250 requests per second, lasting for 3 seconds.

t
Aspike = 250 requests

W spike = 3 s
The 750 requests spike takes 15 seconds to be fully processed.

requests

Lspike = 250 x 3 s = 750 requests

_ 750 requests
— Tk requests
50 reqz;es S

w =15s

The queue size grows to 700 entries, and it requires 14 seconds for all connection requests to
be serviced.

Lq = Lspike — Ls = 700 requests

Wqg=W —-1=14s

JDBC Connection Management 23

2.4 Practical database connection provisioning

Even if queuing theory provides insight into the connection pool behavior, the dynamics
of enterprise systems are much more difficult to express with general-purpose equations,
and metrics become fundamental for resource provisioning. By continuously monitoring the
connection usage patterns, it is much easier to react and adjust the pool size when the initial
configuration does not hold anymore.

Unfortunately, many connection pooling solutions only offer limited support for monitoring
and failover strategies, and that was the main reason for building FlexyPool*. Supporting the
most common connection pooling frameworks, this open source project offers the following
connection usage metrics:

Table 2.2: FlexyPool metrics

Name Description

concurrent connection requests How many connections are being requested at once
concurrent connections How many connections are being used at once

maximum pool size If the target pataSource uses adaptive pool sizing, this metric

will show how the pool size varies with time

connection acquisition time The time it takes to acquire a connection from the target

DataSource

overall connection acquisition time The total connection acquisition interval (including retries)
retry attempts The connection acquisition retry attempts

overflow pool size How much the pool size can grow over the maximum size
until timing out the connection acquisition request

connection lease time The duration between the moment a connection is acquired
and the time it gets released

While metrics are important for visualizing connection usage trends, in case of an unforeseen
traffic spike, the connection acquisition time could reach the patasource timeout threshold.

The failover mechanism applies various strategies to prevent timed-out connection requests
from being discarded. While a batch processor can retry a failing request (although it
increases transaction response time), in a web application, the user is much more sensitive
to unavailability or long-running transactions.

4https:/ /github.com /vladmihalcea /flexy-pool

https://github.com/vladmihalcea/flexy-pool
https://github.com/vladmihalcea/flexy-pool

JDBC Connection Management 24
FlexyPool comes with the following default failover strategies:

Table 2.3: FlexyPool failover strategies

Name Description
Increment pool size on timeout The connection pool has a minimum size and, on demand, it can
grow up to its maximum size.

This strategy increments the target connection pool maximum
size on connection acquisition timeout.

The overflow is a buffer of extra connections allowing the pool to
grow beyond its initial maximum size until it reaches the overflow
size threshold

Retrying attempts This strategy is useful for those connection pools lacking a
connection acquiring retry mechanism, and it simply reattempts
to fetch a connection for a given number of tries

2.4.1 A real-life connection pool monitoring example

The following example demonstrates how FlexyPool failover strategies can determine the
right connection pool size. The application under test is a batch processor using Bitronix
transaction manager® as the database connection pooling provider.

The batch processor is given a certain data load, and the pool size automatically grows upon
detecting a connection acquisition timeout occurrence. The average and the maximum pool
size are determined experimentally, without the need of any prior mathematical calculations.

Prior to running the load testing experiment, it is better to know the current application
connection pool settings. According to the Bitronix connection pool documentation® the
default acquisitionTimeout (the maximum time a connection request waits before throwing
a timeout exception) is 30 seconds.

A connection acquisition timeout threshold of one second is sufficient for the current
experiment, allowing the application to react more quickly to a traffic spike and apply a
compensating failover strategy.

The initial maxPoo1Size is set to one connection, and, upon receiving a connection acquisition
timeout, it grows until the maxover f1ow threshold is reached.

The retryattempts value is intentionally set to a reasonably large value because, for a batch
processor, dropping a connection request is a much bigger problem than some occasional
transaction response time spikes.

Shttps:// github.com /bitronix/btm
Bhttps:/ /github.com /bitronix /btm /wiki/JDBC-pools-configuration

https://github.com/bitronix/btm
https://github.com/bitronix/btm
https://github.com/bitronix/btm/wiki/JDBC-pools-configuration
https://github.com/bitronix/btm
https://github.com/bitronix/btm/wiki/JDBC-pools-configuration

JDBC Connection Management 25
The experiment starts with the following initial connection pool settings:

Table 2.4: Initial connection pool settings

Name Value Description

minPoolSize 0 The pool starts with an initial size of 0

maxPoolSize 1 The pool starts with a maximum size of 1

acquisitionTimeout 1 A connection request waits for 1s before giving up with a timeout
exception

maxOverflow 4 The pool can grow up to 5 connections (initial maxPoolSize +
maxOverflow)

retryAttempts 30 If the final maxPoolSize is reached, and there is no connection

available, a request will retry 30 times before giving up.

2.4.1.1 Concurrent connection request count metric
12

10

Connection requests
(o)}

4
| |I
~ . e
0
AT NO M OO NN AT NOMMUWOUWOAONLWLOW AT MNOM WO NLL 0 d <
M W O M WO M WOUWOoO M WO M WO N AN O OON O OO NN O N O
HH‘—1x—|NNNmmmq‘ﬁ'#mmmwlﬂml\l\l\wwwmmmg

Sample time (Index x 15s)

mean p50 p95 w99

Figure 2.9: Concurrent connection requests

—) QX

The more incoming concurrent connection requests, the higher the response time (for
obtaining a pooled connection) gets. This graph shows the incoming request distribution,
making it ideal for spotting traffic spikes.

JDBC Connection Management 26

The average value levels up all outliers, so it cannot reflect the application response to a given
traffic spike.

When the recorded values fluctuate dramatically, the average and the maximum value alone
offer only a limited view over the actual range of data, and that is why percentiles are preferred
in application performance monitoring.

By offering the maximum value, relevant to only a percentage of the whole population,
percentiles make outliers visible while capturing the immediate effect of a given traffic
change.

2.4.1.2 Concurrent connection count metric

Connections
w IN
|1

I

100
133
166
199
232
265
298
331
6
9
3
6
9
2
6
595
2
6
694
727
760
793
826
859
892
925
958
991
1024

Sample time (Index x 15s)

— QX e MEan p50 e====p05 em—99

Figure 2.10: Concurrent connections

The average concurrent connection metric follows a gradual slope up to 1.5 connections.
Unfortunately, this value is of little use for configuring the right pool size. On the other
hand, the 99th percentile is much more informative, showing that 3 to 5 connections are
sufficient. The maximum connections graph reconfirms that the pool size should be limited
to 5 connections (in case the connection acquisition time is acceptable).

If the connection pool supports it, it is very important to set the idle connection timeout
threshold. This way, the pool can release unused connections so the database can provide
them to other clients as well.

JDBC Connection Management 27

2.4.1.3 Maximum pool size metric

6
5
o 4
N
>
©
o3
[oX
x
©
=
1
0

AT NO M O ON N0 AT NOMUOOANL O AT NOMm WO N N 0 dHA

M O O M WO M WOWOoOMmWOUoOMmOVOoOoON OOON OOOCTNOUOIOTANLIOOANLL OAN

HHHHNNNmmmﬂ‘ﬂ‘Q‘mmmkaD\Dl\l\l\woowmmmg

Sample time (Index x 15s)
E— M AX mean p50 e===—=pO5 emm——Q99

Figure 2.11: Maximum pool size

According to the 99th percentile, the pool gets saturated soon after the job process starts.

2.4.1.4 Connection acquisition time metric

1200
m
£ 1000
(]
£
¢~
= 800
]
2
7]
S 600
o
(8]
5+
c
S 400
o=
O
[}
=
S 200
O
0
SN AOAOMNMN A NN AN OOMON AN OOMON dWNnN OO dWn MmN o
N OO N MNO MO MNOSMNOSN A SN o <E 00 o <E00 v D0 v+ LD 00 o
HHHNNNMMMQ’Q‘Q‘LHLDLDLOLDLOI\I\I\WOONC\O‘AC\S
Sample time (Index x 15s)
— M AX mean p50 P95 e p99

Figure 2.12: Connection acquisition time

The traffic spikes are captured by the maximum graph only. The timeout threshold is hit
multiple times as the pool either grows its size or it retries the connection acquisition request.

JDBC Connection Management 28

2.4.1.5 Retry attempts metric

3.5
3
2.5
1%}
2
<%
=
s 2
2
B)
@©
>15
=
7}
o«
1
0.5
0
ALTNOMUVUANINOASTNOMOANLLOATNOMWOOO N LN 0 o <
N VO MUVLAOAIMNMWOVWAOAMWOAMLOLIOANOVOUIINLVLIOAINDOAANDNM O N A N
FH A AN NNMOONFTIINNMOOONNN®O®XOONDQ

Sample tme (Index x 15s)

— QX —MEan p50 e====p05 em—Qp99

Figure 2.13: Retry attempts

When limiting the connection pool to 5 connections, there are only 3 retry attempts.

2.4.1.6 Overall connection acquisition time metric

3500
3000
2500
2000
1500

1000

500

Overall connection acquisition time (ms

0

35
69
103
137
171
205
239
273
307
34
7
0
4
7
511
545
579
613
4
681
715
749
783
817
851
885
919
953
987
1021

Sample time (Index x 15s)

— QX e mean p50 p95 p99

Figure 2.14: Overall connection acquisition time

While the retry attempts graph only shows how the retry count increases with time, the actual
effect of reattempting is visible in the overall connection acquisition time.

JDBC Connection Management 29

2.4.1.7 Connection lease time metric

40000
35000
30000
25000
20000
15000

10000

5000
T TPOUTAN | Y. N
N = n
N ~NO M

Connection lease time (ms)

—nam NN AN AONTNANONAdNONN AW mMN
o O O NO S NO SN A ™S o< 00 00 N 0 v 10N
AT A ANNONNFTITNOHNOOORNRNNO0ORNNDQ
Sample time (Index x 15s)
—— QX e mean p50 —p95 —p99

Figure 2.15: Connection lease time

The 99th percentile indicates a rather stable connection lease time throughout the whole job
execution. On the other hand, the maximum graph shows a long-running transaction lasting
over 35 seconds.

Holding connections for long periods of time can increase the connection acquisition time,
and fewer resources are available to other incoming clients.

Most often, connections are leased for the whole duration of a database transaction. Long-
running transactions might hold database locks, which, in turn, might lead to increasing the
serial portion of the current execution context, therefore hindering parallelism.

Long-running transactions can be addressed by properly indexing slow queries or by splitting
the application-level transaction over multiple database transactions like it is the case in many
ETL (Extract, Transform, and Load) systems.

3. Batch Updates

JDBC 2.0 introduced batch updates so that multiple DML statements can be grouped into
a single database request. Sending multiple statements in a single request reduces the
number of database roundtrips, therefore decreasing transaction response time. Even if the
reference specification uses the term updates, any insert, update or delete statement can
be batched, and JDBC supports batching for java.sql.Statement, java.sql.PreparedStatement and
java.sql.CallableStatement t0O.

Not only each database driver is distinct, but even different versions of the same driver might
require implementation-specific configurations.

3.1 Batching Statements

For executing static SQL statements, JDBC defines the statement interface, which comes with
a batching API as well. Other than for test sake, using a statement for CRUD (Create, Read,
Update, Delete), as in the example below, should be avoided for it's prone to SQL injection
attacks.

statement .addBatch(
"INSERT INTO post (title, version, id) " +
"VALUES ('Post no. 1', @, default)");

statement .addBatch(
"INSERT INTO post_comment (post_id, review, version, id) " +

"VALUES (1, 'Post comment 1.1', @, default)");

int[] updateCounts = statement.executeBatch();

The numbers of database rows affected by each statement is included in the return value of
the executeBatch() method.

Oracle

For statement and callableStatement, the Oracle JDBC Driver® does not actually support batch-
ing. For anything but preparedstatement, the driver ignores batching, and each statement is
executed separately.

Ahttp://docs.oracle.com/cd /E11882_01/java.112 /e16548 /oraperf.htm#JIDBC28752

http://docs.oracle.com/cd/E11882_01/java.112/e16548/oraperf.htm#JJDBC28752
http://docs.oracle.com/cd/E11882_01/java.112/e16548/oraperf.htm#JJDBC28752

Batch Updates 31

The following graph depicts how different JDBC drivers behave when varying batch size, the
test measuring the time it takes to insert 1000 post rows with 4 comments each:

2500

AL

1000

Time (ms)
= =
o w
o o
o o

o

o

Batch size

mDB A mDB B DB C mDBD
Figure 3.1: Statement batching

Reordering inserts, so that all posts are inserted before the comment rows, gives the following
results:

2500

2000

@ 1500
E
)
S

i 1000

500

0

1 10 20 30 40 50 60 70 80 90 100 1000

Batch size

EDB_A mDB_B ' DB_C mDB_D
Figure 3.2: Reordered statement batching

Reordering statements does not seem to improve performance noticeably, although some
drivers (e.g. MySQL) might take advantage of this optimization.

Batch Updates 32

MySQL

Although it implements the JDBC specification, by default, the MySQL JDBC driver does not
send the batched statements in a single request.

For this purpose, the JDBC driver defines the rewriteBatchedstatements® connection property, so
that statements get rewritten into a single string buffer. In order to fetch the auto-generated
row keys, the batch must contain insert statements only.

For preparedstatement, this property rewrites the batched insert statements into a multi-value
insert. Unfortunately, the driver is not able to use server-side prepared statements when
enabling rewriting.

Without setting this property, the MySQL driver simply executes each DML statement
separately, therefore defeating the purpose of batching.

Ahttp://dev.mysgl.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

The following graph demonstrates how statement rewriting performs against the default
behavior of the MySQL JDBC driver:

2500

2000

= 1500
E
(]
£

iZ 1000

500

0

1 10 20 30 40 50 60 70 80 90 100 1000
Batch size
B Without rewriteBatchedStatements B With rewriteBatchedStatements

Figure 3.3: MySQL Statement batching

Rewriting non-parameterized statements seems to make a difference, as long as the batch
size is not too large. In practice, it is common to use a relatively small batch size, to reduce
both the client-side memory footprint and to avoid congesting the server from suddenly
processing a huge batch load.

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

Batch Updates 33

3.2 Batching PreparedStatements

For parameterized statements (a very common enterprise application requirement), the JDBC
Sstatement is a poor fit because the only option for varying the executing SQL statement is
through string manipulation. Using a string template or concatenating string tokens is risky
as it makes the data access logic vulnerable to SQL injection attacks.

To address this shortcoming, JDBC offers the preparedstatement interface for binding parame-
ters in a safe manner. The driver must validate the provided parameter at runtime, therefore
discarding unexpected input values.

Because a Preparedstatement is associated with a single DML statement, the batch update can
group multiple parameter values belonging to the same prepared statement.

PreparedStatement postStatement = connection.prepareStatement(
"INSERT INTO post (title, version, id) " +
"VALUES (?, ?, ?)");

postStatement.setString(1, String.format("Post no. %1$d", 1));
postStatement.setInt(2, 0);

postStatement.setlLong(3, 1);

postStatement.addBatch();

postStatement.setString(1, String.format("Post no. %1$d", 2));
postStatement.setInt(2, 0);

postStatement.setlLong(3, 2);

postStatement.addBatch();

int[] updateCounts = postStatement.executeBatch();

SQL injection

For an enterprise application, security is a very important technical requirement. The SQL
Injection attack exploits data access layers that do not use bind parameters. When the SQL
statement is the result of string concatenation, an attacker could inject a malicious SQL
routine that is sent to the database along the current executing statement.

SQL injection is usually done by ending the current statement with the ; character and
continuing it with a rogue SQL command, like modifying the database structure (deleting
a table or modifying authorization rights) or even extracting sensitive information.

Batch Updates 34

All DML statements can benefit from batching as the following tests demonstrate. Just like
for the JDBC statement test case, the same amount of data (1000 post and 4000 comments) is
inserted, updated, and deleted while varying the batch size.

2500

2000

Time (ms)
= =
o w
o o
o o

50

o

o

Ill‘llllilllnlnlilllilnl
1 10 20 30 40 50 60 70 80 90 100

1000
Batch size

mDB A mDB B DB C mDBD
Figure 3.4: Insert PreparedStatement batch size

2500
2000

1500

Time (ms)

1000

500

o I.II.|I.||.||.||.|L||.||.||.||.|
10 20 30 40 50 60 70 80 90

100 1000
Batch size

mDB A mDB B DB C mDB.D
Figure 3.5: Update PreparedStatement batch size

Batch Updates 35

2500

2000

1500

Time (ms)

1000

) “ I I| II II II II I| II II II I| II
, npunnunnt
1 10 20 30 40 50 60 70 80 90

100 1000

o

Batch size

mDB A mDB B DB C MDB.D
Figure 3.6: Delete PreparedStatement batch size

All database systems show a significant performance improvement when batching prepared
statements. Some database systems are very fast when inserting or updating rows while
others perform very well when deleting data.

Compared to the previous statement batch insert results, it is clear that, for the same data load,
the preparedstatement use case performs just better. In fact, statement(s) should not be used for
batching CRUD operations, being more suitable for bulk processing:

DELETE from post
WHERE spam = true AND created_on < current_timestamp - INTERVAL '30' day;

3.2.1 Choosing the right batch size

Finding the right batch size is not a trivial thing to do as there is no mathematical equation
to solve the appropriate batch size for any enterprise application.

Like any other performance optimization technique, measuring the application performance
gain in response to a certain batch size value remains the most reliable tuning option.

The astute reader has already figured out that even a low batch size can reduce the
transaction response time, and the performance gain does not grow linearly with batch size.
Although a larger batch value can save more database roundtrips, the overall performance
gain does not necessarily increase linearly. In fact, a very large batch size can hurt application
performance if the transaction takes too long to be executed.

As a rule of thumb, you should always measure the performance improvement for various
batch sizes. In practice, a relatively low value (between 10 and 30) is usually a good choice.

Batch Updates 36

3.2.2 Bulk processing

Apart from batching, SQL offers bulk operations to modify all rows that satisfy a given filtering
criteria. Bulk update or delete statements can also benefit from indexing, just like select
statements.

To update all records from the previous example, one would have to execute the following
statements:

UPDATE post SET version = version + 1;
UPDATE post_comment SET version = version + 1;

Table 3.1: Bulk update time

DB_A time (ms) DB_B time (ms) DB_C time (ms) DB_D time (ms)
26 13 58 9

The bulk alternative is one order of magnitude faster than batch updates. However, batch
updates can benefit from application-level optimistic locking mechanisms, which are suitable
for preventing lost updates when data is loaded in a read-only database transaction and
written back in a successive transaction.

Like with updates, bulk deleting is also much faster than deleting in batches.

DELETE FROM post_comment WHERE version > O;
DELETE FROM post WHERE version > O;

Table 3.2: Bulk delete time

DB_A time (ms) DB_B time (ms) DB_C time (ms) DB_D time (ms)
3 12 1 2

Long-running transaction caveats

Processing too much data in a single transaction can degrade application performance,
especially in a highly concurrent environment. Whether using 2PL (Two-Phase Locking) or
MVCC (Multiversion Concurrency Control), writers always block other conflicting writers.

Long running transactions can affect both batch updates and bulk operations if the current
transaction modifies a very large number of records. For this reason, it is more practical to
break a large batch processing task into smaller manageable ones that can release locks in a
timely fashion.

Batch Updates 37

3.3 Retrieving auto-generated keys

It is common practice to delegate the row identifier generation to the database system. This
way, the developer does not have to provide a monotonically incrementing primary key since
the database takes care of this upon inserting a new record.

As convenient as this practice may be, it is important to know that auto-generated database
identifiers might conflict with the batch insert process.

Like many other database features, setting the auto incremented identifier strategy is
database-specific so the choice goes between an identity column or a database sequence
generator.

Oracle

Prior to Oracle 12c, an auto incremented generator had to be implemented on top of a
database sequence.

CREATE SEQUENCE post_seq;

CREATE TABLE post (
id NUMBER(19,0) NOT NULL,
title VARCHAR2(255 CHAR),
version NUMBER(10,@) NOT NULL,
PRIMARY KEY (id));

CREATE OR REPLACE TRIGGER post_identity
BEFORE INSERT ON post
FOR EACH ROW
BEGIN
SELECT post_seq.NEXTVAL
INTO :NEW. id
FROM dual;
end;

Oracle 12c adds support for identity columns as well, so the previous example can be
simplified as follows.

CREATE TABLE post (
id NUMBER(19,0) NOT NULL GENERATED ALWAYS AS IDENTITY,
title VARCHAR2(255 CHAR),
version NUMBER(1@,0) NOT NULL,
PRIMARY KEY (id));

Batch Updates 38

SQL Server
Traditionally, SQL Server offered identity column generators, but, since SQL Server 2012, it
now supports database sequences as well.

CREATE TABLE post (
id BIGINT IDENTITY NOT NULL,

title VARCHAR(255),
version INT NOT NULL,

PRIMARY KEY (id));

PostgreSQL
PostgreSQL 9.5 does not support identity columns natively, although it offers the serIAL
column type which can emulate an identity column.

CREATE TABLE post (
id SERIAL NOT NULL,
title VARCHAR(255),
version INT4 NOT NULL,
PRIMARY KEY (id));

The ser1AL (4 bytes) and BIGSERIAL (8 bytes) types are just a syntactic sugar expression as, behind
the scenes, PostgreSQL relies on a database sequence anyway.

The previous definition is therefore equivalent to:

CREATE SEQUENCE post_id_seq;

CREATE TABLE post (
id INTEGER DEFAULT NEXTVAL('post_id_seq') NOT NULL,

title VARCHAR(255),
version INT4 NOT NULL,
PRIMARY KEY (id));

Batch Updates 39

MySQL

MySQL 5.7 only supports identity columns through the auto_incremeNT attribute.

CREATE TABLE post (
id BIGINT NOT NULL AUTO_INCREMENT,
title VARCHAR(255),
version INTEGER NOT NULL,
PRIMARY KEY (id));

Many database developers like this approach since the client does not have to care about
supplying a database identifier upon inserting a new row.

INSERT INTO post (title, version) VALUES (?, ?);

To retrieve the newly created row identifier, the JDBC preparedstatement must be instructed to
return the auto-generated keys.

PreparedStatement postStatement = connection.prepareStatement(
"INSERT INTO post (title, version) VALUES (?, ?)",
Statement .RETURN_GENERATED_KEYS

);

One alternative is to hint the driver about the column index holding the auto-generated key
column.

PreparedStatement postStatement = connection.prepareStatement(
"INSERT INTO post (title, version) VALUES (?, ?)",
new int[] {1}

)i

The column name can also be used to instruct the driver about the auto-generated key
column.

PreparedStatement postStatement = connection.prepareStatement(
"INSERT INTO post (title, version) VALUES (?, ?)",
new String[] {"id"}

);

It is better to know all these three alternatives because they are not interchangeable on all
database systems.

Batch Updates 40

Oracle auto-generated key retrieval gotcha

When using statement.RETURN_GENERATED_KEYS, Oracle returns a rowID instead of the actually
generated column value. A workaround is to supply the column index or the column name,
and so the auto-generated value can be extracted after executing the statement.

According to the JDBC 4.2 specification, every driver must implement the supportsGetGenerat-
edkeys() method and specify whether it supports auto-generated key retrieval. Unfortunately,
this only applies to single statement updates as the specification does not make it mandatory
for drivers to support generated key retrieval for batch statements. That being said, not all
database systems support fetching auto-generated keys from a batch of statements.

Table 3.3: Driver support for retrieving generated keys

Returns Oracle JDBC Oracle JDBC SQL Server PostgreSQL MySQL JDBC
generated driver driver JDBC driver JDBC driver driver (5.1.36)
keys after (11.2.0.4) (12.1.0.1) 4.2) (9.4-1201-

calling jdbc41)
executeUpdate() Yes Yes Yes Yes Yes
executeBatch() No Yes No Yes Yes

If the Oracle JDBC driver 11.2.0.4 cannot retrieve auto-generated batch keys, the 12.1.0.1
version works just fine. When trying to get the auto-generated batch keys, the SQL Server
JDBC driver throws this exception: The statement must be executed before any results can be
obtained.

3.3.1 Sequences to the rescue

As opposed to identity columns, database sequences offer the advantage of decoupling the
identifier generation from the actual row insert. To make use of batch inserts, the identifier
must be fetched prior to setting the insert statement parameter values.

private long getNextSequenceValue(Connection connection)
throws SQLException {
try(Statement statement = connection.createStatement()) {
try(ResultSet resultSet = statement.executeQuery(
callSequenceSyntax())) {
resultSet.next();
return resultSet.getlong(1);

Batch Updates 41

For calling a sequence, every database offers a specific syntax:

Oracle

SELECT post_seq.NEXTVAL FROM dual;
SQL Server

SELECT NEXT VALUE FOR post_seq;
PostgreSQL

SELECT NEXTVAL('post_seq');

Because the primary key is generated up-front, there is no need to call the getGeneratedkeys()
method, and so batch inserts are not driver dependent anymore.

try(PreparedStatement postStatement = connection.prepareStatement(
"INSERT INTO post (id, title, version) VALUES (?, ?, ?2)")) {
for (int i = ©0; i < postCount; i++) {
if(i > 0 && i % batchSize == 0) {
postStatement.executeBatch();
}
postStatement.setlLong(1, getNextSequenceValue(connection));
postStatement.setString(2, String.format("Post no. %1$d", i));
postStatement.setInt(3, 9);
postStatement.addBatch();
}

postStatement .executeBatch();

Many database engines use sequence number generation optimizations to lower the se-
quence call execution as much as possible. If the number of inserted records is relatively low,
then the sequence call overhead (extra database roundtrips) will be insignificant. However,
for batch processors inserting large amounts of data, the extra sequence calls can add up.

Batch Updates

42

Optimizing sequence calls

The data access layer does not need to go to the database to fetch a unique identifier if the
sequence incrementation step is greater than 1. For a step of N, the sequence numbers are 1,
N +1,2N +1, 3N +1, etc. The data access logic can assign identifiers in-between the database
sequence calls (e.g. 2, 3, 4, ..., N -1, N), and so it can mitigate the extra network roundtrips
penalty.

This strategy is going to be discussed in greater detail in the Hibernate types and identifiers
chapter.

4. Statement Caching

Being a declarative language, SQL describes the what and not the how. The actual database
structures and the algorithms used for fetching and preparing the desired result set are
hidden away from the database client, which only has to focus on properly defining the SQL
statement. This way, to deliver the most efficient data access plan, the database can attempt
various execution strategies.

4.1 Statement lifecycle

The main database modules responsible for processing a SQL statement are the Parser, the
Optimizer, and the Executor.

Data Access
Logic

A

Statement

Result Set

Figure 4.1: Statement lifecycle

Parser

Query Tree

v

Database

Optimizer

Execution Plan

v

Executor

Execution Plan
Cache

N
|

e

Statement Caching 44

4.1.1 Parser

The Parser checks the SQL statement and ensures its validity. The statements are verified
both syntactically (the statement keywords must be properly spelled and following the SQL
language guidelines) and semantically (the referenced tables and column do exist in the
database).

During parsing, the SQL statement is transformed into a database-internal representation,
called the syntax tree (also known as parse tree or query tree). If the SQL statement is a high-
level representation (being more meaningful from a human perspective), the syntax tree is the
logical representation of the database objects required for fulfilling the current statement.

4.1.2 Optimizer

For a given syntax tree, the database must decide the most efficient data fetching algorithm.
Data is retrieved by following an access path, and the Optimizer needs to evaluate multiple
data traversing options like:

The access method for each referencing table (table scan or index scan).

For index scans, it must decide which index is better suited for fetching this result set.
For each joining relation (e.g. table, views or Common Table Expression), it must choose
the best-performing join type (e.g. Nested Loops Joins, Hash Joins, Sort Merge Joins).
The joining order becomes very important, especially for Nested Loops Joins.

The list of access path, chosen by the Optimizer, is assembled into an execution plan.

Because of a large number of possible action plan combinations, finding a good execution
plan is not a trivial task. The more time is spent on finding the best possible execution plan,
the higher the transaction response time will get, so the Optimizer has a fixed time budget
for finding a reasonable plan.

The most common decision-making algorithm is the CBO (Cost-Based Optimizer). Each ac-
cess method translates to a physical database operation, and its associated cost in resources
can be estimated. The database stores various statistics like table sizes and data cardinality
(how much the column values differ from one row to the other) to evaluate the cost of a
given database operation. The cost is calculated based on the number of CPU cycles and I/0
operations required for executing a given plan.

When finding an optimal execution plan, the Optimizer might evaluate multiple options, and,
based on their overall cost, it chooses the one requiring the least amount of time to execute.

By now, it is clear that finding a proper execution plan is resource intensive, and, for this
purpose, some database vendors offer execution plan caching (to eliminate the time spent
on finding the optimal plan). While caching can speed up statement execution, it also incurs
some additional challenges (making sure the plan is still optimal across multiple executions).

Statement Caching 45

Each execution plan has a given memory footprint, and most database systems use a fixed-
size cache (discarding the least used plans to make room for newer ones). DDL (Data
Definition Language) statements might corrupt execution plans, making them obsolete,
so the database must use a separate process for validating the existing execution plans
relevancy.

However, the most challenging aspect of caching is to ensure that only a good execution plan
goes in the cache, since a bad plan, getting reused over and over, can really hurt application
performance.

4.1.2.1 Execution plan visualization

Database tuning would not be possible without knowing the actual execution plan employed
by the database for any given SQL statement. Because the output may exceed the length of a
page, some execution plan columns were removed for brevity sake.

Oracle

Oracle uses the EXPLAIN PLAN FOR syntax, and the output goes into the dbms_xplan package:

SQL> EXPLAIN PLAN FOR SELECT COUNT(*) FROM post:
SQL> SELECT plan_table_output FROM table(dbms_xplan.display());

Id	Operation	Name	Rows	Cost (%CPU)
@	SELECT STATEMENT		1	S (0)
1	SORT AGGREGATE		1	

| 2 | INDEX FAST FULL SCAN| SYS_C@Q7@93 | 5000 | 5} (0)1

PostgreSQL

PostgreSQL reserves the expLaIN keyword for displaying execution plans:
EXPLAIN SELECT COUNT(*) FROM post;

QUERY PLAN

Aggregate (cost=99.50..99.51 rows=1 width=0)
-> Seq Scan on post (cost=0.00..87.00 rows=5000 width=0)

Statement Caching

46

SQL Server
The SQL Server Management Studio provides an execution plan viewer:

Query 1: Query cost (relative to the batch): 100%
select count(*) from post

- = Ji i)

SELECT Compute Scalar Strefm qurtegate ClutsterPeKd Indetx SBC2a1n3E;CBI;gsDt:Er;Bdg7
Cost: 0 % Cost: 0 % (Aggregate) (post].[PK_post__ !
Cost: 10 % Cost: 90 %

Another option is to enable the sHowPLAN_ALL setting prior to running a statement:

SET SHOWPLAN_ALL ON;

GO

SELECT COUNT(*) FROM post;

GO

SET SHOWPLAN_ALL OFF;

GO

| Stmt Text | Est. Rows | Est. IO | Est. CPU | Subtree Cost |
| select count(*) from post; | 1 | NULL | NULL | ©.0288 |
[Compute Scalar [1 | @ | ©.003 | ©.0288 |
[Stream Aggregate [1 | @ | ©.003 | ©.0288 |
| Clustered Index Scan | 5000 | 0.020 | ©.005 | ©.0258 |
MySQL
The plan is displayed using EXPLAIN Or EXPLAIN EXTENDED:

mysql> EXPLAIN EXTENDED SELECT COUNT(*) FROM post:

oo Fommem oo R oo PRI Fmmm e o e oo +
| id | select | table | type | key | key | rows | filtered | Extra |
| | type | table | type | [len | | | |
S —— E S — E S — S —— TR—— ST — S —— e m e s m e o e
| 1 | SIMPLE | post | index | PRIMARY | 8 | 5000 | 100.00 | Using index |

Statement Caching

47

MySQL

When using MySQL 5.6.5% or later, you can make use of the uson expLAIN format, which provides
lots of information compared to the TRADITIONAL EXPLAIN format output.

mysql> EXPLAIN FORMAT=JSON select distinct title from post;
{
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "1017.00"

},

"duplicates_removal": {
"using_temporary_table": true,
"using_filesort": false,

"table": {
"table_name": "post",
"access_type": "ALL",
"rows_examined_per_scan": 5000,
"rows_produced_per_join": 5000,
"filtered": "100.00",
"cost_info": {
"read_cost": "17.00",
"eval_cost": "1000.00",
"prefix_cost": "1017.00",
"data_read_per_join": "3M"
},
"used_columns": [
"id",
"title"

Ahttps://dev.mysql.com/doc/refman/5.6 /en/explain.html

https://dev.mysql.com/doc/refman/5.6/en/explain.html
https://dev.mysql.com/doc/refman/5.6/en/explain.html

Statement Caching 48

4.1.3 Executor

From the Optimizer, the execution plan goes to the Executor where it is used to fetch the
associated data and build the result set. The Executor makes use of the Storage Engine (for
loading data according to the current execution plan) and the Transaction Engine (to enforce
the current transaction data integrity guarantees).

Having a reasonably large in-memory buffer allows the database to reduce the I/0 con-
tention, therefore reducing transaction response time. The consistency model also has an
impact on the overall transaction performance since locks may be acquired to ensure data
integrity, and the more locking, the less the chance for parallel execution.

4.2 Caching performance gain

Before jumping into more details about server-side and client-side statement caching, it is
better to visualize the net effect of reusing statements on the overall application performance.
The following test calculates the number of queries a database engine can execute in a
one-minute time span. To better emulate a non-trivial execution plan, the test executes a
statement combining both table joining and query nesting.

SELECT p.title, pd.created_on
FROM post p
LEFT JOIN post_details pd ON p.id = pd.id
WHERE EXISTS (
SELECT 1
FROM post_comment
WHERE post_id = p.id AND version = ?

Running it on four different database systems, the following throughput numbers are col-
lected.

Table 4.1: Statement caching performance gain

Database System No Caching Throughput Caching Throughput Percentage Gain
(Statements Per Minute) (Statements Per Minute)

DB_A 419 833 507 286 20.83%

DB_B 194 837 303100 55.56%

DB_C 116 708 166 443 42.61%

DB_D 15 522 15550 0.18%

Statement Caching 49

Most database systems can clearly benefit from reusing statements and, in some particular
use cases, the performance gain is quite substantial.

Statement caching plays a very important role in optimizing high-performance OLTP
(Online transaction processing) systems.

4.3 Server-side statement caching

Because statement parsing and the execution plan generation are resource intensive oper-
ations, some database providers offer an execution plan cache. The statement string value
is used as input to a hashing function, and the resulting value becomes the execution plan
cache entry key. If the statement string value changes from one execution to the other,
the database cannot reuse an already generated execution plan. For this purpose, dynamic-
generated JDBC statement(s) are not suitable for reusing execution plans.

Forced Parameterization

Some database systems offer the possibility of intercepting SQL statements at runtime so that
all value literals are replaced with bind variables. This way, the newly parameterized statement
can reuse an already cached execution plan.

To enable this feature, each database system offers a vendor-specific syntax.

Oracle
ALTER SESSION SET cursor_sharing=force;
SQL Server

ALTER DATABASE high_per formance_java_persistence SET PARAMETERIZATION FORCED;

Server-side prepared statements allow the data access logic to reuse the same execution
plan for multiple executions. A PreparedStatement is always associated with a single SQL
statement, and bind parameters are used to vary the runtime execution context. Because
PreparedStatement(s) take the SQL query at creation time, the database can precompile the
associated SQL statement prior to executing it.

Statement Caching 50

During the precompilation phase, the database validates the SQL statement and parses it into
a syntax tree. When it comes to executing the preparedstatement, the driver sends the actual
parameter values, and the database can jump to compiling and running the actual execution
plan.

Database:

JDBC Driver

Syntax Tree

| 1

 PREPARE——> Parser A

Execution Plan

A4

EXECUTE——> Executor

Figure 4.2: Server-Side prepared statement workflow

Conceptually, the prepare and the execution phases happen in separate database roundtrips.
However, some database systems choose to optimize this process, therefore, multiplexing
these two phases into a single database roundtrip.

Because of index selectivity, in the absence of the actual bind parameter values, the Optimizer
cannot compile the syntax tree into an execution plan. Since a disk access is required for
fetching every additional row-level data, indexing is suitable when selecting only a fraction of
the whole table data. Most database systems take this decision based on the index selectivity
of the current bind parameter values.

Because each disk access requires reading a whole block of data, accessing too many
dispersed blocks can actually perform worse than scanning the whole table (random access
is slower than sequential scans).

For prepared statements, the execution plan can either be compiled on every execution or
it can be cached and reused. Recompiling the plan can generate the best data access paths
for any given bind variable set while paying the price of additional database resources usage.
Reusing a plan can spare database resources, but it might not be suitable for every parameter

Statement Caching 51
value combination.

4.3.1 Bind-sensitive execution plans

Assuming a task table has a status column with three distinct values: TO_DO, DONE, and
FAILED. The table has 100 000 rows, of which 1000 are TO_DO entries, 95 000 are DONE,
and 4000 are FAILED records.

In database terminology, the number of rows returned by a given predicate is called cardi-
nality and, for the status column, the cardinality varies from 1000 to 95 000.

C = {1000, 4000, 95 000}

By dividing cardinality with the total number of rows, the predicate selectivity is obtained:

S = % x 100 = {1%,4%, 95%}
The lower the selectivity, the fewer rows are matched for a given bind value and the more
selective the predicate gets. The Optimizer tends to prefer sequential scans over index
lookups for high selectivity percentages, to reduce the total number of disk-access roundtrips
(especially when data is scattered among multiple data blocks).

When searching for DONE entries, the Optimizer chooses a table scan access path (the
estimated number of selected rows is 95 080):

SQL> EXPLAIN SELECT * FROM task WHERE status = 'DONE' LIMIT 100;
Limit (cost=0.00..1.88 rows=100 width=13)

-> Seq Scan on task (cost=0.00..1791.00 rows=95080 width=13)
Filter: ((status)::text = 'DONE'::text)

Otherwise, the search for TO_DO or FAILED entries is done through an index lookup:

SQL> EXPLAIN SELECT * FROM task WHERE status = 'TO_DO' LIMIT 100;

Limit (cost=0.29..4.25 rows=100 width=13)
-> Index Scan using task_status_idx on task (cost=0.29..36.16 rows=907)
Index Cond: ((status)::text = 'TO_DO'::text)

SQL> EXPLAIN SELECT * FROM task WHERE status = 'FAILED' LIMIT 100;
Limit (cost=0.29..3.86 rows=100 width=13)

-> Index Scan using task_status_idx on task (cost=0.29..143.52 rows=4013)
Index Cond: ((status)::text = 'FAILED'::text)

Statement Caching 52

So, the execution plan depends on bind parameter value selectivity. If the selectivity is
constant across the whole bind value domain, the execution plan will no longer be sensitive
to parameter values. A generic execution plan is much easier to reuse than a bind-sensitive
one.

The following section describes how some well-known database systems implement server-
side prepared statements in relation to their associated execution plans.

Oracle

Every SQL statement goes through the Parser, where it is validated both syntactically and
semantically. Next, a hashing function takes the SQL statement, and the resulting hash key is
used for searching the Shared Pool for an existing execution plan.

In Oracle terminology, reusing an execution plan is called a soft parse. To reuse a plan, the
SQL statement must be identical with a previously processed one (even the case sensitivity
and whitespaces are taken into consideration).

If no execution plan is found, the statement will undergo a hard parse®. The Optimizer
evaluates multiple execution plans and chooses the one with the lowest associated cost,
which is further compiled into a source tree by the Row Source Generator. Whether reused
(soft parse) or generated (hard parse), the execution plan goes to the Executor, which fetches
the associated result set.

Bind peeking

As previously mentioned, the Optimizer cannot determine an optimal access path in the
absence of the actual bind values. For this reason, Oracle uses bind peeking® during the hard
parse phase.

The first set of bind parameter values determines the selectivity of the cached execution plan.
By now it is clear that this strategy is feasible for uniformly distributed data sets, and a single
execution plan cannot perform consistently for bind-sensitive predicates.

As of 11g, Oracle has introduced adaptive cursor sharing so that a statement can utilize
multiple execution plans. The execution plan is stored along with the selectivity metadata
associated with the bind parameters used for generating this plan. An execution plan is reused
only if its selectivity matches the one given by the current bind parameter values.

Both the execution plan cache and the adaptive cursor sharing are enabled by default, and,
for highly concurrent OLTP systems, hard parsing should be avoided whenever possible. The
plan cache allows database resources to be allocated to the execution part rather than being
wasted on compiling, therefore improving response time.

PreparedStatement(s) Optimize the execution plan cache-hit rate and are therefore
preferred over plain JDBC statement(s).

Ahttps://docs.oracle.com /database /121/TGSQL/tgsql_sqlproc.htm#TGSQLI75
bhttps://docs.oracle.com/database/lZl/TGSQL/tgsql_cursor.htm#TGSQL848

https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175
https://docs.oracle.com/database/121/TGSQL/tgsql_cursor.htm#TGSQL848
https://docs.oracle.com/database/121/TGSQL/tgsql_sqlproc.htm#TGSQL175
https://docs.oracle.com/database/121/TGSQL/tgsql_cursor.htm#TGSQL848

Statement Caching 53

) o

SQL Server

SQL Server always caches execution plans® for both JDBC statement(s) and PreparedStatement(s).
The execution plans are stored in the procedure cache region, and they are evicted only when
the in-memory storage starts running out of space.

Even if SQL Server supports plain statements forced parameterization, preparing statements
remains the most effective way to increase the likelihood of an execution plan cache-hit.

The catch is that all prepared statements should use the qualified object name, thus,
the schema must always precede the table name.

So, instead of a query like this:
SELECT * FROM task WHERE status = ?;
the data access layer should always append the schema to all table names:

SELECT * FROM etl.task WHERE status = ?;

Without specifying the database object schema, the cache cannot determine which
statistics to consider when analyzing the effectiveness of a given execution plan.

SQL Server inspects the actual parameter values during the first execution of a prepared
statement. This process is called parameter sniffing, and its effectiveness is relative to
predicate value distribution.

The database engine monitors statement execution times, and if the existing cached plan
does not perform efficiently or if the underlying table structure or data distribution statistics
undergo a conflicting change, then the database will recompile the execution plan according
to the new parameter values.

For skewed data, reusing plans might be suboptimal, and recompiling plans on every execu-
tion could be a better alternative. To address the parameter sniffing limitations, SQL Server
offers the opT1ON (RECOMPILE) query hint”, so the statement can bypass the cache and generate
a fresh plan on every execution.

SELECT * FROM task WHERE status = ? OPTION(RECOMPILE);

Ahttps:/ /technet.microsoft.com/en-us/library /ms181055%28v=sql.100%29.aspx
bhttps: / /msdn.microsoft.com /en-us /library /ms181714.aspx

https://technet.microsoft.com/en-us/library/ms181055(v=sql.100).aspx
https://msdn.microsoft.com/en-us/library/ms181714.aspx
https://technet.microsoft.com/en-us/library/ms181055(v=sql.100).aspx
https://msdn.microsoft.com/en-us/library/ms181714.aspx

Statement Caching

54

PostgreSQL

Prior to 9.2, a prepared statement was planned and compiled entirely during the prepare
phase, so the execution plan was generated in the absence of the actual bind parameter
values. Although meant to spare database resources, this strategy was very sensitive to
skewed data. Since PostgreSQL 9.2, the prepare phase only parses and rewrites a statement,
while the optimization and the planning phase are deferred until execution time. This way,
the rewritten syntax tree is optimized according to the actual bind parameter values, and an
optimal execution plan is generated.

For a single execution, a plain statement requires only a one database roundtrip while
a prepared statement needs two (a prepare request and an execution call). To avoid the
networking overhead, by default, JDBC preparedstatement(s) do both the prepare and the
execute phases over a single database request.

A client-side prepared statement must run at least 5 times for the driver to turn it into
a server-side statement. The default execution count value is given by the prepareThreshold
parameter, which is configurable as a connection property or through a driver-specific API*.

After several executions, if the performance is not sensitive to bind parameter values, the
Optimizer might choose to turn the plan into a generic one and cache it for reuse.

Ahttps:/ /jdbec.postgresql.org/documentation /publicapi/org /postgresqgl /PGStatement.html

MySQL

When preparing a statement, the MySQL Parser generates a syntax tree which is further
validated and pre-optimized by a resolution mechanism. The syntax tree undergoes several
data-insensitive transformations, and the final output is a permanent tree.

Since MySQL 5.7.4%, all permanent transformations (rejoining orders or subquery optimiza-
tions) are done in the prepare phase, so the execution phase only applies data-sensitive
transformations. MySQL does not cache execution plans, so every statement execution is
optimized for the current bind parameter values, therefore avoiding data skew issues.

Because of some unresolved issues, since version 5.0.5°, the MySQLJDBC driver only emulates
server-side prepared statements. To switch to server-side prepared statements, both the
useServerPrepStmts and the cachePrepstmts connection properties must be set to true.

Before activating this feature, it is better to check the latest Connector/J release notes and
validate this feature is safe for use.

Ahttp:/ /mysqlserverteam.com/mysql-performance-schema-prepared-statements-instrumentation /
bhttps://dev.mysql.com/doc/relnotes/connector—j/5.1/en/news- 5-0-5.html

https://jdbc.postgresql.org/documentation/publicapi/org/postgresql/PGStatement.html
https://jdbc.postgresql.org/documentation/publicapi/org/postgresql/PGStatement.html
http://mysqlserverteam.com/mysql-performance-schema-prepared-statements-instrumentation/
https://dev.mysql.com/doc/relnotes/connector-j/5.1/en/news-5-0-5.html
http://mysqlserverteam.com/mysql-performance-schema-prepared-statements-instrumentation/
https://dev.mysql.com/doc/relnotes/connector-j/5.1/en/news-5-0-5.html

Statement Caching 55

4.4 Client-side statement caching

Not only the database side can benefit from caching statements, but also the JDBC driver can
reuse already constructed statement objects. The main goals of the client-side statement
caching can be summarized as follows:

* Reducing client-side statement processing, which, in turn, lowers transaction response
time.

» Sparing application resources by recycling statement objects along with their associated
database-specific metadata.

In high-performance OLTP applications, transactions tend to be very short, so even a minor
response time reduction can make a difference in the overall transaction throughput.

Oracle implicit statement caching

Unlike server-side plan cache, the client one is confined to a database connection only. Since
the SQL string becomes the cache entry key, PreparedsStatement(s) and CallableStatement(s) have
a better chance of getting reused. Therefore, the Oracle JDBC driver supports caching only
for these two statement types. When enabling caching (disabled by default), the driver returns
a logical statement, so when the client closes it, the logical statement goes back to the cache.

From a development point of view, there is an implicit statement caching mechanism as well
as an explicit one. Both caching options share the same driver storage, which needs to be
configured according to the current application requirements.

The implicit cache can only store statement metadata, which does not change from one
execution to the other. Although it can be set for each individual connection, it is convenient
to configure it at the patasource level (all connections inheriting the same caching properties):

connectionProperties.put("oracle. jdbc.implicitStatementCacheSize",
Integer.toString(cacheSize));
dataSource.setConnectionProperties(connectionProperties);

Setting the implicitstatementCacheSize also enables the cache. By default, all executing state-
ments are cached implicitly, and this might not be desirable (some occasional queries might
evict other frequently executed statements). To control the statement caching policy, JDBC
defines the isPoolable() and setPoolable(boolean poolable) Statement methods:

if (statement.isPoolable()) {
statement.setPoolable(false);

Statement Caching 56

Oracle explicit statement caching

The explicit cache is configurable and managed through an Oracle-specific API. Prior to using
it, it must be enabled and resized using the underlying oracleConnection reference.

OracleConnection oracleConnection = (OracleConnection) connection;
oracleConnection.setExplicitCachingEnabled(true);
oracleConnection.setStatementCacheSize(cacheSize);

When using the explicit cache, the data access controls which statements are cacheable, so
there is no need for using the setPoolable(boolean poolable) method anymore. The following
example demonstrates how to make use of the explicit caching mechanism.

PreparedStatement statement = oracleConnection
.getStatementWithKey(SELECT_POST_REVIEWS_KEY);
if (statement == null)
statement = connection.prepareStatement (SELECT_POST_REVIEWS);
try {
statement .setInt(1, 10);
statement .execute();
} finally {
((OraclePreparedStatement) statement).closeWithKey(SELECT_POST_REVIEWS_KEY);

The explicit caching relies on two main operations, which can be summarized as follows:

1. The getstatementwithkey(String key) method loads a statement from the cache. If no entry

is found, the preparedstatement must be manually created using standard JDBC API.
2. The closewithKey(String key) method pushes the statement back into the pool.

The vendor-specific API couples the data access code to the Oracle-specific API
which hinders portability and requires a more complex data access logic (when
accommodating multiple database systems).

Aside from caching metadata, the explicit cache also stores execution state and data. Although
reusing more client-side constructs might improve performance even further, this strategy
poses the risk of mixing previous and current execution contexts, so caution is advised.

Statement Caching 57

SQL Server

Although the Microsoft SQL Server JDBC driver defines a disableStatementPooling property, as
of writing (the 4.2 version), the statement cache cannot be enabled”.

On the other hand, jTDS (the open source JDBC 3.0 implementation) offers statement caching
on a per-connection basis. Being a JDBC 4.0-specific API, The setPoolable(boolean poolable)
Statement method is not implemented in the 1.3.1jTDS release. The cache has a default size of
500 entries which is also adjustable.

((JtdsDataSource) dataSource).setMaxStatements(cacheSize);

Even if jTDS has always focused on performance, the lack of a steady release schedule is a
major drawback compared to the Microsoft driver.

Ahttps:/ /msdn.microsoft.com/en-us/library /ms378988%28v=sql.110%29.aspx

PostgreSQL

Since the PostgreSQL JDBC driver 9.4-1202% version, the client-side statements are cached,
and their associated server-side statement keys are retained even after the initial
PreparedStatement(s) iS closed. As long as the current connection cache contains a given SQL
statement, both the client-side preparedstatement and the server-side object can be reused.
The setPoolable(boolean poolable) method has no effect, and caching cannot be disabled on a
per-statement basis.

The statement cache is controlled by the following connection properties:

® preparedStatementCacheQueries - the number of statements cached for each database
connection. A value of 0 disables the cache, and server-side prepared statements are

no longer available after the preparedstatement is closed. The default value is 256.
* preparedStatementCacheSizeMiB - the statement cache has an upper memory bound, and

the default value is 5 MB. A value of 0 disables the cache.

These properties can be set both as connection parameters’ or as bataSource properties:

((PGSimpleDataSource) dataSource).setPreparedStatementCacheQueries(cacheSize);
((PGSimpleDataSource) dataSource).setPreparedStatementCacheSizeMiB(cacheSizeMb);

Ahttps://jdbc.postgresql.org/documentation /changelog.html#version_9.4-1202
b https:/ /jdbc.postgresql.org/documentation /head /connect.html#connection-parameters

https://msdn.microsoft.com/en-us/library/ms378988(v=sql.110).aspx
https://msdn.microsoft.com/en-us/library/ms378988(v=sql.110).aspx
https://jdbc.postgresql.org/documentation/changelog.html#version_9.4-1202
https://jdbc.postgresql.org/documentation/head/connect.html#connection-parameters
https://jdbc.postgresql.org/documentation/changelog.html#version_9.4-1202
https://jdbc.postgresql.org/documentation/head/connect.html#connection-parameters

Statement Caching

58

MySQL

The statement caching is associated with a database connection, and it applies to all executing
statements. In the 5.1.36 Connector/J driver version, the setPoolable(boolean poolable) method
can disable caching for server-side statements only, the client-side ones being unaffected by
this setting.

The client-side statement cache is configured using the following properties:

* cachePrepStmts - enables the client-side statement cache as well as the server-side

statement validity checking. By default, the statement cache is disabled.
* prepStmtCacheSize - the number of statements cached for each database connection. The

default cache size is 25.
* prepStmtCacheSqglLimit - the maximum length of a SQL statement allowed to be cached.

The default maximum value is 256.

These properties can be set both as connection parameters® or at bataSource level:

((MysqglDataSource) dataSource).setCachePrepStmts(true);
((MysqglDataSource) dataSource).setPreparedStatementCacheSize(cacheSize);
((MysqglDataSource) dataSource).setPreparedStatementCacheSqgllLimit(maxLength);

Ahttp:/ /dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

5. ResultSet Fetching

Having discussed the SQL statement optimizations (batching and caching), it is time to
move on to the response part of a query processing. Unlike the insert, update, and delete
statements, which only return the affected row count, a JDBC select query returns a ResultSet
instead.

The database Executor takes an execution plan and fetches data into a result set. Rows may
be either extracted at once or upon being requested by the database client.

The SQL Standard defines both the result set and the cursor descriptor through the following
properties:

» scrollability (the direction in which the result set can be iterated)

* sensitivity (when should data be fetched)

 updatability (available for cursors, it allows the client to modify records while traversing
the result set)

* holdability (the result set scope in regard to a transaction lifecycle).

Following the standard specification, the JDBC resultset offers support for all the properties
above.

Table 5.1: JDBC ResultSet properties

Property Name Description
TYPE_FORWARD_ONLY The result set can only be iterated from the first to the last
element. This is the default scrollability value.

TYPE_SCROLL_INSENSITIVE The result set takes a loading time snapshot which can be
iterated both forward and backward.

TYPE_SCROLL_SENSITIVE The result set is fetched on demand while being iterated
without any direction restriction.

CONCUR_READ_ONLY The result set is just a static data projection which does not
allow row-level manipulation. This is the default
changeability value.

CONCUR_UPDATABLE The cursor position can be used to update or delete records,
or even insert a new one.

CLOSE_CURSORS_AT_COMMIT The result set is closed when the current transaction ends.

HOLD_CURSORS_OVER_COMMIT The result set remains open even after the current
transaction is committed.

ResultSet Fetching 60

5.1 ResultSet scrollability

The JDBC resultSet can be traversed using an application-level cursor. The fetching mecha-
nism is therefore hidden behind an iterator API, which decouples the application code from
the data retrieval strategy. Some database drivers prefetch the whole result set on the client-
side, while other implementations retrieve batches of data on a demand basis.

By default, the resuitset uses a forward-only application-level cursor, which can be traversed
only once, from the first position to last one. Although this is sufficient for most applications,
JDBC also offers scrollable cursors, therefore allowing the row-level pointer to be positioned
freely (in any direction and on every record).

The main difference between the two scrollable result sets lays in their selectivity. An
insensitive cursor offers a static view of the current result set, so the data needs to be
fetched entirely prior to being iterated. A sensitive cursor allows the result set to be fetched
dynamically so it can reflect concurrent changes.

Oracle

Since the database engine does not offer support for scrollable result sets, the JDBC driver
emulates it on top of a client-side caching mechanism®. As a consequence, the result set
should not be too large as, otherwise, it can easily fill the client application memory.

P A sensitive scrollable result set is limited to selecting data from a single table only.

Ahttps: / /docs.oracle.com /database /121 /JJIDBC /resltset.htm#JIDBC28615
p

SQL Server

All three cursor types are supported. An insensitive scroll generates a server-side database
snapshot, which the client fetches in batches. The sensitive scroll uses a server-side updatable
window and changes are synchronized only for the current processing window.

The driver suggests using read-only cursors when there is no intent on updating the
result set. The forward-only scroll delivers the best performance for small result sets”.

https://docs.oracle.com/database/121/JJDBC/resltset.htm#JJDBC28615
https://docs.oracle.com/database/121/JJDBC/resltset.htm#JJDBC28615
https://msdn.microsoft.com/en-us/library/aa342344(v=sql.110).aspx

ResultSet Fetching 61

PostgreSQL

By default, the result set is fetched entirely and cached on the client-side. Only the forward-
only and the insensitive scroll are supported. For large result sets, fetching all records at once
can put much pressure on both the database server resources and the client-side memory.
For this purpose, PostgreSQL allows associating a result set to a database cursor® so records
can be fetched on demand.

PreparedStatement statement = connection.prepareStatement(
"SELECT title FROM post WHERE id BETWEEN ? AND 2"

F

statement.setFetchSize(100);

Only the forward-only result set type can benefit from database-side cursors, and the
statement fetch size must be set to a positive integer value.

Ahttps:/ /jdbc.postgresql.org/documentation /head /query.html

MySQL

Only the insensitive scroll type is supported, even when explicitly specifying a forward-only
result set. By default, the driver retrieves the whole result set and caches it on the client-side.
Large result sets can be streamed* if the statement type is both forward-only and read-only
and the fetch size value is set to Integer . MIN_VALUE value. This way, when iterating the Resuitset,
each row will be fetched individually, which might incur multiple database roundtrips. Also,
until the stream is closed, the connection cannot execute any other statement.

PreparedStatement statement = connection.prepareStatement(
"SELECT title FROM post WHERE id BETWEEN ? AND ?"

)i
statement .setFetchSize(Integer .MIN_VALUE);

Another option is to set the useCursorfetch’ Connection property to true and then set the
statement fetch size to a positive integer value indicating the number of records that need

to be fetched at a time.

statement .setFetchSize(100);

Ahttp:/ /dev.mysqgl.com/doc/connector-j/en/connector-j-reference-implementation-notes.html
bhttps: / /dev.mysql.com/doc/connector-j/8.0 /en/connector-j-reference-implementation-notes.html

https://jdbc.postgresql.org/documentation/head/query.html
https://jdbc.postgresql.org/documentation/head/query.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-implementation-notes.html

ResultSet Fetching 62

5.2 ResultSet changeability

By default, the result set is just a read-only view of the underlying data projection. Inspired
by database cursors, the JDBC standard offers updatable result sets, so the data access logic
can modify records while iterating the application-level cursor.

Mixing reading and writing logic into a single database transaction reminds of two-tier
architectures, where holding the result set, even in the user think time, was both common
and acceptable.

For web applications, requests should be as short as possible, and most application-level
transactions span over multiple web requests. The former request may use a read-only
database transaction to fetch data and render it to the user, while the latter might use a read-
write transaction to apply data modifications. In such scenario, an updatable result set is of
little use, especially because holding it open (along with the underlying database connection)
over multiple requests can really hurt application scalability.

The following test case verifies if a forward-only and read-only cursor performs better than
a sensitive and updatable one. The test executes 10 000 statements, fetching 100 posts along
with details and their associated 1000 comments.

16
14
12

10

Time (ms)
5 o ®

N

Forward-only and read-only Scroll sensitive and updatable

mDB A mDB B DB C mDBD
Figure 5.1: ResultSet cursor type

Every database system under test showed a slight improvement when using forward-only
and read-only result sets.

As a rule of thumb, if the current transaction does not require updating selected
records, the forward-only and read-only default result set type might be the most
efficient option. Even if it is a reminiscence from JDBC 1.0, the default result set is still
the right choice in most situations.

ResultSet Fetching 63

5.3 ResultSet holdability

The JDBC 3.0 version added support for result set holdability and, unlike scrollability and
updatability, the default value is implementation-specific.

Oracle

The default and the only supported holdability value is HoLD_CURSORS_OVER_COMMIT. An exception
is thrown when trying to change this setting to any other value.

SQL Server

By default, the result set is kept open even after the current transaction is committed or rolled
back. SQL Server supports the CLOSE_CURSORS_AT_COMMIT setting as well.

PostgreSQL

Unlike other database systems, the default holdability value is cLoSE_CURSORS_AT_commMIT, but the
driver also supports the HOLD_CURSORS_OVER_COMMIT setting.

MySQL

The default and the only supported holdability value is HOLD_CURSORS_OVER_COMMIT.

In a typical enterprise application, database connections are reused from one transaction to
another, so holding a result set after a transaction ends is risky. Depending on the underlying
database system and on the cursor type, a result set might allocate system resources, which,
for scalability reasons, need to be released as soon as possible.

engines, the same effect can be achieved by simply closing all acquired ResultSet(s)

p Although the cLose_cursors_aT_commIT holdability option is not supported by all database
and their associated statement objects.

5.4 Fetching size

The JDBC Rresultset acts as an application-level cursor, so whenever the statement is tra-
versed, the result must be transferred from the database to the client. The transfer rate is
controlled by the statement fetch size.

statement.setFetchSize(fetchSize);
A custom fetch size gives the driver a hint as to the number of rows needed to be retrieved

in a single database roundtrip. The default value of O leaves each database choose its driver-
specific fetching policy.

ResultSet Fetching 64

Oracle
The default fetch size is set to 10 records, as a consequence of the JDBC driver memory model.

The Oracle 10i and 11g drivers preallocate a byte[] and a char[] buffers at statement creation
time, whose lengths are given by the multiplication of the fetch size by the maximum memory
footprint of each selected column. A varcHARZ(N) column can accommodate at most N bytes.
Storing a field with a maximum size of 5 characters into a vArRCHAR2(4000) column would
preallocate 4000 bytes on the client-side, which is definitely a waste of memory.

Avoiding memory allocation, by reusing existing buffers, is a very solid reason for
employing statement caching. Only when using the implicit statement cache, the 10i
and 11g drivers can benefit from recycling client-side memory buffers.

The 12c implementation® defers the buffer allocation until the result set is ready for fetching.
This driver version uses two byte[] arrays instead, which are allocated lazily. Compared to the
previous versions, the 12c memory footprint is greatly reduced since, instead of allocating the
maximum possible data storage, the driver uses the actually extracted data size.

Although the optimal fetch size is application-specific, being influenced by the data size
and the runtime environment concurrency topology, the Oracle JDBC driver specification
recommends limiting the fetch size to at most 100 records.

Like with any other performance optimization, these indications are suggestions at best, and
measuring application performance is the only viable way of finding the right fetch size.

Ahttp:/ /www.oracle.com/technetwork /database /application-development/jdbc-memory-management-12c-
1964666.pdf

SQL Server

The SQL Server JDBC driver uses adaptive buffering®, so the result set is fetched in batches,
as needed. The size of a batch is therefore automatically controlled by the driver.

Although enabled by default, adaptive buffering is limited to forward-only and read-
only cursors. Both scrollable and updatable result sets operate on a single block of
data, whose length is determined by the current statement fetch size.

Ahttps:/ /msdn.microsoft.com/en-us/library /bb879937%28v=sql.110%29.aspx

http://www.oracle.com/technetwork/database/application-development/jdbc-memory-management-12c-1964666.pdf
http://www.oracle.com/technetwork/database/application-development/jdbc-memory-management-12c-1964666.pdf
http://www.oracle.com/technetwork/database/application-development/jdbc-memory-management-12c-1964666.pdf
https://msdn.microsoft.com/en-us/library/bb879937(v=sql.110).aspx
https://msdn.microsoft.com/en-us/library/bb879937(v=sql.110).aspx

ResultSet Fetching 65

PostgreSQL

The entire result set is fetched at once® into client memory. The default fetch size requires
only one database roundtrip, at the price of increasing the driver memory consumption. By
changing fetch size, the result set is associated with a database cursor, allowing data to be
fetched on demand.

Ahttps://jdbc.postgresql.org/documentation /head /query.html

MySQL

Because of the network protocol design consideration®, fetching the whole result set is the
most efficient data retrieval strategy. The only streaming option requires processing one
row at a time, and the number of database roundtrips is given by the read-ahead buffer
configuration.

Ahttp:/ /dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html

The following graph captures the response time of four database systems when fetching 10
000 rows while varying the fetch size of the forward-only and read-only Resultset.

600
500
400

300

Time (ms)

200

100

0 ..-_-__-__-__

1 10 100 1000 10000
Fetch size

mDB A mDB B DB C mDBD
Figure 5.2: ResultSet fetch size

Fetching one row at a time requires 10 000 roundtrips, and the networking overhead impacts
response time. Up to 100 rows, the fetch size plays an important role in lowering retrieval

https://jdbc.postgresql.org/documentation/head/query.html
https://jdbc.postgresql.org/documentation/head/query.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html

ResultSet Fetching 66

time (only 100 roundtrips), but beyond this point, the gain becomes less noticeable.

5.5 ResultSet size

Setting the appropriate fetching size can undoubtedly speed up the result set retrieval, as
long as a statement fetches only the data required by the current business logic. All too often,
unfortunately, especially with the widespread of ORM tools, the statement might select more
data than necessary. This issue might be caused by selecting too many rows or too many
columns, which are later discarded in the data access or the business layer.

5.5.1 Too many rows

Tables tend to grow (especially if the application gains more traction), and, with time, a
moderate result set might easily turn into a performance bottleneck. These issues are often
discovered in production systems, long after the application code was shipped.

A user interface can accommodate just as much info as the view allows displaying. For this
reason, it is inefficient to fetch a whole result set if it cannot fit into the user interface.
Pagination or dynamic scrolling are common ways of addressing this issue, and partitioning
data sets becomes unavoidable.

Limiting result sets is common in batch processing as well. To avoid long-running transac-
tions (which might put pressure on the database undo/redo logs), and to also benefit from
parallel execution, a batch processor divides the current workload into smaller jobs. This way,
a batch job can take only a subset of the whole processing data.

When the result set size is limited by external factors, it makes no sense to select more
data than necessary.

Without placing upper bounds, the result sets grow proportionally with the underlying
table data. A large result set requires more time to be extracted and to be sent over
the wire too.

Limiting queries can, therefore, ensure predictable response times and database
resource utilization. The shorter the query processing time, the quicker the row-level
locks are released, and the more scalable the data access layer becomes.

There are basically two ways of limiting a result set.

The former and the most efficient strategy is to include the row restriction clause in the SQL
statement. This way, the Optimizer can better come up with an execution plan that is optimal
for the current result set size (like selecting an index scan instead of a table scan).

The latter is to configure a maximum row count at the JDBC statement level. Ideally, the driver
can adjust the statement to include the equivalent result set size restriction as a SQL clause,
but, most often, it only hints the database engine to use a database cursor instead.

ResultSet Fetching 67

5.5.1.1 SQL limit clause

SQL:2008

Although the SQL:2008 added support for limiting result sets, only starting from Oracle 12c?,
SQL Server 2012° and PostgreSQL 8.4¢, the standard syntax started being supported.

SELECT pc.id AS pc_id, p.title AS p_title
FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id
ORDER BY pc_id

OFFSET ? ROWS

FETCH FIRST (?) ROWS ONLY

Surrounding the row count placeholder with parentheses is a workaround for a
PostgreSQL database issue?. On SQL Server it works with or without the enclosing
parentheses.

Older database versions or other database systems (e.g. MySQL 5.7) still rely on a vendor-
specific syntax to restrict the result set size.
Ahttps://docs.oracle.com/database /121 /SQLRF /statements_10002.htm#SQLRF01702

bhttps:/ /technet.microsoft.com /en-us/library /gg699618%28v=sql.110%29.aspx
Chttp:/ /www.postgresql.org/docs /current/static /sql-select.html#SQL-LIMIT

Oracle

Unlike other relational databases, Oracle does not have a reserved keyword for restricting a
query result set, but because each record is attributed a result set entry order number (given
by the rownum virtual column), the syntax for limiting a result set becomes:

SELECT *

FROM (
SELECT pc.id AS pc_id, p.title AS p_title
FROM post_comment pc
INNER JOIN post p ON p.id = pc.post_id
ORDER BY pc_id

)
WHERE ROWNUM <= ?

https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF01702
https://technet.microsoft.com/en-us/library/gg699618(v=sql.110).aspx
http://www.postgresql.org/docs/current/static/sql-select.html#SQL-LIMIT
http://stackoverflow.com/questions/32782524/limiting-results-with-the-sql2008-standard-on-postgresql-using-prepared-stateme/32783367#32783367
http://stackoverflow.com/questions/32782524/limiting-results-with-the-sql2008-standard-on-postgresql-using-prepared-stateme/32783367#32783367
https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF01702
https://technet.microsoft.com/en-us/library/gg699618(v=sql.110).aspx
http://www.postgresql.org/docs/current/static/sql-select.html#SQL-LIMIT

ResultSet Fetching 68

SQL Server

The top keyword has been the de facto way of restricting the result set size:

SELECT TOP (?) pc.id AS pc_id, p.title AS p_title
FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id

ORDER BY pc_id

PostgreSQL and MySQL

The LimiT keyword places an upper bound on the result set size:

SELECT pc.id AS pc_id, p.title AS p_title
FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id
ORDER BY pc_id

LIMIT ?

5.5.1.2 JDBC max rows

The JDBC specification defines the maxRows! attribute which limits all Resuitset(s) for the
current statement.

statement .setMaxRows(maxRows) ;

Unlike the SQL construct, the JDBC alternative is portable across all driver implementations.
This can be very handy especially when the application needs to support multiple database
systems.

According to the JDBC documentation, the driver is expected to discard the extra rows when
the maximum threshold is reached.

From a data access performance perspective, dropping extra rows is a poor strategy because
it wastes both database resources (CPU, I /O, Memory) as well as networking bandwidth.

Ihttp:/ /docs.oracle.com /javase /8 /docs /api /java /sql /Statement.html#setMaxRows-int-

http://docs.oracle.com/javase/8/docs/api/java/sql/Statement.html#setMaxRows-int-
http://docs.oracle.com/javase/8/docs/api/java/sql/Statement.html#setMaxRows-int-

ResultSet Fetching 69

Oracle

When a ResultSet is being traversed, the client-side cursor fetches data in chunks (the fetch
size attribute controlling the number of records in a chunk).

After each new batch retrieval, the total number of records is checked against the maxRows
upper bound, and if the threshold is reached, the driver closes the networking stream.

The maxRows upper bound can, therefore, prevent the database and the client-side driver from
wasting resources on fetching records the client does not even need. However, if the maxRows
value is small, the Optimizer will not use indexes if the size of the scanned data set is rather
large.

SQL Server

When the statement .setMaxRows (int maxRows)* method is called, the driver calls the SET ROWCOUNT
SQL command:

SET ROWCOUNT N

Unlike the top or FETCH SQL directives, the rRowcounT command is taken into consideration only
during the execution phase, and it does not influence the plan generation. Because of this,
the execution plan might not be optimized for the given result set size, so a table scan might
be chosen over an index.

The SQL Server documentation” recommends using the SQL directives over the set
ROWCOUNT command.

Ahttps:/ /msdn.microsoft.com/en-us/library /ms378838%28v=sql.110%29.aspx

PostgreSQL

The JDBC driver takes the maxRows statement attribute and sends it along with the query being
executed. With this info, the Optimizer can choose an execution plan that is tailored for the
given result set size, and it might even avoid some expensive operations like sorting the whole
projection. The Extractor can also close the database cursor right after it fetched the desired
number of records, therefore sparing both database and networking resources.

https://msdn.microsoft.com/en-us/library/ms378838(v=sql.110).aspx
https://technet.microsoft.com/en-us/library/ms189463.aspx
https://msdn.microsoft.com/en-us/library/ms378838(v=sql.110).aspx

ResultSet Fetching 70

MySQL

The maxRows attribute is not sent to the database server, so neither the Optimizer nor the
Extractor can benefit from this hint. While the JDBC driver would normally fetch all rows,
by placing an upper bound on the result set size, the client-side can spare some networking
overhead.

5.5.1.3 Less is more

The following test is going to demonstrate the performance improvement of limiting the
result set size. The test data set consists of 100 000 post and 1 000 000 comment entries.
In the first round, the entire result set is being fetched, and the response time is going to be
proportional to the projection size. By limiting the result set to 100 records, either by using
SQL or the JDBC maxRows setting, the response time is going to drop significantly.

5000
4500
4000
3500
3000

Time (ms)
N N
o u
S o
o o

1500
1000
500

Fetch all Fetch max rows Fetch limit

mDB A mDB B DB C mDBD
Figure 5.3: ResultSet size

The test results confirm the previous assumptions and the SQL level restriction proves to
be the optimal strategy for limiting a result set. The maxRows driver implementation yields a
surprisingly good result, especially when taking into consideration the JDBC specification
on dropping extra records. Fetching a large result set puts much pressure on database
resources, which does not only affect the current processing unit of work. Other concurrent
transactions can also exhibit longer processing times, as a consequence of database resources
shortage.

ResultSet Fetching !

5.5.2 Too many columns

Not only fetching too many rows can cause performance issues but even extracting too many
columns can increase the result set processing response time. The next test case is going to
select 100 posts with details and their associated 1000 comments, using one of following two
statements:

SELECT *

FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id
INNER JOIN post_details pd ON p.id = pd.id

SELECT pc.version

FROM post_comment pc

INNER JOIN post p ON p.id = pc.post_id
INNER JOIN post_details pd ON p.id = pd.id

The following graph depicts the execution times of fetching all columns, as opposed to
extracting only a subset of the whole column projection.

30

25

Time (ms)
= = N
o (O} o

9]

_BN

All columns Custom projection

mDB A mDB B DB C MDB.D
Figure 5.4: ResultSet projection size

This situation is more prevalent among ORM tools, as for populating entities entirely, all
columns are needed to be selected. This might pass unnoticed when selecting just a few
entities, but, for large result sets, this can turn into a noticeable performance issue.

If a business case requires only a subset of all entity attributes, fetching extra columns
will become a waste of database and application resources (CPU, Memory, I/0,
Networking).

6. Transactions

A database system must allow concurrent access to the underlying data. However, shared data
means that read and write operations must be synchronized to ensure that data integrity is
not compromised.

To control concurrent modifications, the Java programming language defines the synchronized
keyword for two purposes:

* It can restrict access to a shared object (to preserve invariants), so only a single Thread
can execute a routine at any given time.

* It propagates changes from the current Thread local memory to the global memory that
is available to all running threads of executions.

This behavior is typical for other concurrent programming environments and database
systems are no different. In a relational database, the mechanism for ensuring data integrity
is implemented on top of transactions.

A transaction is a collection of read and write operations that can either succeed or fail
together, as a unit. All database statements must execute within a transactional context, even
when the database client does not explicitly define its boundaries.

In 1981, Jim Gray first defined the properties of a database transaction in his famous paper:
The transaction concept: virtues and limitations!. Both this paper and the first versions of
the SQL standard (SQL-86 and SQL-89) only used three properties for defining a database
transaction: Atomicity, Consistency, and Durability.

Along with other relational database topics, the transaction research has continued ever
since, and so the SQL-92 version introduced the concept of Isolation Levels. These four
properties have been assembled in the well-known ACID (Atomicity, Consistency, Isolation,
and Durability) acronym that soon became synonym with relational database transactions.

Knowing how database transactions work is very important for two main reasons:

* effective data access (data integrity should not be compromised when aiming for high-
performance)

» efficient data access (reducing contention can minimize transaction response time
which, in turn, increases throughput).

The next sections detail each transaction property in relation to high-performance data
processing.

Ihttp:/ /research.microsoft.com /en-us /um/people /gray /papers /theTransactionConcept.pdf

http://research.microsoft.com/en-us/um/people/gray/papers/theTransactionConcept.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/theTransactionConcept.pdf

Transactions 73

6.1 Atomicity

Atomicity is the property of grouping multiple operations into an all-or-nothing unit of work,
which can succeed only if all individual operations succeed. For this reason, the database
must be able to roll back all actions associated with every executed statement.

X =11 X=11 X=11 X=11 X=-10
Y=2 Y=22 Y=22 Y=22 Y=22
Z=3 Z=3 Z=33 Z=30 Z=30

Failing Transactioni
I

(
I
|
[I — -]
BEGIN-> |x+=1o|—>|v+= 20}—>|z+= 3o| i—cowuvuT—i (BEG'N*E |Z“3 > X"21‘ {— ROLLBACK
\

)
|
]
1

X=1 X =11 X=11
Y=2 Y =22 Y =22
Z=3 Z=33 Z=33

Figure 6.1: Atomic units of work

Write-write conflicts

Ideally, every transaction would have a completely isolated branch which could be easily
discarded in case of a rollback. This scenario would be similar to how a Version Control System
(e.g. git) implements branching. In case of conflicts, the Virtual Control System aborts the
commit operation, and the client has to manually resolve the conflict. Unlike VCS tools, the
relational database engine must manage conflicts without any human intervention.

For this reason, the database prevents write-write conflict situations, and only one transac-
tion can write a record at any given time.

All statements are executed against the actual data structures (tables, indexes, in-memory
buffers), only to be materialized at commit time. In case of rollback, the database must revert
any pending changed datum to its previous state.

Oracle

The undo tablespace® stores the previous data versions in undo segments. Upon rolling back,
the database engine searches the associated undo segments that can recreate the before image
of every datum that was changed by the currently running transaction.

4https://docs.oracle.com/database /121 /ADMIN /undo.htm#ADMIN11460

https://docs.oracle.com/database/121/ADMIN/undo.htm#ADMIN11460
https://docs.oracle.com/database/121/ADMIN/undo.htm#ADMIN11460

Transactions 74

SQL Server

The transaction log® stores details about the currently running transactions and their asso-
ciated modifications. The rollback process scans the transaction log backward to find the
associated undo records. When the record is found, the database engine restores the before
image of the affected datum.

To prevent the transaction log from filling up, the log must be truncated on a regular
basis. Long-running transactions can delay the truncation process, so that is another
reason to avoid them as much as possible.

Ahttps:/ /msdn.microsoft.com/en-us/library /ms190925.aspx

PostgreSQL

Unlike other database systems, PostgreSQL does not use a dedicated append-only undo log.
Because of its multi-version nature, every database object maintains its own version history.
In the absence of the log seek-up phase, the rollback process becomes much lighter as it only
requires to switch from one version to the other.

The downside is that the previous version space is limited in size, and so it must be reused.
The process of reclaiming the storage occupied by old versions is called VACUUMING.

Each transaction has an associated XID%, and newer transactions must have a greater XID
number than all previous ones.

The transaction XID is a 32-bit number so it can accommodate over 4 billion transactions. In
a high-performance application, the transaction lifespan is very short, and if the VACUUM
process is disabled, this threshold may be reached. When the XID counter reaches its
maximum value, it wraps around and start again from zero.

The transactions issued prior to the XID wraparound have their identifiers greater than
newer transactions started after the XID counter reset. This anomaly can cause the system to
perceive older transactions as they were started in the future, which can lead to very serious
data integrity issues.

Ahttp:/ /www.postgresql.org /docs/current/static /routine-vacuuming.html

https://msdn.microsoft.com/en-us/library/ms190925.aspx
https://msdn.microsoft.com/en-us/library/ms190925.aspx
http://www.postgresql.org/docs/current/static/routine-vacuuming.html
http://www.postgresql.org/docs/current/static/routine-vacuuming.html

Transactions 75

MySQL
The undo log is stored in the rollback segment® of the system tablespace.

Each undo log is split into two sections, one responsible for rolling back purposes and the
other for reconstructing the before image. The first section can be wiped out right after the
transaction is ended, while the other needs to linger for as long as any currently running query
or other concurrent transactions need to see a previous version of the records in question.

Behind the scenes, MySQL runs a purge process that cleans up the storage occupied by
deleted records, and it also reclaims the undo log segments that are no longer required.

Long-running transactions delay the purge process execution, causing the undo log
to grow very large, especially in write-heavy data access scenarios.

Ahttps://dev.mysqgl.com/doc/refman/5.7 /en/innodb-multi- versioning.html

6.2 Consistency

A modifying transaction can be seen as a state transformation, moving the database from one
valid state to another. The relational database schema ensures that all primary modifications
(insert/update/delete statements), as well as secondary ones (issued by triggers), obey
certain rules on the underlying data structures:

column types

column length

column nullability
foreign key constraints

* unique key constraints
custom check constraints.

Consistency is about validating the transaction state change so that all committed trans-
actions leave the database in a proper state. If only one constraint gets violated, the entire
transaction will be rolled back, and all modifications are going to be reverted.

Although the application must validate user input prior to crafting database statements, the
application-level checks cannot span over other concurrent requests, possibly coming from
different web servers. When the database is the primary integration point, the advantages of
a strict schema become even more apparent.

https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-multi-versioning.html

Transactions

76

MySQL

Traditionally, MySQL constraints are not strictly enforced®, and the database engine replaces
invalid values with predefined defaults:

Out-of-range numeric values are set to either O or the maximum possible value.

string values are trimmed to the maximum length.

Incorrect Date/Time values are permitted (e.g. 2015-02-30).

NOT NULL constraints are only enforced for single INSERT statements. For multi-row
inserts, O replaces a null numeric value, and ' is used for a null string.

Since the 5.0.2 version, strict constraints are possible if the database engine is configured to
use a custom sql mode®:

SET GLOBAL sql_mode='POSTGRESQL ,STRICT_ALL_TABLES';

Because the sql_mode resets on server startup, it is better to set it up in the MySQL configu-
ration file:

[mysqld]
sql_mode = POSTGRESQL,STRICT_ALL_TABLES

Ahttps://dev.mysql.com/doc/refman/5.7/en/constraint-invalid-data.html
bhttps:/ /dev.mysql.com/doc/refman /5.7 /en /sql-mode.html

Consistency as in CAP Theorem

According to the CAP theorem®, when a distributed system encounters a network partition,
the system must choose either Consistency (all changes are instantaneously applied to all
nodes) or Availability (any node can accept a request), but not both. While in the definition
of ACID, consistency is about obeying constraints, in the CAP theorem context, consistency
refers to linearizability®, which is an isolation guarantee instead.

Ahttps://en.wikipedia.org/wiki/CAP_theorem
bhttp: / /www.bailis.org /blog /linearizability-versus-serializability /

https://dev.mysql.com/doc/refman/5.7/en/constraint-invalid-data.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
https://dev.mysql.com/doc/refman/5.7/en/constraint-invalid-data.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html
https://en.wikipedia.org/wiki/CAP_theorem
http://www.bailis.org/blog/linearizability-versus-serializability/
https://en.wikipedia.org/wiki/CAP_theorem
http://www.bailis.org/blog/linearizability-versus-serializability/

Transactions 77

6.3 Isolation

If there were only one user accessing the database, there would not be any risk of data
conflicts. According to the Universal Scalability Law, if the sequential fraction of the data
access patterns is less than 100%, the database system may benefit from parallelization.

By offering multiple concurrent connections, the transaction throughput can increase, and
the database system can accommodate more traffic. However, parallelization imposes addi-
tional challenges as the database must interleave transactions in such a way that conflicts do
not compromise data integrity. The execution order of all the currently running transaction
operations is said to be serializable when its outcome is the same as if the underlying
transactions were executed one after the other.

The serializable execution is, therefore, the only transaction isolation level that does not
compromise data integrity while allowing a certain degree of parallelization. In 1981, Jim
Gray described the largest airlines and banks as having 10 000 terminals and 100 active
transactions, which explains why, up until SQL-92, serializable was the de facto transaction
isolation level.

6.3.1 Concurrency control

To manage data conflicts, several concurrency control mechanisms have been developed
throughout the years. There are two strategies for handling data collisions:

* Avoiding conflicts (e.g. two-phase locking) requires locking to control access to shared
resources.

* Detecting conflicts (e.g. Multi-Version Concurrency Control) provides better concur-
rency, at the price of relaxing serializability and possibly accepting various data anoma-
lies.

6.3.1.1 Two-phase locking

In 1976, Kapali Eswaran and Jim Gray (et al.) published The Notions of Consistency and
Predicate Locks in a Database System? paper, which demonstrated that serializability could
be obtained if all transactions used the two-phase locking (2PL) protocol.

Initially, all database systems employed 2PL for implementing serializable transactions, but,
with time, many vendors have moved towards an MVCC (Multi-Version Concurrency Control)
architecture. By default, SQL Server still uses locking for implementing the Serializability
isolation level.

Because 2PL guarantees transaction serializability, it is very important to understand the
price of maintaining strict data integrity on the overall application scalability and transaction
performance.

2http://research.microsoft.com/en—us/um/people/gray/papers/On%ZOthe%ZONotions%ZOof%ZOConsistency%ZOand%
20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf

http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf

Transactions 78

However, locking is not used only in 2PL implementations, and, to address both DML and DDL
statement interaction and to minimize contention on shared resources, relational database
systems use Multiple granularity locking®.

Database objects are hierarchical in nature, a logical tablespace being mapped to multiple
database files, which are built of data pages, each page containing multiple rows. For this
reason, locks can be acquired on different database object types.

Locking on lower levels (e.g. rows) can offer better concurrency as it reduces the likelihood
of contention. Because each lock takes resources, holding multiple lower-level locks can add
up, so the database might decide to substitute multiple lower-level locks into a single upper-
level one. This process is called lock escalation, and it trades off concurrency for database
resources.

Each database system comes with its own lock hierarchy, but the most common types (even
mentioned by the 2PL initial paper) remain the following ones:

* shared (read) lock, preventing a record from being written while allowing reads
* exclusive (write) lock, disallowing both read and write operations.

Locks alone are not sufficient for preventing conflicts. A concurrency control strategy
must define how locks are being acquired and released because this also has an impact on
transaction interleaving.

For this purpose, the 2PL protocol defines a lock management strategy for ensuring serializ-
ability. The 2PL protocol splits a transaction into two sections:

 expanding phase (locks are acquired, and no lock is released)
* shrinking phase (all locks are released, and no other lock is further acquired).

In lock-based concurrency control, all transactions must follow the 2PL protocol, as other-
wise serializability might be compromised, resulting in data anomalies.

Transaction schedule

To provide recovery from failures, the transaction schedule (the sequence of all interleaved
operations) must be strict. If a write operation, in a first transaction, happens-before a conflict
occurring in a subsequent transaction, in order to achieve transaction strictness, the first
transaction commit event must also happen before the conflict.

Because operations are properly ordered, strictness can prevent cascading aborts (one trans-
action rollback triggering a chain of other transaction aborts, to preserve data consistency).
Releasing all locks only after the transaction has ended (either commit or rollback) is a
requirement for having a strict schedule.

3https:/ /en.wikipedia.org /wiki/Multiple_granularity_locking

https://en.wikipedia.org/wiki/Multiple_granularity_locking
https://en.wikipedia.org/wiki/Multiple_granularity_locking

Transactions

79

The following diagram shows how transaction interleaving is coordinated by 2PL:

post

id:1

title:'Transactions'

[l post

id:1

Database

BEGIN TRANSACTION-—=========——= >
Lock Acquisition Phase

title:'Transactions'

Bob

SELECT *

FROM post
WHERE id = 1

‘BEGIN TRANSACTION ————————
Lock Acquisition Phase

A

Wait For Lock

SELECT *

FROM post

WHERE id =1 post
id:1

title:'Transactions'

UPDATE post

D

______ - <

= COMMIT ===========———— ===

post

id:1
title:'ACID*

* Lock Release Phase

BEGIN TRANSACTION-—==========—- >

Lock Acquisition Phase
SELECT *

FROM post
WHERE id = 1

Wait For Lock

post

SET title ="'ACID'
WHERE id = 1

-COMMIT

= A

id:1
title:'ACID'

Figure 6.2: Two-phase locking

Lock Release Phase

Both Alice and Bob select a post record, both acquiring a shared lock on this record.
When Bob attempts to update the post entry, his statement is blocked by the Lock

Manager because Alice is still holding a shared lock on this database row.

update operation.

Only after Alice’s transaction ends and all locks are being released, Bob can resume his

Bob’s update generates a lock upgrade, so the shared lock is replaced by an exclusive

lock, which prevents any other concurrent read or write operation.
* Alice starts a new transaction and issues a select query for the same post entry, but
the statement is blocked by the Lock Manager since Bob owns an exclusive lock on this

record.

* After Bob’s transaction is committed, all locks are released, and Alice’s query can be
resumed, so she gets the latest value of this database record.

Transactions

80

Alice

Deadlocks

Using locking for controlling access to shared resources is prone to deadlocks, and the
transaction scheduler alone cannot prevent their occurrences.

Database|

post

id:1

title:'Transactions'

—-——BEGIN TRANSACTION-———=———

UPDATE post_details

—=-SET updated_by ="Alice' —————-—-

WHERE id = 1

post

post_details

id:1
updated_by:'Bob'

<—BEGIN TRANSACTION

post_details

id:1
updated_by:'Alice’

UPDATE post

<€ SET title = 'ACID'

id:1
title:'ACID'

Wait for post_details row-level lock
to be released

UPDATE post

—————— SET title = 'BASE' -——-----=

WHERE id = 1

WHERE id = 1

UPDATE post_details
SET updated_by = 'Bob’
WHERE id = 1

Wait for post row-level lock
to be released

Figure 6.3: Dead lock

A deadlock happens when two concurrent transactions cannot make progress because each
one waits for the other to release a lock. Because both transactions are in the lock acquisition
phase, neither one releases a lock prior to acquiring the next one.

Bob

Preserving the lock order becomes the responsibility of the data access layer, and the
database can only assist in recovering from a deadlock situation.

The database engine runs a separate process that scans the current conflict graph for lock-
wait cycles (which are caused by deadlocks). When a cycle is detected, the database engine
picks one transaction and aborts it, causing its locks to be released, so the other transaction

can make progress.

Transactions 81

6.3.1.2 Multi-Version Concurrency Control

Although locking can provide a serializable transaction schedule, the cost of lock contention
can undermine both transaction response time and scalability. The response time can in-
crease because transactions must wait for locks to be released, and long-running transactions
can slow down the progress of other concurrent transactions as well. According to both
Amdahl’'s Law and the Universal Scalability Law, concurrency is also affected by contention.

To address these shortcomings, the database vendors have opted for optimistic concurrency
control mechanisms. If 2PL prevents conflicts, Multi-Version Concurrency Control (MVCC)
uses a conflict detection strategy instead.

The promise of MVCC is that readers do not block writers and writers do not block
readers. The only source of contention comes from writers blocking other concurrent
writers, which otherwise would compromise transaction rollback and atomicity.

To prevent blocking, the database can rebuild previous versions of a database record so
an uncommitted change can be hidden away from incoming concurrent readers. The lack
of locking makes it more difficult to implement a serializable schedule, so the database
engine must analyze the current interleaving operations and detect anomalies that would
compromise serializability.

Oracle

Oracle does not implement 2PL at all, relying on MVCC mechanism for managing concurrent
data access. Every query gets a point-in-time data snapshot and, depending on the isolation
level, the timestamp reference can be relative to the current statement or to the current
transaction start time.

To rebuild previous record versions, Oracle uses the undo segments®, which already contain
all the necessary data required for rolling back an uncommitted change. The point-in-time
is based on the System Change Number (SCN), which is a logical timestamp reference and,
unlike physical time, is guaranteed to be incremented monotonically.

Apart from MVCC, Oracle also supports explicit locking as well, using the SELECT FOR UPDATE
SQL syntax.

Ahttps://docs.oracle.com/database /121/CNCPT /consist.htm#CNCPT221

https://docs.oracle.com/database/121/CNCPT/consist.htm#CNCPT221
https://docs.oracle.com/database/121/CNCPT/consist.htm#CNCPT221

Transactions

82

SQL Server

By default, SQL Server uses locks for implementing all the isolation levels stipulated by the
SQL standard.

For the Read Committed isolation level to take advantage of the MVCC model, the following
configuration must be set first:

ALTER DATABASE high_per formance_java_persistence
SET READ_COMMITTED_SNAPSHOT ON;

For a higher-level isolation, SQL Server offers the Snapshot isolation mode, which must be
activated at the database level:

ALTER DATABASE high_performance_java_persistence
SET ALLOW_SNAPSHOT_ISOLATION ON;

Because Snapshot is a custom isolation level, it must also be set at the connection level prior
to starting a new transaction:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

GO
BEGIN TRANSACTION;
GO
COMMIT TRANSACTION;
GO

After enabling row versioning, the database can track record changes in the tempdb database.

When a row is either updated or deleted, the current row entry holds a reference back to the
previous version, which is recorded in the version store, in the tempdb database. Rows are
not deleted right away but only marked for deletion, the actual removal being done by the
Ghost cleanup task. Old versions must be kept for as long as a currently running transaction
might need them, which is specified by the transaction isolation level.

The Ghost cleanup task runs periodically and reclaims storage from old versions that are no
longer necessary.

A long-running transaction would require the database engine to keep some old
version for a very long time, and, because version changes are chained in a linked

list structure, restoring a very old version might becomes resource intensive.

Transactions

83

PostgreSQL

Unlike all other database systems, PostgreSQL stores both the current rows and their
previous versions (even the ones for the aborted transactions) in the actual database table.
Like Oracle, PostgreSQL embraces the MVCC data access model, and it does not offer a 2PL
transaction isolation implementation at all.

Each table row has two additional columns (xmin and xmax), which are used to control the
visibility of various row versions. When a row is inserted, the current transaction identifier is
stored in the xmin column.

Both the update and the delete operations end up creating a new row entry with a xmax
column storing the current transaction identifier.

The Vacuum cleaner process runs regularly and reclaims storage occupied by deleted entries
(and successfully committed) or by previous versions that are no longer required by the
currently running transactions.

Although PostgreSQL is seen as a pure MVCC model, locking is still required to prevent write-
write conflicts or for explicit locking®. seLECT FOR UPDATE is used to acquire an exclusive row-
level lock, while seLecT ForR sHARE is for applying a shared lock instead.

Ahttp:/ /www.postgresql.org/docs/current/static /explicit-locking.html

MySQL

The InnoDB storage engine offers support for ACID transactions and uses MVCC for control-
ling access to shared resources. The InnoDB MVCC implementation is very similar to Oracle,
and previous versions of database rows are stored in the rollback segment as well.

When a transaction demands a previous row version, MySQL must reconstruct it from
rollback segments. Delete operations just mark an entry as being ready for deletion, and the
purge thread is going to do the actual physical cleanup.

Both the transaction rollback and the previous row version restoring processes (required by
a given transaction visibility guarantees) are very much the same thing.

Like other database systems, MySQL also offers explicit locking® for when MVCC is no longer
satisfactory. A shared lock is acquired using SELECT Lock IN SHARE mopE, while, for exclusive
locks, the much more common SELECT FOR UPDATE syntax is being used.

Ahttps://dev.mysgl.com/doc/refman /5.7 /en/innodb-locking-reads.html

http://www.postgresql.org/docs/current/static/explicit-locking.html
http://www.postgresql.org/docs/current/static/explicit-locking.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html

Transactions 84

6.3.2 Phenomena

For reasonable transaction throughput values, it makes sense to imply transaction serializ-
ability. As the incoming traffic grows, the price for strict data integrity becomes too high,
and this is the primary reason for having multiple isolation levels. Relaxing serializability
guarantees may generate data integrity anomalies, which are also referred as phenomena.

The SQL-92 standard introduced three phenomena that can occur when moving away from
a serializable transaction schedule:

* dirty read
* non-repeatable read
* phantom read.

In reality, there are other phenomena that can occur due to transaction interleaving, as the
famous paper A Critique of ANSI SQL Isolation Levels* describes:

* dirty write
* read skew

e write skew
* lost update.

Choosing a certain isolation level is a trade-off between increasing concurrency and acknowl-
edging the possible anomalies that might occur.

Scalability is undermined by contention and coherency costs. The lower the isolation level,
the less locking (or multi-version transaction abortions), and the more scalable the application
gets.

However, a lower isolation level allows more phenomena, and the data integrity responsibility
is shifted from the database side to the application logic, which must ensure that it takes all
measures to prevent or mitigate any such data anomaly.

Before jumping to isolation levels, it is better to understand what’s behind each particular
phenomenon and how it can affect data integrity. When choosing a given transaction isolation
level, understanding phenomena becomes fundamental to taking the right decision,

4http:/ /research.microsoft.com /apps/pubs /default.aspx?id=69541

http://research.microsoft.com/apps/pubs/default.aspx?id=69541
http://research.microsoft.com/apps/pubs/default.aspx?id=69541

Transactions 85

6.3.2.1 Dirty write

A dirty write happens when two concurrent transactions are allowed to modify the same row
at the same time. As previously mentioned, all changes are applied to the actual database
object structures, which means that the second transaction simply overwrites the first
transaction pending change.

Alice Database post Bob
id:1
--------- BEGIN TRANSACTION-—==-===3/ ftitle: Transactions'

<«€— BEGIN TRANSACTION

UPDATE post post
——————————— SET title = 'ACID' —————————»
WHERE id = 1 id:1
title:'ACID'
post UPDATE post
< SET title = 'BASE'
id:1 WHERE id = 1
title:' BASE'
post
————————————— ROLLBACK-——====—=——=>»
id:1

title:'Transactions'

Figure 6.4: Dirty write

If the two transactions commit, one transaction will silently overwrite the other transaction,
causing a lost update. Another problem arises when the first transaction wants to roll back.
The database engine would have to choose one of the following action paths:

* It can restore the row to its previous version (as it was before the first transaction
changed it), but then it overwrites the second transaction uncommitted change.

* It can acknowledge the existence of a newer version (issued by the second transaction),
but then, if the second transaction has to roll back, its previous version will become the
uncommitted change of the first transaction.

If the database engine did not prevent dirty writes, guaranteeing rollbacks would not be
possible. Because atomicity cannot be implemented in the absence of reliable rollbacks, all
database systems must, therefore, prevent dirty writes.

Although the SQL standard does not mention this phenomenon, even the lowest isolation
level (Read Uncommitted) can prevent it.

Transactions 86

6.3.2.2 Dirty read

As previously mentioned, all database changes are applied to the actual data structures
(memory buffers, data blocks, indexes). A dirty read happens when a transaction is allowed
to read the uncommitted changes of some other concurrent transaction. Taking a business
decision on a value that has not been committed is risky because uncommitted changes might
get rolled back.

Alice Database|| post Bob
id:1
title:"Transactions'
———————— BEGIN TRANSACTION ——————2»
< BEGIN TRANSACTION
UPDATE post post
—————————— SET title ='ACID' ———-———-> id-1
WHERE id =1 title* ACID'
SELECT *
< FROM post
WHERE id =1
post
post id:1
———————————— ROLLBACK -—————————-> title:'ACID'
id:1

| title:'Transactions'

Figure 6.5: Dirty read

This anomaly is only permitted by the Read Uncommitted isolation level, and, because of the
serious impact on data integrity, most database systems offer a higher default isolation level.

To prevent dirty reads, the database engine must hide uncommitted changes from all
other concurrent transactions. Each transaction is allowed to see its own changes because
otherwise the read-your-own-writes consistency guarantee is compromised.

If the underlying database uses 2PL (Two-Phase Locking), the uncommitted rows are pro-
tected by write locks which prevent other concurrent transactions from reading these
records until they are committed.

When the underlying database uses MVCC (Multi-Version Concurrency Control), the database
engine can use the undo log which already captures the previous version of every un-
committed record, to restore the previous value in other concurrent transaction queries.
Most database systems optimize the before image restoring process, therefore lowering its
overhead on the overall application performance.

Read Uncommitted is rarely needed (non-strict reporting queries where dirty reads are
acceptable), so Read Committed is usually the lowest practical isolation level.

Transactions 87

6.3.2.3 Non-repeatable read

If one transaction reads a database row without applying a shared lock on the newly fetched
record, then a concurrent transaction might change this row before the first transaction has
ended.

Alice Databasel|| POSt Bob

—————— BEGIN TRANSACTION-—--»|| id:1
title:'Transactions'

«< BEGIN TRANSACTION
SELECT *
< FROM post
WHERE id =1 post
UPDATE post post id-1
________ SET title = 'ACID" ~====-3 t'tie"Transact'ons'
WHERE id = 1 id:1 e '
title:'ACID'
post
——————————— COMMIT-—————————>»
id:1
title:'ACID' SELECT *
< FROM post
WHERE id =1
post
id:1
title:'ACID'

Figure 6.6: Non-repeatable read

This phenomenon is problematic when the current transaction makes a business decision
based on the first value of the given database row (a client might order a product based on a
stock quantity value that is no longer a positive integer).

Most database systems have moved to a Multi-Version Concurrency Control model, and
shared locks are no longer mandatory for preventing non-repeatable reads. By verifying the
current row version, a transaction can be aborted if a previously fetched record has changed
in the meanwhile.

Repeatable Read and Serializable prevent this anomaly by default. With Read Committed, it is
possible to avoid non-repeatable (fuzzy) reads if the shared locks are acquired explicitly (e.g.
SELECT FOR SHARE).

Some ORM frameworks (e.g. JPA /Hibernate) offer application-level repeatable reads. The first
snapshot of any retrieved entity is cached in the currently running Persistence Context. Any
successive query returning the same database row is going to use the very same object that
was previously cached. This way, the fuzzy reads may be prevented even in Read Committed
isolation level.

Transactions 88

6.3.2.4 Phantom read

If a transaction makes a business decision based on a set of rows satisfying a given predicate,
without range locks, a concurrent transaction might insert a record matching that particular
predicate.

Alice Database|| Post_comment ‘ Bob
|-c-i“1- post_comment ‘
ﬂi d:2 post_comment
Post g
post_id: 1
< BEGIN TRANSACTION
SELECT *
<€——FROM post_comment
------------ BEGIN TRANSACTION-=-=--=-—--3 WHERE post_id = 1 post_comment \
INSERT INTO post_comment ‘ id:1 E)is:_comment ‘
—————————— post_comment (id, post_id) ========3| === 50g4 comment ‘ BESH o [PESE ERAE
VALUES (4, 1) id:1 T post
post .~ post_comment ‘ Postiy3
e post_id: 1
postjgg Postcomment
Post .4
----------------- COMMIT —=========—=—==3| post_id: 1 SELECT *
< FROM post_comment
post_comment ‘ WHERE post_id = 1
" post_comment ‘ post_comment
id:1 - post
post g7 post comment | o (4
post . 43 post_comment post - id:3 post_id: 1
R B —__id:2 post_id: 1 \
POst g4 id:1 post_id: 1 |
| post_id: 1 I post_id: 1 | i

Figure 6.7: Phantom read

The SQL standard says that Phantom Read occurs if two consecutive query executions render
different results because a concurrent transaction has modified the range of records in
between the two calls. Although providing consistent reads is a mandatory requirement for
serializability, that is not sufficient. For instance, one buyer might purchase a product without
being aware of a better offer that was added right after the user has finished fetching the offer
list.

The 2PL-based Serializable isolation prevents Phantom Reads through the use of predicate
locking. On the other hand, MVCC database engines address the Phantom Read anomaly
by returning consistent snapshots. However, a concurrent transaction can still modify the
range of records that was read previously. Even if the MVCC database engine introspects the
transaction schedule, the outcome is not always the same as a 2PL-based implementation.
One such example is when the second transaction issues an insert without reading the same
range of records as the first transaction. In this particular use case, some MVCC database
engines will not end up rolling back the first transaction.

Transactions 89

6.3.2.5 Read skew

Read skew is a lesser-known anomaly that involves a constraint on more than one database
table. In the following example, the application requires the post and the post_details to be
updated in sync. Whenever a post record changes, its associated post_details must register
the user who made the current modification.

Alice Database|| POSt Bob
post_details id:1
title:'Transactions'
id:1
updated by:'Alice'
———————————————— BEGIN TRANSACTION-———==—=——=——->»
<—BEGIN TRANSACTION
SELECT *
——————————————————— FROM post ~——=======—===—=—-3
post WHERE id =1
post UPDATE post
id:1 <€——SET title = 'ACID'
PR : ' id:1 WHERE id =1
title:'T t '
itle:'Transactions fitle"ACID'
post_details _
UPDATE post_details
id-1 <— SET updated_by = Bob' —
updated by:'Bob' WHERE id =1
t
pes <«——CcoMMIT
id:1 post_details
title:'ACID'
SELECT * ' id1
_________________ FROM post_details-------———------) updated by:'Bob'
post_details WHERE id = 1
id:1
|| updated by:'Bob' i i

Figure 6.8: Read skew

In between selecting the post and the post_details rows, a second transaction sneaks in and
manages to update both records. The first transaction sees an older version of the post row
and the latest version of the associated post_details. Because of this read skew, the first
transaction assumes that this particular post was updated by Bob, although, in fact, it is an
older version updated by Alice.

Like with non-repeatable reads, there are two ways to avoid this phenomenon:

» The first transaction can acquire shared locks on every read, therefore preventing the
second transaction from updating these records.

* The first transaction can be aborted upon validating the commit constraints (when using
an MVCC implementation of the Repeatable Read or Serializable isolation levels).

90

Transactions

6.3.2.6 Write skew

Like read skew, this phenomenon involves disjoint writes over two different tables that are
constrained to be updated as a unit. Whenever the post row changes, the client must update

the post_details with the user making the change.

Alice Database Bob
post_details
———————————————— BEGIN TRANSACTION-~------------>/
___________________ EEIE)EMCgost e BEGIN TRANSACTION
. SELECT *
ost WHERE id = 1
post ! < FROM post
id:1 WHERE id =1 post
title:'Transactions' -c-j--‘l _______________
SELECT * 1.1 L
________________ -FROM post_details-—---—-----—----> SELECT * title:'Transactions' |
ost details WHERE id = 1 < FROM pgst_details
?_-__: __________________ WHERE id = 1 post_details
id:1 '" """"""""""""
updated_by:'Bob' 'd'; S
updated by:'Bo
e UPDATE post
- < SET title = 'ACID'
titler ACID' WHERE id =1
post
......................... < COMMIT
id:1
title:'ACID’
. e post_details
UPDATE post_details |\
——————————————— SET updated_by = Alice' -————————————->» id:1
WHERE id = 1 updated_by:'Alice’
post_details
_____________________ COMM|T'___________________> |d1
1 Ll updated by:'Alice’ i

Figure 6.9: Write skew

Both Alice and Bob selects the post and its associated post_details record. If write skew
is allowed, Alice and Bob can update these two records separately, therefore breaking the
constraint.

Like with non-repeatable reads, there are two ways to avoid this phenomenon:

 The first transaction can acquire shared locks on both entries, therefore preventing the
second transaction from updating these records.

* The database engine can detect that another transaction has changed these records,
and so it can force the first transaction to roll back (under an MVCC implementation of
Repeatable Read or Serializable).

Transactions 91

6.3.2.7 Lost update

This phenomenon happens when a transaction reads a row while another transaction
modifies it prior to the first transaction to finish. In the following example, Bob’s update is
silently overwritten by Alice, who is not aware of the record update.

Alice Database|| POst Bob
id:1
title:'Transactions'
———————————————— BEGIN TRANSACTION -==-===-==-==-=3
SELECT *
———————————————————— FROM post -—===—=============3
t id =
pos WHERE id =1 <——BEGIN TRANSACTION
id:1 post UPDATE post
title:" Transactions' «—— SET title = 'ACID'
id:1 WHERE id =1
title:'ACID'
post
< COMMIT
id:1
title:'ACID'
UPDATE post post
—————————————————— SET title = 'BASE' -—-—----=-----—=>| ==
WHERE id = 1 id:1
title:'BASE'
post
—————————————————————— COMMIT ================mm== 3 -
id:1
| | titleBASE' |

Figure 6.10: Lost update

This anomaly can have serious consequences on data integrity (a buyer might purchase a
product without knowing the price has just changed), especially because it affects Read
Committed, the default isolation level in many database systems.

Traditionally, Repeatable Read protected against lost updates since the shared locks could
prevent a concurrent transaction from modifying an already fetched record. With MVCC, the
second transaction is allowed to make the change, while the first transaction is aborted when
the database engine detects the row version mismatch (during the first transaction commit).

Most ORM tools, such as Hibernate, offer application-level optimistic locking, which auto-
matically integrates the row version whenever a record modification is issued. On a row
version mismatch, the update count is going to be zero, so the application can roll back the
current transaction, as the current data snapshot is stale.

Transactions 92

6.3.3 Isolation levels

As previously stated, Serializable is the only isolation level to provide a truly ACID transaction
interleaving. However, serializability comes at a price as locking introduces contention,
which, in turn, limits concurrency and scalability. Even in multi-version concurrency models,
serializability may require aborting too many transactions that are affected by phenomena.

For this purpose, the SQL-92 version introduced multiple isolation levels, and the database
client has the option of balancing concurrency against data correctness. Each isolation level
is defined in terms of the minimum number of phenomena that it must prevent, and so the
SQL standard introduces the following transaction isolation levels:

Table 6.1: Standard isolation levels

Isolation Level Dirty read Non-repeatable read Phantom read
Read Uncommitted Yes Yes Yes
Read Committed No Yes Yes
Repeatable Read No No Yes
Serializable No No No

Without an explicit setting, the JDBC driver uses the default isolation level, which can be
introspected using the getDefaultTransactionIsolation()5 method of the batabaseMetaData object:

int level = connection.getMetaData().getDefaultTransactionIsolation();

The default isolation level can be changed using the setTransactionIsolation(int level)® con-
nection method.

connection.setTransactionlsolation(Connection. TRANSACTION_SERIALIZABLE);

Even if ACID properties imply a serializable schedule, most relational database systems use a
lower default isolation level instead:

* Read Committed (Oracle, SQL Server, PostgreSQL)
* Repeatable Read (MySQL).

The following sections go through each particular transaction isolation level and demonstrate
the actual list of phenomena that are prevented by a given database system.

Shttp:/ /docs.oracle.com/ javase /8 /docs/api/java/sql /DatabaseMetaData.html#getDefaultTransactionlsolation--
Bhttp:/ /docs.oracle.com /javase /8 /docs /api /java/sql /Connection.html#setTransactionlsolation-int-

http://docs.oracle.com/javase/8/docs/api/java/sql/DatabaseMetaData.html#getDefaultTransactionIsolation--
http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setTransactionIsolation-int-
http://docs.oracle.com/javase/8/docs/api/java/sql/DatabaseMetaData.html#getDefaultTransactionIsolation--
http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setTransactionIsolation-int-

Transactions

6.3.3.1 Read Uncommitted

Table 6.2: Read Uncommitted phenomena occurrence

93

Phenomena SQL Server PostgreSQL MySQL
Dirty Write No No No
Dirty Read Yes No Yes
Non-Repeatable Read Yes Yes Yes
Phantom Read Yes Yes Yes
Read Skew Yes Yes Yes
Write Skew Yes Yes Yes
Lost Update Yes Yes Yes
Oracle

Uncommitted isolation on the current Connection.

Dirty reads are not allowed, and so the lowest isolation level is Read Committed.

ﬁ The JDBC driver will even throw an exception if the client tries to set the Read

SQL Server

reads.

Read Uncommitted only protects against dirty writes, all other phenomena being allowed.
When using Read Uncommitted, there is no exclusive lock associated with a given SQL
modification, so uncommitted changes are available to other concurrent transactions even
before they get committed. If the risk of dirty reads can be assumed, avoiding exclusive locks
may speed up reporting queries, especially when scanning large amounts of data.

sidering if the risk of dirty reads is a much smaller issue than locking a large portion
of a database table. Because MVCC avoids reader-writer and writer-reader locking,
it might not exhibit a considerable performance enhancement from permitting dirty

P For lock-based concurrency control mechanisms, Read Uncommitted is worth con-

Transactions

94

PostgreSQL

Committed.

Committed.

Like Oracle, PostgreSQL does not allow dirty reads, the lowest isolation level being Read

When choosing Read Uncommitted, the JDBC driver silently falls back to Read

MySQL

been recently modified).

Although it uses MVCC, InnoDB implements Read Uncommitted so that dirty reads are
permitted. As an optimization, each query is spared from rebuilding the previously committed
versions (using the rollback segments) of the currently scanned records (in case they have

6.3.3.2 Read Committed

Read Committed is one of the most common isolation levels, and it behaves consistently

across multiple relational database systems or various concurrency control models.

Many database systems choose Read Committed as the default isolation level because it
delivers the best performance while preventing fatal anomalies such as dirty writes and dirty
reads. However, performance has its price as Read Committed permits many anomalies that

might lead to data corruption.

Table 6.3: Read Committed phenomena occurrence

Phenomena Oracle SQL Server SQL Server MVCC PostgreSQL MySQL
Dirty Write No No No No No
Dirty Read No No No No No
Non-Repeatable Read Yes Yes Yes Yes Yes
Phantom Read Yes Yes Yes Yes Yes
Read Skew Yes Yes Yes Yes Yes
Write Skew Yes Yes Yes Yes Yes
Lost Update Yes Yes Yes Yes Yes

Transactions

95

Oracle

Every statement has a start timestamp, which is used to create a database snapshot relative
to this particular point-in-time. This way, writers can still update the currently selected
records, and the database can simply reconstruct the previous versions that were available
when the query started. Subsequent query executions can return different row versions, so
non-repeatable reads are permitted.

When two transactions attempt to update the same record, the first one locks the record to
prevent dirty writes. The second transaction must wait until the first transaction releases the
lock (either commit or rollback), and the statement filtering criteria are reevaluated against
latest data.

PostgreSQL

Like Oracle, every query sees a database snapshot as of the beginning of the currently running
query. Because shared locks are not used to protect previously read records from being
modified, Read Committed allows a large spectrum of data anomalies.

Exclusive locks prevent write-write conflicts, so when two transactions update the same
record, the second one waits for the first transaction to release its locks. When the second
transaction resumes its execution, if the filtering criteria are still relevant, it might overwrite
the first transaction modifications, therefore causing lost updates.

MySQL

Query-time snapshots are used to isolate statements from other concurrent transactions.
When explicitly acquiring shared or exclusive locks or when issuing update or delete state-
ments (which acquire exclusive locks to prevent dirty writes), if the selected rows are filtered
by unique search criteria (e.g. primary key), the locks can be applied to the associated index
entries.

Prior to 5.7, if the modifying statements used a range filter and the search criteria took
advantage of a unique index scan, then the database could use a gap or a next-key lock
(therefore protecting against phantom reads as well). Statement-based replication is not
available for Read Committed, so the application must use the row-based binary logging
instead.

Ahttps://dev.mysqgl.com/doc/refman/5.7/en /set-transaction.html#idm140311316367072

https://dev.mysql.com/doc/refman/5.7/en/set-transaction.html#idm140311316367072
https://dev.mysql.com/doc/refman/5.7/en/set-transaction.html#idm140311316367072

Transactions

96

SQL Server

By default, SQL statements use shared locks to prevent other transactions from modifying the
currently fetched records. The locks are released by the time the query finishes executing.
When activating Read Committed Snapshot Isolation, the database does not use shared locks
anymore, and each query selects the row version as it was when the query started.

6.3.3.3 Repeatable Read

One of the least compliant isolation levels, Repeatable Read implementation details leak into

its phenomena prevention spectrum:

Table 6.4: Repeatable Read phenomena occurrence

Phenomena SQL Server PostgreSQL MySQL
Dirty Write No No No
Dirty Read No No No
Non-Repeatable Read No No No
Phantom Read Yes No No
Read Skew No No No
Write Skew No Yes Yes
Lost Update No No Yes
Oracle

The Repeatable Read isolation is not supported at all, and the JDBC driver will throw
an exception if the client tries to set it explicitly.

SQL Server

the transaction either commits or rolls back.

For every row the client reads, the current transaction acquires a shared lock that prevents
any other transaction from concurrently modifying it. The shared locks are released when

Transactions 97

PostgreSQL

The Repeatable Read is implemented using Snapshot Isolation®, so not only fuzzy reads are
prevented, but even phantom reads are prohibited as well. Instead of using locking, the
PostgreSQL MVCC implementation allows conflicts to occur, but it aborts any transaction
whose guarantees do not hold anymore.

Ahttps:/ /en.wikipedia.org /wiki/Snapshot_isolation

MySQL

Every transaction can only see rows as if they were when the current transaction started.
This prevents non-repeatable reads, but it still allows lost updates and write skews.

6.3.3.4 Serializable

Serializable is supposed to provide a transaction schedule, whose outcome, even in spite of
statement interleaving, is equivalent to a serial execution.

Even if the concurrency control mechanism is lock-based or it manages multiple record
versions, it must prevent all phenomena to ensure serializable transactions. Preventing all
phenomena mentioned by the SQL standard (dirty reads, non-repeatable reads and phantom
reads) is not enough, and Serializable must protect against lost update, read skew and write
skew as well.

In practice, the concurrency control implementation details leak, and not all relational
database systems provide a truly Serializable isolation level (some data integrity anomalies
might still occur).

Table 6.5: Serializable phenomena occurrence

Phenomena Oracle SQL Server SQL Server MVCC PostgreSQL MySQL
Dirty Write No No No No No
Dirty Read No No No No No
Non-Repeatable Read No No No No No
Phantom Read No No No No No
Read Skew No No No No No
Write Skew Yes No Yes No No

Lost Update No No No No No

https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation

Transactions

98

Oracle

The Serializable isolation level is, in fact, an MVCC implementation of the Snapshot Isolation
concurrency control mechanism. Like the Repeatable Read isolation in PostgreSQL, Oracle
cannot prevent write skews, meaning it cannot provide a truly serializable transaction.

SQL Server

The Serializable isolation level is based on 2PL, and all phenomena are therefore prevented.
The MVCC-based Snapshot Isolation is close to Oracle Serializable and PostgreSQL Repeat-
able Read, and so it allows write skews.

PostgreSQL

To overcome the Snapshot Isolation limitations, PostgreSQL has developed the Serializable
Snapshot Isolation (SSI), which provides true serializable transactions. Because SSI is still an
MVCC implementation, PostgreSQL monitors the transaction schedule and detects possible
serializability anomalies.

The current implementation may detect false positives®, and some transactions might get
aborted even if they did not really break transaction serializability. Only the Precisely Serial-
izable Snapshot Isolation (PSSI) model can eliminate all false positives, but the performance
penalty being too high, the database implementers stuck to SSI instead.

Ahttp:/ /drkp.net/papers/ssi-vldb12.pdf

MySQL

The Serializable isolation builds on top of Repeatable Read with the difference that every
record that gets selected is protected with a shared lock as well. The lock-based approach
allows MySQL to prevent the write skew phenomena, which is prevalent among many
Snapshot Isolation implementations.

http://drkp.net/papers/ssi-vldb12.pdf
http://drkp.net/papers/ssi-vldb12.pdf

Transactions 99

6.4 Durability

When purchasing an airline ticket, the money is withdrawn from the bank account, and a
seat is reserved for the given buyer. Assuming that, right after the ticket is purchased, the
airline reservation system crashes, all the previously processed transactions must hold true
even after the system restarts. If the system does not enforce this requirement, the registered
ticket might vanish, and the buyer is possibly left with a debited account and no ticket at all.

Durability ensures that all committed transaction changes become permanent.

Durability allows system recoverability, and, to some extent, it is similar to the rolling back
mechanism.

What about undo logs?

To support transaction rollbacks and to rebuild previous versions in MVCC systems, the
database system already records the current modifications (including uncommitted changes)
in the undo log. However, recoverability needs committed changes only, and, because the
obsolete undo segments might be frequently recycled, the undo log alone is not suitable for
recoverability.

When a transaction is committed, the database persists all current changes in an append-
only, sequential data structure commonly known as the redo log.

Oracle

The redo log* consists of multiple redo records, each one containing change vectors, which
capture the actual data block changes. For performance reasons, the redo records are stored
in a buffer, and the Log Writer flushes the in-memory records to the current active redo log
file. At any given time, Oracle has, at least, two redo files, but only one of them is active and
available for collecting the log buffer entries. When a transaction is committed, the database
flushes the buffer and changes become persisted.

If the buffer fills, Oracle will flush it along with any uncommitted changes, which can
be removed if their associated transaction is rolled back.

Ahttps://docs.oracle.com /database /121 /ADMIN /onlineredo.htm#ADMIN11302

https://docs.oracle.com/database/121/ADMIN/onlineredo.htm#ADMIN11302
https://docs.oracle.com/database/121/ADMIN/onlineredo.htm#ADMIN11302

Transactions 100

SQL Server

Unlike Oracle, SQL Server combines both the undo and the redo log into a single data struc-
ture called transaction log. By default, when a transaction is committed, all the associated
transaction log entries are flushed to the disk before returning the control back to the client.

SQL Server 2014 added support for configurable durability®. The log entry flushing can be
delayed, which can provide better I /O utilization and lower transaction response times. If the
system crashes, all the unflushed log entries will be wiped out from memory. Asynchronous
flushing is, therefore, appropriate only when data loss is tolerated.

Ahttps:/ /msdn.microsoft.com/en-us/library /dn449490.aspx

PostgreSQL

Statement changes are captured in the Write-Ahead Log (WAL)". The log entries are buffered
in memory and flushed on every transaction commit.

Because their state can be restored from the WAL during recovery, the cached data pages and
index entries need not be flushed for every transaction (therefore optimizing I /O utilization).
Ever since 9.1°, PostgreSQL supports configurable durability, so the WAL can also be flushed
asynchronously.

Ahttp:/ /www.postgresql.org /docs/current/static /wal-intro.html
bhttp:/ /www.postgresqgl.org/docs /current /static /non-durability.html

MySQL

All the redo log entries associated with a single transaction are stored in the mini transaction
buffer and flushed at once into the global redo buffer. The global buffer is flushed to disk during
commit. By default, there are two log files which are used alternatively.

Flushing is done synchronously by default, but it can be switched to an asynchronous mode
via the innodb_flush_log_at_trx_commit®* parameter.

Ahttp://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_
commit

https://msdn.microsoft.com/en-us/library/dn449490.aspx
https://msdn.microsoft.com/en-us/library/dn449490.aspx
http://www.postgresql.org/docs/current/static/wal-intro.html
http://www.postgresql.org/docs/current/static/non-durability.html
http://www.postgresql.org/docs/current/static/wal-intro.html
http://www.postgresql.org/docs/current/static/non-durability.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Transactions 101

Since durability is very important for business operations, it is better to stick to the
synchronous flushing mechanism.

Delaying durability guarantees becomes a valid option only when data loss is tolerated
by business requirements and the redo log flushing is a real performance bottleneck.

6.5 Read-only transactions

The JDBC connection defines the setReadonly(boolean readonly)’ method which can be used to
hint the driver to apply some database optimizations for the upcoming read-only transac-
tions. This method should not be called in the middle of a transaction because the database
system cannot turn a read-write transaction into a read-only one (a transaction must start
as read-only from the very beginning).

Oracle

According to the JDBC driver documentation®, the database server does not support read-
only transaction optimizations. Even when the read-only Connection status is set to true,
modifying statements are still permitted, and the only way to restrict such statements is to
execute the following SQL command:

connection.setAutoCommit(false);

try(CallableStatement statement = connection.prepareCall(
"BEGIN SET TRANSACTION READ ONLY; END;")) {
statement.execute();

The SeT TRANSACTION READ ONLY command must run after disabling the auto-commit status, as
otherwise it is only applied for this particular statement only.

Ahttps://docs.oracle.com/database /121 /JIDBC /apxtips.htm#JIDBC28956

http://docs.oracle.com /javase /8 /docs /api /java /sql /Connection.html#setReadOnly%28boolean%29

http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setReadOnly(boolean)
https://docs.oracle.com/database/121/JJDBC/apxtips.htm#JJDBC28956
https://docs.oracle.com/database/121/JJDBC/apxtips.htm#JJDBC28956
http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html#setReadOnly(boolean)

Transactions 102

SQL Server

Like Oracle, the read-only connection does not propagate to the database engine, and the only
way to disable SQL modifications is to use a separate account, restricted to viewing data only.

Setting the ApplicationIntent=ReadOnly® connection property does not prevent the JDBC driver
from executing modifying statements on a read-only connection. This property has the
purpose of routing read-write and read-only connections to replica nodes instead.

Ahttps:/ /msdn.microsoft.com/en-us/library /gg471494.aspx

PostgreSQL

An exception is thrown when executing a modifying statement on a Connection whose read-
only status was set to true.

The database engine optimizes read-only transactions, so the false-positives anomaly rate
is reduced for the Serializable isolation level, and it allows deferrable serializable snap-
shots®. A deferrable snapshot is activated when executing SET TRANSACTION SERIALIZABLE READ
ONLY DEFERRABLE. The current transaction must wait for a safe snapshot to become available,
which can be executed without the risk of being aborted by a non-serializable anomaly. If the
default read-write Serializable transactions are problematic when accessing large volumes of
data, the deferrable snapshots might be a better alternative for long-running transactions.

Ahttp:/ /arxiv.org/pdf/1208.4179.pdf

MySQL

If a modifying statement is executed when the connection is set to read-only, the JDBC driver
will throw an exception.

InnoDB can optimize read-only transactions® because it can skip the transaction ID genera-
tion as it is not required for read-only transactions.

Ahttps://dev.mysgl.com/doc/refman /5.7 /en/innodb-performance-ro-txn.html

https://msdn.microsoft.com/en-us/library/gg471494.aspx
https://msdn.microsoft.com/en-us/library/gg471494.aspx
http://arxiv.org/pdf/1208.4179.pdf
http://arxiv.org/pdf/1208.4179.pdf
http://arxiv.org/pdf/1208.4179.pdf
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-ro-txn.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-ro-txn.html

Transactions 103

6.5.1 Read-only transaction routing

Setting up a database replication environment is useful for both high-availability (a Slave can
replace a crashing Master) and traffic splitting. In a Master-Slave replication topology, the
Master node accepts both read-write and read-only transactions, while Slave nodes only take
read-only traffic.

Oracle

The Oracle ADG (Active Data Guard) allows an enterprise application to distribute read-write
traffic to the Primary node and read-only transactions to a Standby database. WebLogic
Server GridLink Data Source® provides failover and load balancing capabilities over Oracle
ADG.

Ahttp:/ /www.oracle.com/technetwork/middleware /weblogic/learnmore /1534212

SQL Server

The database Availability Group must be configured to use read-only routing, in which case
the redirection is based on the ApplicationIntent connection property. This means that the
application requires separate bataSource(s) for read-write and read-only connections, and
transaction routing must initiate in the application service layer.

PostgreSQL

The JDBC driver defines two connection properties® for load balancing purposes: 1oadBalanceHosts
(which is disabled by default) and targetserverType (master Or prefersiave). To enable transaction
routing, the application must do the routing itself using separate patasource(s).

Ahttps://jdbc.postgresql.org/documentation /head /connect.html

MySQL

The com.mysql. jdbc.ReplicationDriver® supports transaction routing on a Master-Slave topol-
ogy, the decision being made on the connection read-only status basis.

Ahttps://dev.mysqgl.com/doc/connector-j/en/connector-j-master-slave-replication-connection.html

http://www.oracle.com/technetwork/middleware/weblogic/learnmore/1534212
http://www.oracle.com/technetwork/middleware/weblogic/learnmore/1534212
http://www.oracle.com/technetwork/middleware/weblogic/learnmore/1534212
https://jdbc.postgresql.org/documentation/head/connect.html
https://jdbc.postgresql.org/documentation/head/connect.html
https://dev.mysql.com/doc/connector-j/en/connector-j-master-slave-replication-connection.html
https://dev.mysql.com/doc/connector-j/en/connector-j-master-slave-replication-connection.html

Transactions 104

Even if the JDBC driver does not support Master-Slave routing, the application can do it
using multiple patasource instances. This design cannot rely on the read-only status of the
underlying Connection since the routing must take place before a database connection is
fetched.

DB Slave
REELI —read-onl
DataSource y
read-only replication
, . . Routing | . ReadWrite)
Service transaction —> DataSource read-write —>| DataSource - read-write DB Master
read-only replication
ReadOnly L read-onl
DataSource y
DB Slave

Figure 6.11: Transaction routing

If the transaction manager supports declarative read-only transactions, the routing decision
can be taken based on the current transaction read-only preference. Otherwise, the routing
must be done manually in each service layer component, and so a read-only transaction uses
a read-only DataSource or a read-only JPA Persistence Context.

6.6 Transaction boundaries

Every database statement executes in the context of a database transaction, even if the
client does not explicitly set transaction boundaries. While there might be single statement
transactions (usually a read-only query), when the unit of work consists of multiple SQL
statements, the database should wrap them all in a single unit of work.

By default, every connection starts in auto-commit mode, each statement being executed in a
separate transaction. Unfortunately, it does not work for multi-statement transactions as it
moves atomicity boundaries from the logical unit of work to each individual statement.

Auto-commit should be avoided as much as possible, and, even for single statement
transactions, it is good practice to mark the transaction boundaries explicitly.

Transactions 105

In the following example, a sum of money is transferred between two bank accounts. The
balance must always be consistent, so if an account gets debited, the other one must always
be credited with the same amount of money.

try(Connection connection = dataSource.getConnection();
PreparedStatement transferStatement = connection.prepareStatement(
"UPDATE account SET balance = ? WHERE id = ?"
)) Ao
transferStatement.setlLong(1, Math.negateExact(cents));
transferStatement.setlLong(2, fromAccountId);
transferStatement.executeUpdate();

transferStatement.setlLong(1, cents);
transferStatement.setlLong(2, toAccountld);
transferStatement .executeUpdate();

Because of the auto-commit mode, if the second statement failed, only those particular
changes could be rolled back, the first statement being already committed cannot be reverted
anymore.

The default auto-commit mode must be disabled and the transaction has to be managed
manually. The transaction is committed if every statement runs successfully and a rollback is
triggered on a failure basis. With this in mind, the previous example should be rewritten as
follows:

try(Connection connection = dataSource.getConnection()) {

connection.setAutoCommit(false);

try(PreparedStatement transferStatement = connection.prepareStatement(
"UPDATE account SET balance = ? WHERE id = ?"

)) o
transferStatement.setlLong(1, Math.negateExact(cents));
transferStatement.setlLong(2, fromAccountId);
transferStatement.executeUpdate();

transferStatement.setlLong(1, cents);
transferStatement.setlLong(2, toAccountId);
transferStatement.executelUpdate();

connection.commit();

} catch (SQLException e) {
connection.rollback();
throw e;

Transactions 106

The astute reader might notice that the previous example breaks the Single responsibility
principle since the Data Access Object (DAO) method mixes both transaction management
and data access logic. Transaction management is a cross-cutting concern, making it a
good candidate for being moved to a separate common library. This way, the transaction
management logic resides in one place, and a lot of duplicated code can be removed from the
DAO methods. One way to extract the transaction management logic is to use the Template
method pattern:

public void transact(Consumer<Connection> callback) {
Connection connection = null;
try {
connection = dataSource.getConnection();
connection.setAutoCommit(false);
callback.accept(connection);
connection.commit();
} catch (Exception e) {
if (connection != null) {
try {
connection.rollback();
} catch (SQLException ex) {
throw new DataAccessException(e);

}
throw (e instanceof DataAccessException ?
(DataAccessException) e : new DataAccessException(e));
} finally {
if(connection != null) {
try {
connection.close();
} catch (SQLException e) {
throw new DataAccessException(e);

Transactions should never be abandoned on failure, and it is mandatory to initiate a
transaction rollback (to allow the database to revert any uncommitted changes and
release any lock as soon as possible).

Transactions 107

With this utility in hand, the previous example can be simplified to:

transact((Connection connection) -> {
try(PreparedStatement transferStatement = connection.prepareStatement(
"UPDATE account SET balance = ? WHERE id = ?"
)) A
transferStatement.setlLong(1, Math.negateExact(cents));
transferStatement.setlLong(2, fromAccountId);
transferStatement .executelUpdate();

transferStatement.setlLong(1, cents);
transferStatement.setlong(2, toAccountId);
transferStatement.executeUpdate();

} catch (SQLException e) {
throw new DataAccessException(e);

});

Although better than the first code snippet, separating data access logic and transaction
management is not sufficient.

The transaction boundaries are still rigid, and, to include multiple data access method in a
single database transaction, the connection object has to be carried out as a parameter to every
single DAO method.

Declarative transactions can better address this issue by breaking the strong coupling
between the data access logic and the transaction management code. Transaction boundaries
are marked with metadata (e.g. annotations) and a separate transaction manager abstraction
is in charge of coordinating transaction logic.

Java EE and JTA

Declarative transactions become a necessity for distributed transactions. When Java EE
(Enterprise Edition) first emerged, application servers hosted both web applications and mid-
dleware integration services, which meant that the Java EE container needed to coordinate
multiple DataSource(s) or even JMS (Java Messaging) queues.

Following the X/Open XA architecture, JTA (Java Transaction API) powers the Java EE
distributed transactions requirements.

Transactions 108

6.6.1 Distributed transactions

The difference between local and global transactions is that the former uses a single resource
manager, while the latter operates on multiple heterogeneous resource managers. The ACID
guarantees are still enforced on each individual resource, but a global transaction manager
is mandatory to orchestrate the distributed transaction outcome.

All transactional resource adapters are registered by the global transaction manager, which
decides when a resource is allowed to commit or rollback. The Java EE managed resources
become accessible through JNDI (Java Naming and Directory Interface) or CDI (Contexts and
Dependency Injection).

Spring provides a transaction management abstraction layer which can be configured to
either use local transactions (JDBC or RESOURCE_LOCAL® JPA) or global transactions
through a stand-alone JTA transaction manager. The dependency injection mechanism auto-
wires managed resources into Spring beans.

6.6.1.1 Two-phase commit

JTA makes use of the two-phase commit (2PC) protocol to coordinate the atomic resource
commitment in two steps: a prepare and a commit phase.

XAResource TransactionManager XAResource
€ - PREPARE-—---————==-—1
—————————— ACKNOWLEDGE ————————»
PREPARE >
<€«—ACKNOWLEDGE
€ - COMMIT-========—=—=
——————————— ACKNOWLEDGE -———————-»
COMMIT >
<€«— ACKNOWLEDGE

Figure 6.12: Two-phase commit protocol

In the former phase, a resource manager takes all the necessary actions to prepare the trans-
action for the upcoming commit. Only if all resource managers successfully acknowledge the
preparation step, the transaction manager proceeds with the commit phase. If one resource
does not acknowledge the prepare phase, the transaction manager will proceed to roll back
all current participants.

If all resource managers acknowledge the commit phase, the global transaction will end
successfully.

8http:/ /docs.oracle.com /javaee /7/api /javax /persistence /spi/PersistenceUnitTransactionType.html#RESOURCE _LOCAL

http://docs.oracle.com/javaee/7/api/javax/persistence/spi/PersistenceUnitTransactionType.html#RESOURCE_LOCAL
http://docs.oracle.com/javaee/7/api/javax/persistence/spi/PersistenceUnitTransactionType.html#RESOURCE_LOCAL

Transactions 109

If one resource fails to commit (or times out), the transaction manager will have to retry this
operation in a background thread until it either succeeds or reports the incident for manual
intervention.

The one-phase commit (1PC) optimization

Because Java EE uses JTA transactions exclusively, the extra coordination overhead of
the additional database roundtrip may hurt performance in a high-throughput application
environment. When a transaction enlists only one resource adapter (designating a single
resource manager), the transaction manager can skip the prepare phase, and either execute
the commit or the rollback phase. With this optimization, the distributed transaction behaves
similarly to how JDBC connection(s) manage local transactions.

The xAResource.commit(Xid xid, boolean onePhase® method takes a boolean flag, which the trans-
action manager sets to true to hint the associated resource adapter to initiate the 1PC
optimization.

Ahttps://docs.oracle.com /javaee /7 /api/javax /transaction /xa/XAResource. html#commit-javax.transaction.xa.
Xid-boolean-

6.6.2 Declarative transactions

Transaction boundaries are usually associated with a Service layer, which uses one or more
DAO to fulfill the business logic. The transaction propagates from one component to the other
within the service-layer transaction boundaries.

Transaction Contexté

Product
DAO
/ Database
Order > Order) Discount
Controller Service \ DAO
OrderLine
DAO

Figure 6.13: Transaction boundaries

The declarative transaction model is supported by both Java EE and Spring. Transaction
boundaries are controlled through similar propagation strategies, which define how bound-
aries are inherited or disrupted at the borderline between the outermost component (in the
current call stack) and the current one (waiting to be invoked).

https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html#commit-javax.transaction.xa.Xid-boolean-
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html#commit-javax.transaction.xa.Xid-boolean-
https://docs.oracle.com/javaee/7/api/javax/transaction/xa/XAResource.html#commit-javax.transaction.xa.Xid-boolean-

Transactions

110

Propagation

To configure the transaction propagation strategy for EJB components, Java EE defines the
@TransactionAttribute® annotation. Since Java EE 7, even non-EJB components can now be
enrolled in a transactional context if they are augmented with the eTransactional® annotation.

In Spring, transaction propagation (like any other transaction properties) is configurable via
the eTransactional® annotation.

Ahttp://docs.oracle.com/javaee /7 /api/javax /ejb /TransactionAttribute.html

b http:/ /docs.oracle.com /javaee /7 /api/javax /transaction/Transactional.html

Chttps://docs.spring.io /spring/docs /current /javadoc-api/org/springframework /transaction /annotation /
Transactional.html#propagation--

Table 6.6: Transaction propagation strategies

Propagation Java EE Spring Description

REQUIRED Yes Yes This is the default propagation strategy, and it only starts
a transaction if and only if the current thread is not
already associated with a transaction context

REQUIRES_NEW Yes Yes Any currently running transaction context is suspended
and replaced by a new transaction

SUPPORTS Yes Yes If the current thread already runs inside a transaction,

NOT_SUPPORTED Yes

MANDATORY Yes
NESTED No
NEVER Yes

Yes

Yes

Yes

Yes

this method will use it. Otherwise, it executes outside of a
transaction context

Any currently running transaction context is suspended,
and the current method is run outside of a transaction
context

The current method runs only if the current thread is
already associated with a transaction context

The current method is executed within a nested
transaction if the current thread is already associated with
a transaction. Otherwise, a new transaction is started.

The current method must always run outside of a
transaction context, and, if the current thread is
associated with a transaction, an exception will be thrown.

http://docs.oracle.com/javaee/7/api/javax/ejb/TransactionAttribute.html
http://docs.oracle.com/javaee/7/api/javax/transaction/Transactional.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#propagation--
http://docs.oracle.com/javaee/7/api/javax/ejb/TransactionAttribute.html
http://docs.oracle.com/javaee/7/api/javax/transaction/Transactional.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#propagation--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#propagation--

Transactions 11

Declarative exception handling

Since the transaction logic wraps around the underlying service and data access logic call
chain, the exception handling must also be configured declaratively. By default, both Java EE
and Spring roll back on system exceptions (any RuntimeException) and commit on application
exceptions (checked exceptions).

In Java EE, the rollback policy can be customized using the eApplicationException® annotation.

Spring allows each transaction to customize the rolling back policy” by listing the exception
types triggering a transaction failure.

4http:/ /docs.oracle.com/javaee/7/api/javax/ejb /ApplicationException.html
bhttps://docs.spring.io/spring/docs /current /javadoc-api/org /springframework /transaction /annotation /
Transactional.html#rollbackFor--

Declarative read-only transactions
Java EE does not support read-only transactions to be marked declaratively.

Spring offers the transactional read-only attribute®, which can propagate to the underlying
JPA provider (to optimize the EntityManager flushing mechanism) and to the current associated
JDBC connection.

4https://docs.spring.io/spring /docs /current/javadoc-api/org/springframework /transaction /annotation/
Transactional html#readOnly--

Declarative isolation levels

The Java EE does not offer support for configurable isolation levels, so it is up to the
underlying patasource to define it for all database connections.

Spring supports transaction-level isolation levels® when using the JpaTransactionManager”. For
JTA transactions, the JtaTransactionManager® follows the Java EE standard and disallows over-
riding the default isolation level. As a workaround, the Spring framework provides extension
points, so the application developer can customize the default behavior and implement a
mechanism to set isolation levels on a transaction basis.

Ahttps://docs.spring.io/spring /docs /current /javadoc-api/org/springframework /transaction /annotation /
Transactional.html#isolation--

bhttps: //docs.spring.io /spring /docs /current /javadoc-api,/org /springframework /orm /jpa /
JpaTransactionManager.html

Chttps://docs.spring.io /spring /docs /current /javadoc-api/org/springframework /transaction /jta/
JtaTransactionManager.html

http://docs.oracle.com/javaee/7/api/javax/ejb/ApplicationException.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#rollbackFor--
http://docs.oracle.com/javaee/7/api/javax/ejb/ApplicationException.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#rollbackFor--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#rollbackFor--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#readOnly--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#readOnly--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#readOnly--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#isolation--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/JpaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#isolation--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html#isolation--
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/JpaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/JpaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html

Transactions 112

6.7 Application-level transactions

So far, the book focused on database transactions to enforce ACID properties. However, from
the application perspective, a business workflow might span over multiple physical database
transactions, in which case the database ACID guarantees are not sufficient anymore. Alogical
transaction may be composed of multiple web requests, including user think time, for which
reason it can be visualized as a long conversation.

In the following example, Alice and a background process are concurrently modifying the
same database record.

Alice Web Server Database Batch Job
GET SELECT * product
http://ac.me/product/1 FROM product———>1
WHERE id = 1 id:1
product quantity:5
id:1
quantity:s product UPDATE product
SET
id:1 quantity =0
quantity:0 WHERE id = 1
PUT
— . —»> SELECT *
http://ac.me/product/1/buy FROM product :
product WHERE id = 1
id:1
quantity:0
product
product.decreaseQuantity() id:1
quantity:-1
UPDATE product product
SET 3
quantity = -1 id:1
| WHERE id =1 | quantity:-1

Figure 6.14: Stateless conversation losing updates

Because Alice logical transaction encloses two separate web requests, each one associated
with a separate database transaction, without an additional concurrency control mechanism,
even the strongest isolation level cannot prevent the lost update phenomena.

Spanning a database transaction over multiple web requests is prohibitive since locks would
be held during user think time, therefore hurting scalability. Even with MVCC, the cost of
maintaining previous versions (that can lead to a large version graph) can escalate and affect
both performance and concurrency. Application-level transactions require application-level
concurrency control mechanisms.

Transactions 113

HTTP is stateless by nature and, for very good reasons, stateless applications are easier
to scale than stateful ones. However, application-level transactions cannot be stateless, as
otherwise newer requests would not continue from where the previous request was left.
Preserving state across multiple web requests allows building a conversational context,
providing application-level repeatable reads guarantees.

In the next diagram, Alice uses a stateful conversational context, but, in the absence of a
record versioning system, it is still possible to lose updates.

Alice Web Server Database Batch Job
| E— GET SELECT * | product
http://ac.me/product/1 FROM product———>
WHERE id = 1 id:1
product quantity:5
id:1
HC=RCEE UPDATE product
product SET
id:1 quantity =0
: tity:0 WHERE id = 1
L PUT quantity:
http://fac.me/product/1/buy
product
product.decreaseQuantity()
id:1
quantity:4
UPDATE product product
SET . 3
quantity = 4 id:1
| WHERE id = 1 | quantity:4

Figure 6.15: Stateful conversation losing updates

Without Alice to notice, the batch process resets the product quantity. Thinking the product
version has not changed, Alice attempts to purchase one item which decreases the previous
product quantity by one. In the end, Alice has simply overwritten the batch processor
modification, and data integrity has been compromised.

So the application-level repeatable reads are not self-sufficient (this argument is true for
database isolation levels as well). To prevent lost updates, a concurrency control mechanism
becomes mandatory.

Transactions 114

6.7.1 Pessimistic and optimistic locking

Isolation levels entail implicit locking, whether it involves physical locks (like 2PL) or data
anomaly detection (MVCC). To coordinate state changes, application-level concurrency
control makes use of explicit locking, which comes in two flavors: pessimistic and optimistic
locking.

6.7.1.1 Pessimistic locking

As previously explained, most database systems already offer the possibility of manually
requesting shared or exclusive locks. This concurrency control is said to be pessimistic
because it assumes that conflicts are bound to happen, and so they must be prevented
accordingly.

As locks can be released in a timely fashion, exclusive locking is appropriate during the last
database transaction of a given long conversation. This way, the application can guarantee
that, once locks are acquired, no other transaction can interfere with the currently locked
resources.

Acquiring locks on critical records can prevent non-repeatable reads, lost updates, as
well as read and write skew phenomena.

6.7.1.2 Optimistic locking

Undoubtedly a misnomer (albeit rather widespread), optimistic locking does not incur any
locking at all. A much better name would be optimistic concurrency control since it uses a
totally different approach to managing conflicts than pessimistic locking.

MVCC is an optimistic concurrency control strategy since it assumes that contention is
unlikely to happen, and so it does not rely on locking for controlling access to shared
resources. The optimistic concurrency mechanisms detect anomalies and resort to aborting
transactions whose invariants no longer hold.

While the database knows exactly which row versions have been issued in a given time
interval, the application is left to maintaining a happens-before event ordering. Each database
row must have an associated version, which is locally incremented by the logical transaction.
Every modifying SQL statement (update or delete) uses the previously loaded version as an
assumption that the row has not been changed in the meanwhile.

Because even the lowest isolation level can prevent write-write conflicts, only one trans-
action is allowed to update a row version at any given time. Since the database already
offers monotonic updates, the row versions can also be incremented monotonically, and the
application can detect when an updating record has become stale.

Transactions 115
The optimistic locking concurrency algorithm looks like this:

* When a client reads a particular row, its version comes along with the other fields.
» Upon updating a row, the client filters the current record by the version it has previously
loaded.

UPDATE product
SET (quantity, version) = (4, 2)
WHERE id = 1 AND version =1

* If the statement update count is zero, the version was incremented in the meanwhile,
and the current transaction now operates on a stale record version.

The previous example can be adjusted to take advantage of this optimistic concurrency
control mechanism. This time, the product is versioned, and both the web application and
the batch processor data access logic are using the row versions to coordinate the happens-
before update ordering.

Alice Web Server Database Batch Job
| — GET SELECT * [product
http://ac.me/product/1 FROM product—————>
WHERE id = 1 id:1
rreelne: quantity:5
id1 version:1
quantity:5
version: 1 product UPDATE product
«—SET
id:1 (quantity, version) = (0, 2)
quantity:0 WHERE (id, version) = (1, 1)
L PUT version:2
http:/fac.me/product/1/buy
product
product.decreaseQuantity() id:1
quantity:4
version: 1
g;_l?ATE product product
. . —>
(quantity, version) = (4, 2) id:
WHERE (id, version) = (1, 1) quantity:0
1 OptimisticLockException | version:2

Figure 6.16: Stateful conversation preventing lost updates

Both Alice and the batch processor try to increment the product version optimistically.
The batch processor can successfully update the product quantity since the SQL statement
filtering criteria matches the actual database record version.

When Alice tries to update the product, the database returns a zero update count, and, this
way, she is notified about the concurrent update that happened in the meanwhile.

Transactions 116

The lost update can be prevented because the application can abort the current transaction
when being notified of the stale record versions.

Il JPA and Hibernate

7. Why JPA and Hibernate matter

Although JDBC does a very good job of exposing a common API that hides the database
vendor-specific communication protocol, it suffers from the following shortcomings:

* The API is undoubtedly verbose, even for trivial tasks.

* Batching is not transparent from the data access layer perspective, requiring a specific
API than its non-batched statement counterpart.

* Lack of built-in support for explicit locking and optimistic concurrency control.

* For local transactions, the data access is tangled with transaction management seman-
tics.

* Fetching joined relations requires additional processing to transform the resultset into
Domain Models or DTO (Data Transfer Object) graphs.

Although the primary goal of an ORM (Object-Relational Mapping) tool is to automatically
translate object state transitions into SQL statements, this chapter aims to demonstrate that
Hibernate can address all the aforementioned JDBC shortcomings.

Java Persistence history

The EJB 1.1 release offered a higher-level persistence abstraction through scalable enterprise
components, known as Entity Beans. Although the design looked good on paper, in reality,
the heavyweight RMI-based implementation proved to be disastrous from a performance
perspective. Neither the EJB 2.0 support for local interfaces could revive the Entity Beans
popularity, and, due to high-complexity and vendor-specific implementation details, most
projects chose JDBC instead.

Hibernate was born out of all the frustration of using the Entity Bean developing model. As
an open-source project, Hibernate managed to gain a lot of popularity, and so it soon became
the de facto Java persistence framework.

In response to all the criticism associated with Entity Bean persistence, the Java Community
Process advanced a lightweight POJO-based approach, and the JDO specification was born.
Although JDO is data source agnostic, being capable of operating with both relational
databases as well as NoSQL or even flat files, it never managed to hit mainstream popularity.
For this reason, the Java Community Process decided that EJB3 would be based on a new
specification, inspired by Hibernate and TopLink, and JPA (Java Persistence API) became the
standard Java persistence technology.

The morale of this is that persistence is a very complex topic, and it demands a great deal of
knowledge of both the database and the data access usage patterns.

Why JPA and Hibernate matter 119

7.1 The impedance mismatch

When a relational database is manipulated through an object-oriented program, the two
different data representations start conflicting.

In a relational database, data is stored in tables, and the relational algebra defines how data
associations are formed. On the other hand, an object-oriented programming (OOP) language
allows objects to have both state and behavior, and bidirectional associations are permitted.

The burden of converging these two distinct approaches has generated much tension, and it
has been haunting enterprise systems for a very long time.

& PostComment : post_comment ¥
P review String | id BIGINT(20)
P id Long -
review VARCHAR(255)
+P ' post Post, 0 1 e———————
)) version INT(11) |
#P ! version int |
post_id BIGINT(20) |
1 > |
|
1 |
|
&£ Post Q
m addComment(PostComment) void : post v
m' addDetails(PostDetails) void id BIGINT(20)
1 m removeDetails() void 1 title VARCHAR(255)
> B comments List<PostComment> @
.) version INT(11)
1P title String
§Pid Long o
+P version int
P details PostDetails
1 4
1 _| post_details v
£ | PostDetails ! id BIGINT(20)
WP id Long created_by VARCHAR(255)
Lo F post Post created_on DATETIME
+P createdOn Date version INT(11)
sP ' version int >
4P createdBy String

Figure 7.1: Object/Relational Mapping

The above diagram portrays the two different schemas that the data access layer needs to
correlate. While the database schema is driven by the SQL standard specification, the Domain
Model comes with an object-oriented schema representation as well.

The Domain Model encapsulates the business logic specifications and captures both data
structures and the behavior that governs business requirements. OOP facilitates Domain
Modeling, and many modern enterprise systems are implemented on top of an object-
oriented programming language.

Why JPA and Hibernate matter 120

Because the underlying data resides in a relational database, the Domain Model must be
adapted to the database schema and the SQL-driven communication protocol. The ORM
design pattern helps to bridge these two different data representations and close the tech-
nological gap between them. Every database row is associated with a Domain Model object
(Entity in JPA terminology), and so the ORM tool can translate the entity state transitions into
DML statements.

From an application development point of view, this is very convenient since it is much easier
to manipulate Domain Model relationships rather than visualizing the business logic through
its underlying SQL statements.

7.2 JPA vs. Hibernate

JPA is only a specification. It describes the interfaces that the client operates with and the
standard object-relational mapping metadata (Java annotations or XML descriptors). Beyond
the API definition, JPA also explains (although not exhaustively) how these specifications are
ought to be implemented by the JPA providers. JPA evolves with the Java EE platform itself
(Java EE 6 featuring JPA 2.0 and Java EE 7 introducing JPA 2.1).

Hibernate was already a full-featured Java ORM implementation by the time the JPA specifica-
tion was released for the first time. Although it implements the JPA specification, Hibernate
retains its native API for both backward compatibility and to accommodate non-standard
features.

Even if it is best to adhere to the JPA standard, in reality, many JPA providers offer additional
features targeting a high-performance data access layer requirements. For this purpose,
Hibernate comes with the following non-JPA compliant features:

» extended identifier generators (hi/lo, pooled, pooled-lo)
* transparent prepared statement batching
* customizable CRUD (@sqQLInsert, @SQLUpdate, @SQLDelete) statements
* static/dynamic entity/collection filters (e.g. @FilterDef, éFilter, @Where)
* mapping attributes to SQL fragments (e.g. @Formula)
» immutable entities (e.g. @Immutable)
* more flush modes (e.g. FlushMode . MANUAL, FlushMode . ALWAYS)
» querying the second-level cache by the natural key of a given entity
* entity-level cache concurrency strategies
(e.g. Cache(usage = CacheConcurrencyStrategy. READ_WRITE))
* versioned bulk updates through HQL
* exclude fields from optimistic locking check (e.g. @optimisticLock(excluded = true))
* versionless optimistic locking (e.g. OptimisticLockType.ALL, OptimisticLockType.DIRTY)
* support for skipping (without waiting) pessimistic lock requests
* support for Java 8 Date and Time and stream()
* support for multitenancy

Why JPA and Hibernate matter 121

If JPA is the interface, Hibernate is one implementation and implementation details
always matter from a performance perspective.

The JPA implementation details leak and ignoring them might hinder application performance
or even lead to data inconsistency issues. As an example, the following JPA attributes have a
peculiar behavior, which can surprise someone who is familiar with the JPA specification only:

* The FlushModeType.AUTO! does not trigger a flush for native SQL queries like it does
for JPQL or Criteria API.

* The FetchType.EAGER? might choose a SQL join or a secondary select whether the entity
is fetched directly from the EntityManager or through a JPQL (Java Persistence Query
Language) or a Criteria API query.

That is why this book is focused on how Hibernate manages to implement both the JPA
specification and its non-standard native features (that are relevant from an efficiency
perspective).

Portability concerns

Like other non-functional requirements, portability is a feature, and there is still a widespread
fear of embracing database-specific or framework-specific features. In reality, it is more
common to encounter enterprise applications facing data access performance issues than
having to migrate from one technology to the other (be it a relational database or a JPA
provider).

The lowest common denominator of many RDBMS is a superset of the SQL-92 standard
(although not entirely supported either). SQL-99 supports Common Table Expressions, but
MySQL 5.7 does not. Although SQL-2003 defines the MerRGE operator, PostgreSQL 9.5 favored
the upserT operation instead. By adhering to a SQL-92 syntax, one could achieve a higher
degree of database portability, but the price of giving up database-specific features can take
a toll on application performance. Portability can be addressed either by subtracting non-
common features or through specialization. By offering different implementations, for each
supported database system (like the jOOQ framework does), portability can still be achieved.

The same argument is valid for JPA providers too. By layering the application, it is already
much easier to swap JPA providers, if there is even a compelling reason for switching one
mature JPA implementation with another.

Ihttps://docs.oracle.com /javaee /7/api /javax /persistence /FlushModeType.html
Zhttps://docs.oracle.com /javaee /7/api /javax /persistence /FetchType.html#EAGER

https://docs.oracle.com/javaee/7/api/javax/persistence/FlushModeType.html
https://docs.oracle.com/javaee/7/api/javax/persistence/FetchType.html#EAGER
https://docs.oracle.com/javaee/7/api/javax/persistence/FlushModeType.html
https://docs.oracle.com/javaee/7/api/javax/persistence/FetchType.html#EAGER

Why JPA and Hibernate matter 122

7.3 Schema ownership

Because of data representation duality, there has been a rivalry between taking ownership
of the underlying schema. Although theoretically, both the database and the Domain Model
could drive the schema evolution, for practical reasons, the schema belongs to the database.

An enterprise system might be too large to fit into a single application, so it is not uncommon
to split in into multiple subsystems, each one serving a specific goal. As an example, there can
be front-end web applications, integration web services, email schedulers, full-text search
engines and back-end batch processors that need to load data into the system. All these
subsystems need to use the underlying database, whether it is for displaying content to the
users or dumping data into the system.

Full-Text
DB Slave Search

= = = m m} Load Balancer

i

Email Sender
Figure 7.2: Database-centric integration

Although it might not fit any enterprise system, having the database as a central integration
point can still be a choice for many reasonable size enterprise systems.

The relational database concurrency models offer strong consistency guarantees, therefore
having a significant advantage to application development. If the integration point does not
provide transactional semantics, it will be much more difficult to implement a distributed
concurrency control mechanism.

Most database systems already offer support for various replication topologies, which can
provide more capacity for accommodating an increase in the incoming request traffic. Even
if the demand for more data continues to grow, the hardware is always getting better and
better (and cheaper too), and database vendors keep on improving their engines to cope with
more data.

For these reasons, having the database as an integration point is still a relevant enterprise
system design consideration.

Why JPA and Hibernate matter 123

The distributed commit log

For very large enterprise systems, where data is split among different providers (relational
database systems, caches, Hadoop, Spark), it is no longer possible to rely on the relational
database to integrate all disparate subsystems.

In this case, Apache Kafka® offers a fault-tolerant and scalable append-only log structure,
which every participating subsystem can read and write concurrently.

DB Slave Distributed Data Import

[& 'j Commit Log
) Web Node - J.
TDB Master

——>(=== =a} Load Balancer { _ji
= | . -
l
Web Node -
e =
|
DB Slave Email Sender

Figure 7.3: Distributed commit log integration

The commit log becomes the integration point, each distributed node individually traversing
it and maintaining client-specific pointers in the sequential log structure. This design resem-
bles a database replication mechanism, and so it offers durability (the log is persisted on disk),
write performance (append-only logs do not require random access) and read performance
(concurrent reads do not require blocking) as well.

Ahttp:/ /kafka.apache.org/

No matter what architecture style is chosen, there is still need to correlate the transient
Domain Model with the underlying persistent data.

The data schema evolves along the enterprise system itself, and so the two different schema
representations must remain congruent at all times.

Even if the data access framework can auto-generate the database schema, the schema must
be migrated incrementally, and all changes need to be traceable in the VCS (Version Control
System) as well. Along with table structure, indexes and triggers, the database schema is,
therefore, accompanying the Domain Model source code itself. A tool like Flywaydb? can
automate the database schema migration, and the system can be deployed continuously,
whether it is a test or a production environment.

3http:/ /flywaydb.org/

http://kafka.apache.org/
http://kafka.apache.org/
http://flywaydb.org/
http://flywaydb.org/

Why JPA and Hibernate matter 124

The schema ownership goes to the database, and the data access layer must assist the
Domain Model to communicate with the underlying data.

7.4 Entity state transitions

JPA shifts the developer mindset from SQL statements to entity state transitions. An entity
can be in one of the following states:

State

Table 7.1: JPA entity states

Description

New (Transient)

Managed (Persistent)

Detached

Removed

A newly created entity which is not mapped to any database row is
considered to be in the New or Transient state. Once it becomes managed,
the Persistence Context issues an insert statement at flush time.

A Persistent entity is associated with a database row, and it is being
managed by the currently running Persistence Context. State changes are
detected by the dirty checking mechanism and propagated to the database
as update statements at flush time.

Once the currently running Persistence Context is closed, all the previously
managed entities become detached. Successive changes are no longer
tracked, and no automatic database synchronization is going to happen.

A removed entity is only scheduled for deletion, and the actual database
delete statement is executed during Persistence Context flushing.

The Persistence Context captures entity state changes, and, during flushing, it translates
them into SQL statements. The JPA EntityManager? and the Hibernate session® (which includes
additional methods for moving an entity from one state to the other) interfaces are gateways
towards the underlying Persistence Context, and they define all the entity state transition

operations.

4http:/ /docs.oracle.com /javaee /7 /api /javax /persistence /EntityManager.html#persist-java.lang.Object-
Shttps:/ /docs.jboss.org /hibernate /orm /current /javadocs /org /hibernate /Session.html

http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html#persist-java.lang.Object-
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/Session.html
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html#persist-java.lang.Object-
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/Session.html

Why JPA and Hibernate matter

Detached
'y
detach(entity)
clear() merge(entity)
close()

K7
O\ flush()

125

persist(entity) / >
New > ManagedL Database
k__/ find(entityClass, primaryKey) ‘-‘_A
A find(entityClass, primaryKey, lockMode)
getReference(entityClass, primaryKey)
. . . createQuery().getResultList()
remove(entity) | | persist(entity) createQuery().getSingleResult()
\A
Remog
flush()
Figure 7.4: JPA entity state transitions
Detached
A
evict(entity) merge(entity)
clear() update(entity)
close() P y
. . A4
persist(entity) \ flush()
save(entity) >
New > Managed)‘ Database
_‘ / get(entityClass, primaryKey) \-‘J\
\

delete(entity)

Removed

persist(entity)
save(entity)

N

load(entityClass, primaryKey)
createQuery.list()
createQuery.uniqueResult()
byld(entityClass).load(primaryKey)

byld(entityClass).getReference(primaryKey)

byNaturalld(entityClass).load(primaryKey)
byNaturalld(entityClass).getReference(primaryKey)

flush()

Figure 7.5: Hibernate entity state transitions

Why JPA and Hibernate matter 126

7.5 Write-based optimizations

SQL injection prevention

By managing the SQL statement generation, the JPA tool can assist in minimizing the risk
of SQL injection attacks. The less the chance of manipulating SQL string statements, the
safer the application can get. The risk is not completely eliminated because the application
developer can still recur to concatenating SQL or JPQL fragments, so rigor is advised.

Hibernate uses Preparedstatement(s) exclusively, so not only it protects against SQL
injection, but the data access layer can better take advantage of server-side and client-
side statement caching as well.

Auto-generated DML statements

The enterprise system database schema evolves with time, and the data access layer must
mirror all these modifications as well.

Because the JPA provider auto-generates insert and update statements, the data access layer
can easily accommodate database table structure modifications. By updating the entity model
schema, Hibernate can automatically adjust the modifying statements accordingly.

This applies to changing database column types as well. If the database schema needs
to migrate a postal code from an INT database type to a VARCHAR(6), the data access layer
will need only to change the associated Domain Model attribute type from an Integer to a
string, and all statements are going to be automatically updated. Hibernate defines a highly
customizable JDBC-to-database type mapping system, and the application developer can
override a default type association, or even add support for new database types (that are
not currently supported by Hibernate).

The entity fetching process is automatically managed by the JPA implementation, which auto-
generates the select statements of the associated database tables. This way, JPA can free the
application developer from maintaining entity selection queries as well.

Hibernate allows customizing all the CRUD statements, in which case the application devel-
oper is responsible for maintaining the associated DML statements.

Although it takes care of the entity selection process, most enterprise systems need to take
advantage of the underlying database querying capabilities. For this reason, whenever the
database schema changes, all the native SQL queries need to be updated manually (according
to their associated business logic requirements).

Why JPA and Hibernate matter

127

Write-behind cache

The Persistence Context acts as a transactional write-behind cache, deferring entity state

flushing up until the last possible moment.

Alice EntityManager

find(Post.class, 1L)————>
post

id:1
title:'Transactions'
<«€<—return post

(O

—find(PostDetails.class, 1L)—>

post
.setTitle("ACID")

post_details

id:1
updated_by:'Bob'

<€«—return postDetails

postDetails.
setUpdatedBy("Alice")

flush()

SELECT *
FROM post
WHERE id = 1

post

id:1
title:'ACID'

SELECT *
FROM post_details
WHERE id = 1

post_details

id:1
updated_by:'Alice’

UPDATE post
SET title ='ACID'
WHERE id = 1

UPDATE post_details
SET updated_by = Alice’

Figur

Because every modifying DML statement requires locking (to prevent dirty writes), the
write behind cache can reduce the database lock acquisition interval, therefore increasing

concurrency.

) o

WHERE id =1
e 7.6: Persistence Context

break the read-your-own-write consistency guarantee.

As detailed in the following chapters, Hibernate does not automatically flush pending
changes when a native query is about to be executed, and the application developer

Database
post

id:1
title:'Transactions'

post_details

id:1
updated by:'Bob’

post

id:1
title:'ACID'

post_details

id:1
updated_by:'Alice'

However, caches introduce consistency challenges, and the Persistence Context
requires a flush prior to executing any JPQL or native SQL query, as otherwise it might

must explicitly instruct what database tables are needed to be synchronized.

Why JPA and Hibernate matter 128

Transparent statement batching

Since all changes are being flushed at once, Hibernate may benefit from batching JDBC
statements. Batch updates can be enabled transparently, even after the data access logic
has been implemented. Most often, performance tuning is postponed until the system is
already running in production, and switching to batching statements should not require a
considerable development effort.

With just one configuration, Hibernate can execute all prepared statements in
batches.

Application-level concurrency control

As previously explained, no database isolation level can protect against losing updates when
executing a multi-request long conversation. JPA supports both optimistic and pessimistic
locking.

The JPA optimistic locking mechanism allows preventing lost updates because it imposes a
happens-before event ordering. However, in multi-request conversations, optimistic locking
requires maintaining old entity snapshots, and JPA makes it possible through Extended
Persistence Contexts or detached entities.

A Java EE application server can preserve a given Persistence Context across several
web requests, therefore providing application-level repeatable reads. However, this
strategy is not free since the application developer must make sure the Persistence
Context is not bloated with too many entities, which, apart from consuming memory,
it can also affect the performance of the Hibernate default dirty checking mechanism.

Even when not using Java EE, the same goal can be achieved using detached entities, which
provide fine-grained control over the amount of data needed to be preserved from one web
request to the other. JPA allows merging detached entities, which rebecome managed and
automatically synchronized with the underlying database system.

JPA also supports a pessimistic locking query abstraction, which comes in handy when using
lower-level transaction isolation modes.

Hibernate has a native pessimistic locking API, which brings support for timing out
lock acquisition requests or skipping already acquired locks.

Why JPA and Hibernate matter 129

7.6 Read-based optimizations

Following the SQL standard, the JDBC Rresultset is a tabular representation of the underlying
fetched data. The Domain Model being constructed as an entity graph, the data access layer
must transform the flat resultsSet into a hierarchical structure.

Although the goal of the ORM tool is to reduce the gap between the object-oriented Domain
Model and its relational counterpart, it is very important to remember that the source of data
is not an in-memory repository, and the fetching behavior influences the overall data access
efficiency.

The database cannot be abstracted out of this context, and pretending that entities
can be manipulated just like any other plain objects is very detrimental to application
performance. When it comes to reading data, the impedance mismatch becomes even
more apparent, and, for performance reasons, it is mandatory to keep in mind the SQL
statements associated with every fetching operation.

In the following example, the posts records are fetched along with all their associated
comments. Using JDBC, this task can be accomplished using the following code snippet:

doInJDBC(connection -> {
try (PreparedStatement statement = connection.prepareStatement(
"SELECT * " +
"FROM post AS p " +
"JOIN post_comment AS pc ON p.id = pc.post_id " +
"WHERE " +
" p.id BETWEEN ? AND ? + 1"
)) Ao
statement.setInt(1, id);
statement.setInt(2, id);
try (ResultSet resultSet = statement.executeQuery()) {
List<Post> posts = toPosts(resultSet);
assertEquals(expectedCount, posts.size());
}
} catch (SQLException e) {
throw new DataAccessException(e);

});

Why JPA and Hibernate matter 130

When joining many-to-one or one-to-one associations, each rResultset record corresponds to
a pair of entities, so both the parent and the child can be resolved in each iteration. For one-
to-many or many-to-many relationships, because of how the SQL join works, the ResultSet
contains a duplicated parent record for each associated child.

Constructing the hierarchical entity structure requires manual ResultSet transformation, and,
to resolve duplicates, the parent entity references are stored in a Map structure.

List<Post> toPosts(ResultSet resultSet) throws SQLException {
Map<Long, Post> postMap = new LinkedHashMap<>();
while (resultSet.next()) {

Long postId = resultSet.getlLong(1);
Post post = postMap.get(postld);
if(post == null) {
post = new Post(postId);
postMap.put(postId, post);
post.setTitle(resultSet.getString(2));
post.setVersion(resultSet.getInt(3));
}
PostComment comment = new PostComment();
comment .setId(resultSet.getlLong(4));
comment .setReview(resultSet.getString(5));
comment .setVersion(resultSet.getInt(6));
post.addComment (comment) ;

}

return new Arraylist<>(postMap.values());

The JDBC 4.2 preparedstatement supports only positional parameters, and the first ordinal starts
from 1. JPA allows named parameters as well, which are especially useful when a parameter
needs to be referenced multiple times, so the previous example can be rewritten as follows:

doInJPA(entityManager -> {
List<Post> posts = entityManager.createQuery(
"select distinct p " +
"from Post p " +
"join fetch p.comments " +
"where " +
" p.id BETWEEN :id AND :id + 1", Post.class)
.setParameter("id", id)
.getResultList();
assertEquals(expectedCount, posts.size());

});

Why JPA and Hibernate matter 131

In both examples, the object-relation transformation takes place either implicitly or explicitly.
In the JDBC use case, the associations must be manually resolved, while JPA does it automat-
ically (based on the entity schema).

The fetching responsibility

Besides mapping database columns to entity attributes, the entity associations can also be
represented in terms of object relationships. More, the fetching behavior can be hard-wired
to the entity schema itself, which is most often a terrible thing to do.

Fetching multiple one-to-many or many-to-many associations is even more problematic
because they might require a Cartesian Product, therefore affecting performance. Controlling
the hard-wired schema fetching policy is cumbersome as it prevents overriding an eager
retrieval with a lazy loading mechanism.

Each business use case has different data access requirements, and one policy cannot
anticipate all possible use cases, so the fetching strategy should always be set up on
a query basis.

Prefer projections for read-only views

Although it is very convenient to fetch entities along with all their associated relationships, it
is better to take into consideration the performance impact as well. As previously explained,
fetching too much data is not suitable because it increases the transaction response time.

In reality, not all use cases require loading entities, and not all read operations need to be
served by the same fetching mechanism. Sometimes a custom projection (selecting only a
few columns from an entity) is much more suitable, and the data access logic can even take
advantage of database-specific SQL constructs that might not be supported by the JPA query
abstraction.

As a rule of thumb, fetching entities is suitable when the logical transaction requires
modifying them, even if that only happens in a successive web request. With this is
mind, it is much easier to reason on which fetching mechanism to employ for a given
business logic use case.

Why JPA and Hibernate matter 132

The second-level cache

If the Persistence Context acts as a transactional write-behind cache, its lifetime will be bound
to that of a logical transaction. For this reason, the Persistence Context is also known as the
first-level cache, and so it cannot be shared by multiple concurrent transactions.

On the other hand, the second-level cache is associated with an EntityManagerfFactory, and all
Persistence Contexts have access to it. The second-level cache can store entities as well as
entity associations (one-to-many and many-to-many relationships) and even entity query
results. Because JPA does not make it mandatory, each provider takes a different approach to
caching (as opposed to EclipseLink, by default, Hibernate disables the second-level cache).

Most often, caching is a trade-off between consistency and performance. Because the cache
becomes another source of truth, inconsistencies might occur, and they can be prevented
only when all database modifications happen through a single EntityManagerFactory or a
synchronized distributed caching solution. In reality, this is not practical since the application
might be clustered on multiple nodes (each one with its own EntityManagerFactory) and the
database might be accessed by multiple applications.

Although the second-level cache can mitigate the entity fetching performance issues,
it requires a distributed caching implementation, which might not elude the network-
ing penalties anyway.

7.7 Wrap-up

Bridging two highly-specific technologies is always a difficult problem to solve. When
the enterprise system is built on top of an object-oriented language, the object-relational
impedance mismatch becomes inevitable. The ORM pattern aims to close this gap although
it cannot completely abstract it out.

In the end, all the communication flows through JDBC and every execution happens in the
database engine itself. A high-performance enterprise application must resonate with the
underlying database system, and the ORM tool must not disrupt this relationship.

Just like the problem it tries to solve, Hibernate is a very complex framework with many
subtleties that require a thorough knowledge of both database systems, JDBC, and the
framework itself. This chapter is only a summary, meant to present JPA and Hibernate
into a different perspective that prepares the reader for high-performance object-relational
mapping. There is no need to worry if some topics are not entirely clear because the upcoming
chapters analyze all these concepts in greater detail.

8. Connection Management and
Monitoring

As previously explained in the JDBC Connection Management chapter, for performance
reasons, database connections are better off reused. Because JPA providers generate SQL
statements on behalf of users, it is very important to monitor this process and acknowledge
its outcome. This chapter explains the Hibernate connection provider mechanism and ways
to monitor statement execution.

8.1 JPA connection management

Like the whole Java EE suite, the JPA 1.0 specification was very much tied to enterprise
application servers. In a Java EE container, all database connections are managed by the
application server which provides connection pooling, monitoring, and JTA capabilities.

Once configured, the Java EE patasource can be located through JNDI. In the persistence.xml
configuration file, the application developer must supply the JNDI name of the associated
JTA or RESOURCE_LOCAL pataSource. The transaction-type attribute must also match the data
source transaction capabilities.

<persistence-unit name="persistenceUnit" transaction-type="JTA">
<provider>org.hibernate. jpa.HibernatePersistenceProvider</provider>
<jta-data-source> java:global/jdbc/flexypool</jta-data-source>
</persistence-unit>

A RESOURCE_LOCAL transaction must use a non- jta-data-source DataSource.

<persistence-unit name="persistenceUnit" transaction-type="RESOURCE_LOCAL">
<provider>org.hibernate. jpa.HibernatePersistenceProvider</provider>
<non- jta-data-source> java:/comp/env/jdbc/hsqldb</non- jta-data-source>
</persistence-unit>

While for aJava EE application it is perfectly fine to rely on the application server for providing
a full-featured patasource reference, stand-alone applications are usually configured using
dependency injection rather than JNDI.

From the JPA implementation perspective, the patasource can be either configured externally
or by the JPA provider itself. Most often, configuring an external patasource is still the preferred
alternative as it gives more flexibility in decorating the connection providing mechanism (e.g.
logging, monitoring).

Connection Management and Monitoring 134

JPA providers can fetch connections through the underlying JDBC priver since JPA 2.0 has
standardized the database connection configuration properties:

Table 8.1: JPA connection properties

Property Description

javax.persistence.jdbc.driver Driver full class name (e.g. org.hsqldb. jdbc. JDBCDriver)
javax.persistence.jdbc.url Driver Url (e.g. jdbc:hsqldb:mem:test)
javax.persistence.jdbc.user Database user’s name
javax.persistence.jdbc.password Database user’s password

Unfortunately, these properties alone are not sufficient because most enterprise applications
need connection pooling and monitoring capabilities anyway. For this reason, JPA connection
management is still an implementation-specific topic, and the upcoming sections dive into
the connection provider mechanism employed by Hibernate.

8.2 Hibernate connection providers

Hibernate needs to operate both in Java EE and stand-alone environments, and the database
connectivity configuration can be done either declaratively or programmatically. To accom-
modate JDBC briver connections as well as RESOURCE_LOCAL and JTA pataSource configu-
rations, Hibernate defines its own connection factory abstraction, represented by the
org.hibernate.engine. jdbc.connections.spi.ConnectionProvider interface:

public interface ConnectionProvider extends Service, Wrapped {
public Connection getConnection() throws SQLException;
public void closeConnection(Connection connection) throws SQLException;

public boolean supportsAggressiveRelease();

Because the connection provider might influence transaction response time, each provider
is analyzed from a high-performance OLTP system perspective.

Connection Management and Monitoring 135

8.2.1 DriverManagerConnectionProvider

Hibernate picks this provider when being given the aforementioned JPA 2.0 connection
properties or the Hibernate-specific configuration counterpart:

® hibernate.connection.driver_class
® hibernate.connection.url
® hibernate.connection.username

® hibernate.connection.password.

Although it fetches database connections through the underlying driverManager, this
provider tries to avoid the connection acquisition overhead by using a trivial pool-
ing implementation. The Hibernate documentation does not recommend using the
DriverManagerConnectionProvider in a production setup.

8.2.2 C3P0ConnectionProvider

C3p0! is a mature connection pooling solution that has proven itself in many production
environments, and, using the underlying JDBC connection properties, Hibernate can replace
the built-in connection pool with a c3p0 patasource. To activate this provider, the application
developer must supply at least one configuration property starting with the nibernate.c3pe
prefix:

<property name="hibernate.c3p@.max_size" value="5"/>

C3p0 (released in 2001) and Apache DBCP? (released in 2002) are the oldest and the most
deployed stand-alone Java connection pooling solutions. Later in 2010, BoneCP? emerged as
a high-performance alternative for c3p0 and Apache DBCP.

Nowadays, the BoneCP GitHub page says it is been deprecated in favor of HikariCP*.

Ihttp:/ /www.mchange.com /projects /c3p0/
2https://commons.apache.org/proper /commons-dbcp/
3https://github.com/wwadge/bonecp

4https:/ /github.com /brettwooldridge /HikariCP

http://www.mchange.com/projects/c3p0/
https://commons.apache.org/proper/commons-dbcp/
https://github.com/wwadge/bonecp
https://github.com/brettwooldridge/HikariCP
http://www.mchange.com/projects/c3p0/
https://commons.apache.org/proper/commons-dbcp/
https://github.com/wwadge/bonecp
https://github.com/brettwooldridge/HikariCP

Connection Management and Monitoring 136

As of writing, the most attractive Java connection pools are HikariCP, Vibur DBCP®, and
Apache DBCP2. HikariCP and Vibur DBCP offer built-in Hibernate connection providers.

8.2.3 HikariCPConnectionProvider

Hibernate 5 supports HikariCP (one of the fastest connection pools) via the following
dependency:

<dependency>
<grouplId>org.hibernate</groupId>
<artifactId>hibernate-hikaricp</artifactId>
<version>${hibernate.version}</version>
</dependency>

By specifying the hibernate.connection.provider_class property, the application developer can
override the default connection provider mechanism:

<property name="hibernate.connection.provider_class"
value="org.hibernate.hikaricp.internal.HikariCPConnectionProvider"/»

Unlike DriverManagerConnectionProvider OI C3P@ConnectionProvider, HikariCP requires specific
configuration properties®:

Table 8.2: HikariCP connection properties

Property Description

hibernate.hikari.dataSourceClassName
hibernate.hikari.dataSource.url
hibernate.hikari.dataSource.user
hibernate.hikari.dataSource.password

hibernate.hikari.maximumPoolSize

Shttps:// github.com /vibur /vibur-dbcp
Bhttps:/ /github.com /brettwooldridge /HikariCP

Driver full class name
Driver Url

Database user’s name
Database user’s password

Maximum pool size

https://github.com/vibur/vibur-dbcp
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP
https://github.com/vibur/vibur-dbcp
https://github.com/brettwooldridge/HikariCP

Connection Management and Monitoring 137

8.2.4 DatasourceConnectionProvider

This provider is chosen when the JPA configuration file defines a non- jta-data-source or a
jta-data-source element, or when supplying a hibernate.connection.datasource configuration

property.

Unlike other providers, this one is compatible with JTA transactions, which are
mandatory in Java EE.

Spring works with both stand-alone JTA transaction managers (e.g. Bitronix or Atom-
ikos) and Java EE patasource(s), and, because it offers the best control over the actual
DataSource configuration, the DatasourceConnectionProvider is the preferred choice (even
for HikariCP).

8.2.5 Connection release modes

Hibernate defers the database connection acquisition until the current transaction has to
execute its first SQL statement (either triggered by a read or a write operation). This opti-
mization allows Hibernate to reduce the physical transaction interval, therefore increasing
the chance of getting a connection from the pool.

The connection release strategy is controlled through the hibernate.connection.release_mode
property which can take the following values:

Table 8.3: Connection release modes

Value Description
after_transaction Once acquired, the database connection is released only after the current
transaction either commits or rolls back.

after_statement The connection is released after each statement execution and reacquired prior
to running the next statement. Although not required by either JDBC or JTA
specifications, this strategy is meant to prevent application servers from
mistakenly detecting’ a connection leak between successive EJB (Enterprise Java
Beans) calls

auto This is the default value, and for RESOURCE_LOCAL transactions, it uses the
after_transaction mode, while for JTA transactions it falls back to after_statement.

"http:/ /lists.jboss.org/pipermail /hibernate-dev /2006- December /000903.html

http://lists.jboss.org/pipermail/hibernate-dev/2006-December/000903.html
http://lists.jboss.org/pipermail/hibernate-dev/2006-December/000903.html

Connection Management and Monitoring 138

For JTA transactions, the default mode might be too strict since not all Java EE application
servers exhibit the same behavior for managing transactional resources. This way, it is
important to check if database connections can be closed outside of the EJB component
that triggered the connection acquisition event. Spring-based enterprise systems do not use
Enterprise Java Beans, and, even when using a stand-alone JTA transaction manager, the
after_transaction connection release mode might be just fine.

It is somehow intuitive that the after_statement mode incurs some performance penalty
associated with the frequent acquisition/releasing connection cycles. For this reason, the
following test measures the connection acquisition overhead when using Bitronix in a Spring
application context. Each transaction executes the same statement (fetching the current
timestamp) for a given number of times (represented on the x-axis). The y-axis captures the
recorded transaction response times for both after_statement and after_transaction connection
release modes.

1400
1200
1000

800

600

Time (ms)

400

200

0 - B

10 50 100 500 1000 5000 10000

Statement count

B After statement M After transaction
Figure 8.1: Connection release mode

The more statements a transaction executes, the greater the penalty of reacquiring the
associated database connection from the underlying connection pool. To better visualize the
connection acquisition overhead, the test runs up to 10 000 statements, even if this number
is probably too high for the typical OLTP transaction.

Ideally, database transactions should be as short as possible, and the number of statements
should not be too high either. This requirement stems from the fact that the number of pooled
connections is limited and locks are better released sooner than later.

Connection Management and Monitoring 139

The after_transaction connection release mode is more efficient than the default JTA
after_statement strategy, and so it should be used if the JTA transaction resource
management logic does not interfere with this connection releasing strategy.

8.3 Monitoring connections

As previously concluded, using an externally configured patasource is preferred because
the actual patasource can be decorated with connection pooling, monitoring and logging
capabilities. Because that is exactly how FlexyPool® works too, the following diagram captures
the Datasource proxying mechanism:

Metrics

FlexyPool
DataSource

Application —> —» DataSource

Failover

Figure 8.2: FlexyPool architecture

Instead of getting the actual patasource instance, the data access layer gets a proxy reference.
The proxy intercepts connection acquisition and releasing requests, and, this way, it can
monitor its usage.

When using Spring, setting up FlexyPool is fairly easy because the application has total control
over the pataSource configuration.

InJava EE, database connections should always be fetched from a managed patasource, and one
simple way of integrating FlexyPool is to extend the default batasourceConnectionProviderImpl
and substitute the original bataSource with the F1lexyPoolDataSource.

8https://github.com /vladmihalcea /flexy-pool

https://github.com/vladmihalcea/flexy-pool
https://github.com/vladmihalcea/flexy-pool

Connection Management and Monitoring 140

For this reason, FlexyPool comes with the following Hibernate connection provider:

public class FlexyPoolHibernateConnectionProvider
extends DatasourceConnectionProviderImpl {

private transient FlexyPoolDataSource<DataSource> flexyPoolDataSource;

@0Override
public void configure(Map props) {
super.configure(props);
flexyPoolDataSource = new FlexyPoolDataSource<>(getDataSource());

@Override
public Connection getConnection() throws SQLException {
return flexyPoolDataSource.getConnection();

@0verride
public boolean isUnwrappableAs(Class unwrapType) {
return super.isUnwrappableAs(unwrapType) ||
getClass().isAssignableFrom(unwrapType);

@0verride

public void stop() {
flexyPoolDataSource.stop();
super.stop();

To use the FlexyPoolHibernateConnectionProvider, the application must configure the niber-
nate.connection.provider_class prtn)erty:

<property
name="hibernate.connection.provider_class"
value="com.vladmihalcea. flexypool .adaptor.FlexyPoolHibernateConnectionProvider"

/>

Connection Management and Monitoring

8.3.1 Hibernate statistics

141

Hibernate has a built-in statistics collector which gathers notifications related to database
connections, session transactions and even second-level caching usage. The statisticsImple-

mentor interface defines the contract for intercepting various Hibernate internal events:

-

Statisticsimplementor
openSession()

closeSession()

flush()

connect()

prepareStatement()
closeStatementy()
endTransaction(boolean)
loadEntity(String)
fetchEntity(String)
updateEntity(String)
insertEntity(String)
deleteEntity(String)
optimisticFailure(String)
loadCollection(String)
fetchCollection(String)
updateCollection(String)
recreateCollection(String)
removeCollection(String)
secondLevelCachePut(String)
secondLevelCacheHit(String)
secondLevelCacheMiss(String)
naturalldCachePut(String)
naturalldCacheHit(String)
naturalldCacheMiss(String)
naturalldQueryExecuted(String, long)
queryCachePut(String, String)
queryCacheHit(String, String)
queryCacheMiss(String, String)
queryExecuted(String, int, long)
updateTimestampsCacheHit()
updateTimestampsCacheMiss()
updateTimestampsCachePut()

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

void

Figure 8.3: Hibernate StatisticsImplementor interface

There is a great variety of metrics Hibernate can collect on user’s behalf, but, for performance

reasons, the statistics mechanism is disabled by default.

Connection Management and Monitoring 142

To enable the statistics gathering mechanism, the following property must be configured
first:

<property name="hibernate.generate_statistics" value="true"/>

Once statistics are being collected, in order to print them into the current application log,
the following logger configuration must be set up:

<logger
name="org.hibernate.engine.internal .StatisticallLoggingSessionEventlListener"
level="info" />

With these two settings in place, whenever a Hibernate session (Persistence Context) ends,
the following report is displayed in the currently running log.

37125102 nanoseconds spent acquiring 10000 JDBC connections;
25521714 nanoseconds spent releasing 10000 JDBC connections;
95242323 nanoseconds spent preparing 10000 JDBC statements;
923615040 nanoseconds spent executing 10000 JDBC statements;

The default statistics collector just counts the number of times a certain callback method was
called, and, if that is not satisfactory, the application developer can supply its own custom
StatisticsImplementor implementation.

Dropwizard Metrics

In a high-throughput transaction system, the amount of metric data needed to be recorded
can be overwhelming, so storing all these values into memory is not practical at all.

To reduce the memory footprint, the Dropwizard Metrics® project uses various reservoir
sampling® strategies, which either employ a fixed-size sampler or a time-based sampling
window.

Not only it supports a great variety of metrics (e.g. timers, histograms, gauges), but Dropwiz-
ard Metrics can use multiple reporting channels as well (e.g. SLF4J, IMX, Ganglia, Graphite).

For all these reasons, it is better to use a mature framework such as Dropwizard
Metrics instead of building a custom implementation from scratch.

4https:/ /github.com/dropwizard /metrics
bhttps://en.wikipedia.org /wiki/Reservoir_sampling

https://github.com/dropwizard/metrics
https://en.wikipedia.org/wiki/Reservoir_sampling
https://en.wikipedia.org/wiki/Reservoir_sampling
https://github.com/dropwizard/metrics
https://en.wikipedia.org/wiki/Reservoir_sampling

Connection Management and Monitoring 143

8.3.1.1 Customizing statistics

Although the built-in metrics are rather informative, Hibernate is not limited to the default
statistics collector mechanism which can be completely customized.

In the upcoming example, the statistics collector also provides the following metrics:

« the distribution of physical transaction time (the interval between the moment a con-
nection is first acquired and when it gets released)

* a histogram of the number of connections acquisition requests during the lifespan of any
given transaction (due to the after_statement release mode).

The statisticsReport class provides metric storage and report generation features on top of
Dropwizard Metrics:

public class StatisticsReport {
private final Logger LOGGER = LoggerFactory.getlLogger(getClass());
private MetricRegistry metricRegistry = new MetricRegistry();

private Histogram connectionCountHistogram = metricRegistry.
histogram("connectionCountHistogram");

private Timer transactionTimer = metricRegistry.
timer("transactionTimer");

private S1f4jReporter logReporter = S1f4jReporter
.forRegistry(metricRegistry)
.outputTo(LOGGER)
.build();

public void transactionTime(long nanos) {
transactionTimer .update(nanos, TimeUnit.NANOSECONDS);

public void connectionsCount(long count) {
connectionCountHistogram.update(count);

public void generate() {
logReporter.report();

Connection Management and Monitoring 144

The statisticsImplementor interface defines the contract between the Hibernate internal
API and the various custom statistics gathering implementations. For simplicity sake, the
following statisticsImplementor interface implementation extends the default concurrentStatis-
ticsImpl class, as it only needs to override the connect and endTransaction methods.

public class TransactionStatistics extends ConcurrentStatisticsImpl {

private static final ThreadlLocal<AtomiclLong> startNanos =
ThreadlLocal .withInitial (AtomicLong: :new);

private static final ThreadlLocal <AtomiclLong> connectionCounter =
ThreadlLocal .withInitial (AtomicLong: :new);

private StatisticsReport report = new StatisticsReport();

@Override

public void connect() {
connectionCounter.get().incrementAndGet();
startNanos.get().compareAndSet (@, System.nanoTime());
super.connect();

}
@0verride
public void endTransaction(boolean success) {
try {
report.transactionTime(System.nanoTime() - startNanos.get().get());
report.connectionsCount(connectionCounter.get().get());
report.generate();
} finally {
startNanos.remove();
connectionCounter.remove();
}
super .endTransaction(success);
}

The statisticsImplementor is a singleton instance, therefore the ThreadLocal counters must be
reset after a transaction is ended. When a transaction ends, the report is generated, and
both the physical transaction time and the number of connection requests, issued during a
particular transaction, are flushed to the log.

Connection Management and Monitoring 145

Because a Persistence Context can run multiple concurrent transactions, the report is
generated at the end of each individual transaction.

To use a custom statisticsImplementor instance, Hibernate requires a StatisticsFactory supplied
asa configuration property. Taking a SessionFactoryImplementor parameter, the statisticsImple-
mentor building process has access to the Hibernate configuration data as well.

public class TransactionStatisticsFactory implements StatisticsFactory {
@Override public StatisticsImplementor buildStatistics(
SessionFactorylImplementor sessionFactory) {
return new TransactionStatistics();

The hibernate.stats. factory configuration property must contain the fully qualified name of
the statisticsFactory implementation class:

<property name="hibernate.stats.factory" value="com.vladmihalcea.book.hpjp.hibernate\
.statistics.TransactionStatisticsFactory" />

When running the previous JTA connection release mode example along with this custom
statistics collector, the following output is being displayed:

type=HISTOGRAM, name=connectionCounterHistogram, count=10T7,
min=1, max=10000, mean=162.41, stddev=1096.69,
median=1.0, p75=1.0, p95=50.0, p98=1000.0, p99=5000.0, pP999=10000.0

type=TIMER, name=transactionTimer, count=107,

min=0.557524, max=1272.75, mean=27.16, stddev=152.57,

median=0.85, p75=1.24, p95=41.25, p98=283.50, p99=856.19, p999=1272.75,
mean_rate=36.32, rate_unit=events/second, duration_unit=milliseconds

requirements. The Hibernate statistics mechanism is a very powerful tool, allowing

’ For a high-performance data access layer, statistics and metrics becomes mandatory
the development team to get a better insight into Hibernate inner workings.

Connection Management and Monitoring 146

8.4 Statement logging

An ORM tool can automatically generate DML statements, and it is the application devel-
oper responsibility to validate both their effectiveness as well as their overall performance
impact. Deferring the SQL statement validation until the data access layer starts showing
performance issues is risky, and it can even impact development cost. For this reason, SQL
statement logging becomes relevant from the early stages of application development.

When a business logic is implemented, the Definition of Done should include a review
of all the associated data access layer operations. Following this rule can save much
hassle when the enterprise system is deployed into production.

Although the JPA 2.1 does not feature a standard configuration property for logging SQL
statements, most JPA implementations support this feature through framework-specific
setups. For this purpose, Hibernate defines the following configuration properties:

Table 8.4: Connection release modes

Property Description
hibernate.show_sql Prints SQL statements to the console
hibernate. format_sql Formats SQL statements before being logged or printed to the console

hibernate.use_sql_comments ~ Adds comments to the automatically generated SQL statement

Using the system console for logging is bad practice, a logging framework (e.g. Logback or
Log4j) being a better alternative for it supports configurable appenders and logging levels.

P Because it prints to the console, the hibernate.show_sql property should be avoided.

Hibernate logs all SQL statements on a debug level in the org.hibernate.sqQL logging hierarchy.

Connection Management and Monitoring 147

To enable statement logging, the following Logback logger must be added to the associated
configuration file:

<logger name="org.hibernate.SQL" level="debug"/>

Because Hibernate uses Preparedstatement(s) exclusively, the bind parameter values are not
available when the statement gets printed into the log:

INSERT INTO post (title, version, id) VALUES (?, ?, ?)

Although bind parameters might be logged separately (e.g.
org.hibernate.type.descriptor.sql), the most straight—forward way of logging SQL

statements along with their runtime bind parameter values is to use an external
DataSource Proxy. Because the proxy intercepts all statement executions, the bind
parameter values can be introspected and printed as well.

8.4.1 Statement formatting

By default, every SQL statement, no matter how long, is written as a single line of text. To
increase readability, Hibernate can transform SQL statements in a human-readable format
that spans over multiple log lines. This feature can be activated by setting the following
configuration property:

<property name="hibernate.format_sql" value="true" />

With this setting in place, the previous statement can be formatted as follows:

insert
into
post
(title, version, id)
values
(72, 2, ?)

Although formatting statements can improve readability, this setting is only suitable for
the development phase. In a production system, logs are often parsed and aggregated
in a centralized system, and the multi-line statement format can impact the log parsing
mechanism. Once aggregated, logged queries can be formatted prior to being displayed in
the application performance monitoring user interface.

Connection Management and Monitoring 148

propagate to the underlying JDBC priver (SQL statements are still sent as single lines

P The nhibernate. format_sql property applies to logged statements only, and it does not
of text).

This way, the statement formatting does not have any effect when statements are
logged through an external bataSource proxy.

8.4.2 Statement-level comments

Besides formatting, Hibernate can explain the statement generation process by appending
SQL-level comments into the statement body. This feature allows the application developer
to get a better understanding of the following processes:

* the entity state transition that triggered the currently executing statement
* the reason for choosing a join when fetching a given result set
* the explicit locking mechanism employed by the current statement.

By default, Hibernate does not append any SQL comment in the automatically generated
statements, and, to enable this mechanism, the following Hibernate property must be
configured:

<property name="hibernate.use_sql_comments" value="true" />

When persisting a post entity, Hibernate explains the entity state transition associated with
this particular statement through the following comment:

/* insert com.vladmihalcea.book.hpjp.util.providers.BlogEntityProvider$Post */
INSERT INTO post (title, version, id) VALUES (?, ?, ?)

As opposed to SQL statement formatting, SQL comments are generated not only
during logging as they propagate to the underlying priver as well.

Connection Management and Monitoring 149

Although it might be a useful technique for debugging purposes, in a production en-
vironment, it is better to leave it disabled, to reduce the database request networking
overhead.

8.4.3 Logging parameters

Either the JDBC briver or the patasource must be proxied to intercept statement executions
and log them along with the actual parameter values. Besides statement logging, a JDBC
proxy can provide other cross-cutting features like long-running query detection or custom
statement execution listeners.

8.4.3.1 DataSource-proxy

A lesser-known JDBC logging framework, datasource-proxy? provides support for custom
JDBC statement execution listeners. In Java EE, not all application servers allow configuring
an external DataSource, as they rely on their own custom implementations that bind the user
supplied JDBC briver. Because it can only decorate a Datasource, datasource-proxy might not
be suitable for all Java EE environments.

DataSource

Application —» Proxy —>| DataSource —>{ Driver

Figure 8.4: DataSource-Proxy Architecture

On the other hand, the programmatic configuration support fits the Java-based configuration
approach taken by most modern Spring applications:

@Bean
public DataSource dataSource() {
SLF4JQuerylLogginglListener logginglListener = new SLF4JQuerylogginglListener();
logginglListener.setQuerylLogEntryCreator(new InlineQuerylLogEntryCreator());
return ProxyDataSourceBuilder
.create(actualDataSource())
.name (DATA_SOURCE_PROXY_NAME)
.listener(logginglListener)
.build();

9https:/ /github.com /ttddyy /datasource-proxy

https://github.com/ttddyy/datasource-proxy
https://github.com/ttddyy/datasource-proxy

Connection Management and Monitoring 150

In the following example, datasource-proxy is used to log a batch insert of three prepared-
Statement(s). Although normally a batch is printed in a single line of log, the output was split
into multiple lines to fit the current page layout.

Name : DATA_SOURCE_PROXY, Time:6, Success:True,

Type:Prepared, Batch:True, QuerySize:1, BatchSize:3,
Query:["insert into post (title, version, id) values (?, ?, ?)"],
Params: [(Post no. 0, 0, ©), (Post no. 1, @0, 1), (Post no. 2, 0, 2)]

Not only the bind parameter values are now present, but, because they are grouped all
together, it is very easy to visualize the batching mechanism too.

With the custom statement listener support, datasource-proxy allows building a
query count validator to assert the auto-generated statement count and, therefore,
prevent N+1 query problems during the development phase.

8.4.3.2 P6Spy

P6Spy!'® was released in 2002, in an era when J2EE application servers were ruling the world of
enterprise systems. Because Java EE application servers do not allow programmatic bataSource
configuration, P6Spy supports a declarative configuration approach (through a spy.properties
file).

P6Spy offers support for proxying both a JDBC priver (which is suitable for Java EE applica-
tions) or a JDBC pataSource (supported by some Java EE containers and common practice for
Spring enterprise applications).

Application —>| DataSource [—>| P6SpyDriver —>{ Driver

Application » P6DataSource » DataSource »| Driver

Figure 8.5: P6Spy Architecture

0https:/ /github.com /p6spy,/p6spy

https://github.com/p6spy/p6spy
https://github.com/p6spy/p6spy

Connection Management and Monitoring 151

Running the previous example gives the following output (formatting was also applied):

pbspy - 1448122491807|0@|batch|connection 7|

insert into post (title, version, id) values (?, ?, ?)|

insert into post (title, version, id) values ('Post no. @', 0, 0)
pbspy - 1448122491807 |0|batch|connection 7|

insert into post (title, version, id) values (?, ?, ?)|

insert into post (title, version, id) values ('Post no. 1', 0, 1)
pbspy - 1448122491807|0|batch|connection 7|

insert into post (title, version, id) values (?, ?, ?)|

insert into post (title, version, id) values ('Post no. 2', 0, 2)
pbspy - 1448122491812|5|statement|connection 7|

insert into post (title, version, id) values (?, ?, ?)|

insert into post (title, version, id) values ('Post no. 2', 0, 2)

In the order of their occurrence, the output is built out of the following columns:

Table 8.5: P6Spy output

Field Description

Timestamp The statement execution timestamp

Execution time The statement execution duration (in milliseconds)
Category The current statement category (e.g. statement, batch)
Connection The database connection identifier (as assigned by P6Spy)

Original statement The original statement that was intercepted by P6Spy

Formatted statement The statement with all parameter placeholders replaced with the actual
bind values

The first three lines are associated with adding statements to the batch, while the fourth line
is logging the actual batch execution (which also explains the execution time column value).

One very useful configuration is the outagedetection property, which can detect long-
running statements.

9. Mapping Types and Identifiers

JPA addresses the Object/Relational mismatch by associating Java object types to database
structures. Assuming there is a task database table having four columns (e.g. id,created_by,
changed_on, and status), the JPA provider must map it to Domain Model consisting of two Java
class (e.g. Task and Change).

& Task
I id Long
I status StatusType : el v
b change 5 Change id BIGINT(20)
1 created_by VARCHAR(255)
changed_on DATETIME
1\ % status VARCHAR(255)
Change >
t ' changedOn Date
I ' changedBy String

Figure 9.1: Type Mapping

JPA uses three main Object-Relational mapping elements: type, embeddable, and entity. In the
previous diagram, the Task object is an entity, while the change object is an embeddable type.

Both the entity and the embeddable group multiple Domain Model attributes by relying on
Hibernate Type(s) to associate database column types with Java value objects (e.g. string,
Integer, Date). The major difference between an entity and an embeddable is the presence
of an identifier, which is used to associate a database table unique key (usually the primary
key) with a Domain Model object attribute.

Mapping Types and Identifiers 153

requirement. Sometimes it is more practical to use a root entity and several sub-
entities, so each business case fetches just as much info as needed (while still
benefiting from entity state management).

P Although it is common practice to map all database columns, this is not a strict

Identifiers are mandatory for entity elements, and an embeddable type is forbidden to have
an identity of its own. Knowing the database table and the column that uniquely identifies
any given row, Hibernate can correlate database rows with Domain Model entities.

An embeddable type groups multiple attributes in a single reusable component.

@Embeddable

public class Change {
@Column(name = "changed_on")
private Date changedOn;

@Column(name = "created_by")
private String changedBy;

The Domain Model can share state between multiple entities either by using inheri-
tance or composition. Embeddable types can reuse state through composition.

The composition association!, defined by UML, is the perfect analogy for the relationship
between an entity and an embeddable. When an entity includes an embeddable type, all its
attributes become part of the owner entity.

The embeddable object cannot define its own identifier because otherwise, the entity has
more than one identities. Lacking an identifier, the embeddable object cannot be managed
by a Persistence Context, and its state is controlled by its parent entity.

Because they can have a significant impact on the overall application performance, the rest
of the chapter discusses types and identifiers in greater detail.

Ihttps:/ /en.wikipedia.org /wiki/Object_composition

https://en.wikipedia.org/wiki/Object_composition
https://en.wikipedia.org/wiki/Object_composition

Mapping Types and Identifiers 154

9.1 Types

For every supported database type, JDBC defines a java.sql.JDBCType enumeration. Since it
builds on top of JDBC, Hibernate does the mapping between JDBC types and their associated
Java counterparts (primitives or Objects).

9.1.1 Primitive types

Table 9.1: Primitive Types

Hibernate type JDBC type Java type
BooleanType BIT boolean, Boolean
NumericBooleanType INTEGER (€.g. 0, 1) boolean, Boolean
TrueFalseType CHAR(e.g.'F‘,'f',‘T','t‘) boolean, Boolean
YesNoType CHAR(e.g.'N‘,'n',‘Y','y‘) boolean, Boolean
ByteType TINYINT byte, Byte
ShortType SMALLINT short, Short
CharacterType CHAR char, Character
CharacterNCharType NCHAR char, Character
IntegerType INTEGER int, Integer
LongType BIGINT long, Long
FloatType FLOAT float, Float
DoubleType DOUBLE double, Double
CharArrayType VARCHAR char[], Character[]

From one database system to another, the boolean type can be represented either as a BIT,
BYTE, BOOLEAN OT CHAR database type, so defines four Type(s) to resolve the boolean primitive

type.

Only non-nullable database columns can be mapped to Java primitives (boolean, byte,
short, char, int, long, float, double). For mapping nullable columns, it is better to use the
primitive wrappers instead (Boolean, Byte, Short, Char, Integer, Long, Float, Double).

9.1.2 String types

A Java string can consume as much memory as the Java Heap has available. On the other
hand, database systems define both limited-size types (vARcHAR and NvARCHAR) and unlimited
ones (TEXT, NTEXT, BLOB, and NCLOB).

Mapping Types and Identifiers 155
To accommodate this mapping discrepancy, Hibernate defines the following Type(s):

Table 9.2: String Types

Hibernate type JDBC type Java type
StringType VARCHAR String
StringNVarcharType NVARCHAR String
TextType LONGVARCHAR String
NTextType LONGNVARCHAR String
MaterializedClobType CLOB String
MaterializedNClobType NCLOB String

9.1.3 Date and Time types

When it comes to time, there are multiple Java or database representations, which explains
the vast number of time-related Hibernate Type(s).

Table 9.3: Date and Time Types

Hibernate type JDBC type Java type

DateType DATE Date

TimeType TIME Time

TimestampType TIMESTAMP Timestamp, Date
DbTimestampType TIMESTAMP Timestamp, Date
CalendarType TIMESTAMP Calendar, GregorianCalendar
CalendarDateType DATE Calendar, GregorianCalendar
CalendarTimeType TIME Calendar, GregorianCalendar
TimeZoneType VARCHAR TimeZone

Handling time is tricky because of various time zones, leap seconds and daylight saving
conventions. Storing timestamps in UTC (Coordinated Universal Time) and doing time
zone transformations in the data layer is common practice.

Mapping Types and Identifiers 156

9.1.4 Numeric types

Oracle can represent numbers up to 38 digits, therefore only fitting in a BigInteger or a
BigDecimal (java.lang.lLong and java.lang.Double can Ol’lly store up to 8 bytes).

Table 9.4: Numeric Types

Hibernate type JDBC type Java type
BigIntegerType NUMERIC BigInteger
BigDecimalType NUMERIC BigDecimal

9.1.5 Binary types

For binary types, most database systems offer multiple storage choices (e.g. RAW, VARBINARY,
BYTEA, BLOB, CLOB). In Java, the data access layer can use an array of byte(s), a JDBC Blob or
Clob, Or even a Serializable type, if the Java object was marshaled prior to being saved to the
database.

Table 9.5: Binary Types

Hibernate type JDBC type Java type
BinaryType VARBINARY byte[], Byte[]
BlobType BLOB Blob

ClobType CLOB Clob
NClobType NCLOB Clob
MaterializedBlobType BLOB byte[], Byte[]
ImageType LONGVARBINARY byte[], Byte[]
SerializableType VARBINARY Serializable
SerializableToBlobType BLOB Serializable

9.1.6 UUID types

There are various ways of persisting a Java vuip (Universally Unique Identifier), and, based
on the memory footprint, the most efficient storage types are the database-specific UUID
column types.

Table 9.6: UUID Types

Hibernate type JDBC type Java type
UUIDBinaryType BINARY uuID
UUIDCharType VARCHAR uuID

PostgresUUIDType OTHER UUID

Mapping Types and Identifiers 157

When not natively supported, a BINARY type requires fewer bytes than a vARCHAR, so the
associated index has a smaller memory footprint too.

9.1.7 Other types

Hibernate can also map Java Enum(s), Class, URL, Locale and Currency t0O.

Table 9.7: Other Types

Hibernate type JDBC type Java type

EnumType CHAR, LONGVARCHAR, VARCHAR Enum
INTEGER, NUMERIC, SMALLINT, TINYINT, BIGINT, DECIMAL, DOUBLE, FLOAT

ClassType VARCHAR Class

CurrencyType VARCHAR Currency

LocaleType VARCHAR Locale

UrlType VARCHAR URL

9.1.8 Custom types

Not only that it has a very rich set of data types, but PostgreSQL allows adding custom types
as well (using the creaTe pomaInN? DDL statement). Choosing the appropriate database type for
each Domain Model field can really make a difference in terms of data access performance.
Although there is a great variety of built-in Type(s), the application developer is not limited to
the off-the-shelf ones only, and new Type(s) can be added without too much effort.

In the following example, the business logic requires monitoring access to an enterprise
application. For this purpose, the data access layer stores the IP (Internet Protocol) addresses
of each logged-in user.

Assuming this internal application uses the IPv4 protocol only, the IP addresses are stored
in the Classless Inter-Domain Routing format (e.g. 192.168.123.231/24). PostgreSQL can store
IPv4 addresses either in a cidr or inet type, Or it can use a VARCHAR(18) column type.

The varcHAR(18) column requires 18 characters, and, assuming a UTF-8 encoding, each IPv4
address needs at most 18 bytes. The smallest size address (e.g. 0.0.0.0/0) taking 9 characters,
the varcHAR(18) approach requires between 9 and 18 characters for each IPv4 address.

The inet type is specially designed for IPv4 and IPv6 network addresses, and it also supports
various network address specific operators (e.g. <, >, &&), as well as other address transforming

2http:/ /www.postgresql.org/docs /9.5 /static/sql-createdomain.html

http://www.postgresql.org/docs/9.5/static/sql-createdomain.html
http://www.postgresql.org/docs/9.5/static/sql-createdomain.html

Mapping Types and Identifiers 158

functions (e.g. host(inet), netmask(inet)). As opposed to the varcHAR(18) approach, the inet type
requires only 7 bytes for each IPv4 address.

For it has a more compact size (the index can better fit into memory) and supporting many
specific operators, the inet type is a much more attractive choice. Although, by default,
Hibernate does not support inet types, adding a custom Hibernate Type is a straightforward
task. The IPv4 address is encapsulated in its own wrapper, which can also define various
address manipulation functions too.

public class IPv4 implements Serializable {
private final String address;

public IPv4(String address) {
this.address = address;

public String getAddress() {
return address;

@0verride public boolean equals(Object o) {
if (this == 0) return true;
if (o == null || getClass() != o.getClass()) return false;
return Objects.equals(address, IPv4.class.cast(o).address);

@0verride public int hashCode() {
return Objects.hash(address);

public InetAddress tolnetAddress() throws UnknownHostException {
return Inet4Address.getByName(address);

When an entity wants to change an 1pv4 field, it must provide a new object instance. An
immutable type is much easier to handle since its internal state does not change throughout
the currently running Persistence Context.

Mapping Types and Identifiers 159

All custom types must implement the userType interface, and, since the immutableType takes care
of most userType implementation details, the 1pvaType can focus on type-specific conversation
logic.

public class IPv4Type extends ImmutableType<IPv4> {

public IPv4Type() {
super(IPv4.class);

@verride public int[] sqlTypes() { return new int[]{ Types.OTHER}; }

@Override public IPv4 get(ResultSet rs, String[] names,
SessionImplementor session, Object owner) throws SQLException {
String ip = rs.getString(names[Q]);
return (ip != null) ? new IPv4(ip) : null;

@0verride public void set(PreparedStatement st, IPv4 value, int index,
SessionImplementor session) throws SQLException {
if (value == null) {
st.setNull(index, Types.OTHER);
} else {
PGobject holder = new PGobject();
holder.setType("inet");
holder.setValue(value.getAddress());
st.setObject(index, holder);

The get() method is used to map the inet field to an 1pv4 object instance, while the set() is
used for transforming the 1pv4 object to the PostgreSQL JDBC driver inet equivalent.

P Types.OTHER is used for mapping database types not supported by JDBC.

Mapping Types and Identifiers 160

public abstract class ImmutableType<T> implements UserType {
private final Class<T> clazz;

protected ImmutableType(Class<T> clazz) { this.clazz = clazz; }
@verride public Object nullSafeGet(ResultSet rs, String[] names,

SessionImplementor session, Object owner) throws SQLException {
return get(rs, names, session, owner);

@Override public void nullSafeSet(PreparedStatement st, Object value,
int index, SessionImplementor session) throws SQLException {
set(st, clazz.cast(value), index, session);

@0verride public Class<T> returnedClass() { return clazz; }

@Override public boolean equals(Object x, Object y) {
return Objects.equals(x, y);

@Override public int hashCode(Object x) { return x.hashCode(); }

@Override public Object deepCopy(Object o) { return o; }

@verride public boolean isMutable() { return false; }

@0verride public Serializable disassemble(Object o) {
return (Serializable) o;

@verride public Object assemble(Serializable o, Object owner) { return o; }

@0Override
public Object replace(Object o, Object target, Object owner) { return o; }

protected abstract T get(ResultSet rs, String[] names,
SessionImplementor session, Object owner) throws SQLException;

protected abstract void set(PreparedStatement st, T value, int index,
SessionImplementor session) throws SQLException;

Mapping Types and Identifiers

The eType annotation instructs Hibernates to use the 1pvatype for mapping the 1pv4 field.

@Entity
public class Event {

@Id @GeneratedValue
private Long id;

@Type(type = "com.vladmihalcea.book.hpjp.hibernate.type.IPv4Type")
@Column(name = "ip", columnDefinition = "inet")
private IPv4 ip;

public Event() {}

public Event(String address) {
this.ip = new IPv4(address);

public Long getId() {
return id;

public IPv4 getIp() {
return ip;

public void setIp(String address) {
this.ip = new IPv4(address);

161

GiST operators

PostgreSQL 9.4 added GiST operator support® for inet and cidr column types. To enable this
feature, a GiST index with the inet_ops operator class must be created on the associated inet
columns.

CREATE INDEX ON event USING gist (ip inet_ops)

Ahttp:/ /www.postgresql.org /docs/current/static /gist-builtin-opclasses.html

http://www.postgresql.org/docs/current/static/gist-builtin-opclasses.html
http://www.postgresql.org/docs/current/static/gist-builtin-opclasses.html

Mapping Types and Identifiers 162

Managing Event(s) is easy when Hibernate takes care of the underlying type conversation.

final AtomicReference<Event> eventHolder = new AtomicReference<>();

doInJPA(entityManager -> {
entityManager.persist(new Event());
Event event = new Event("192.168.0.231");
entityManager .persist(event);
eventHolder .set(event);

});

doInJPA(entityManager -> {
Event event = entityManager.find(Event.class, eventHolder.get().getId());
event.setIp("192.168.0.123");

});
Running the previous example generates the following SQL statements:

INSERT INTO event (ip, id) VALUES (NULL(OTHER), 1)
INSERT INTO event (ip, id) VALUES (°192.168.0.231, 2)

SELECT e@_.id as id1_0_0_, e0_.ip as ip2_0_0_
FROM event e0_
WHERE e@_.id = 2

UPDATE event SET ip="192.168.0.123" WHERE id = 2

One of the best aspects of using database-specific types is getting access to advanced
querying capabilities. Because the GiST index allows inet_ops operators, the following query
can be used to check if an Event was generated for a given subnetwork:

Event matchingEvent = (Event) entityManager.createNativeQuery(
"SELECT e.* " +
"FROM event e " +
"WHERE " +
" e.ip && CAST(:network AS inet) = TRUE", Event.class)
.setParameter("network", "192.168.0.1/24")
.getSingleResult();

assertEquals("192.168.0.123", matchingEvent.getlIp().getAddress());

Mapping Types and Identifiers 163

9.2 Identifiers

All database tables must have a primary key column, so each row can be uniquely identified
(the primary key must be both un1QuE and NOT NuLL).

Although the SQL standard does not impose primary keys to be immutable, it is more
practical® to avoid changing them.

Ahttps: / /asktom.oracle.com /pls /asktom /f?p=100:11:0::::P11_QUESTION _ID:5773459616034
p P P

The primary key can have a meaning in the real world, in which case it is a natural key, or it
can be generated synthetically, in which case it is called a surrogate identifier.

For natural keys, unicity is enforced by a real-world unique sequence generator (e.g. National
Identification Numbers, Social Security Numbers, Vehicle Identification Numbers). In reality,
natural unique numbers might pose problems when the unique constraints do not hold true
anymore. For example, a National Identification Number might yield unique numbers, but if
the enterprise system must accommodate users coming from multiple countries, it is possible
that two different countries assigned the same identifier.

The natural key can be composed of one or multiple columns. Compound natural keys might
incur an additional performance penalty because multi-column joins are slower than single-
column ones, and multi-column indexes have a bigger memory footprint too.

Natural keys must be sufficiently long to accommodate as many identifiers as the system
needs throughout its lifecycle. Because primary keys are often indexed, the longer the key,
the more memory an index entry requires. Each joined table includes a foreign key mirroring
the parent primary key, and foreign keys are frequently indexed as well.

Index memory impact

Fixed-size non-numerical keys (e.g. CHAR, VARCHAR) are less efficient than numerical ones (e.g.
INTEGER, BIGINT) both for joining (a simple key performs better than a compound one) or
indexing (the more compact the data type, the less memory space is required by an associated
index).

A cHar(17) natural key (e.g. Vehicle Identification Number) requires 17 characters (17 bytes
when using ASCII characters and a UTF-8 encoding) as opposed to 4 bytes (32 bit INTEGER) or
8 bytes (64 bit BIGINT).

https://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:5773459616034
https://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:5773459616034
https://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:5773459616034

Mapping Types and Identifiers 164

Surrogate keys are generated independently of the current row data, so table column
constraints may evolve with time (changing a user birthday or email address). The surrogate
key can be generated by a numerical sequence generator (e.g. a database identity column or
a sequence), or it can be constructed by a pseudorandom number generator (e.g. GUID? or
UUID#). Both the numerical and UUID keys have both pros and cons.

The UUID is defined by the RFC 4122° standard and it is stored as a 128-bit sequence. The
GUID term refers to any globally unique identifier, which might comprise other non-standard
implementations. For consistency, this chapter further refers to unique identifiers as UUID.

A UUID takes 128 bits, which is four times more than an INTEGER and twice as BIGINT. On
the other hand, a UUID number has less chance of a conflict in a Multi-Master database
replication topology. To avoid such conflicts, many relational database systems increment
the identity or sequence numbers in steps, each node getting its own offset. Because UUIDs
are not sequential, they induce fragmentation, and that can really affect the performance of
clustered indexes.

Requiring less space and being more index-friendly, numerical sequences are pre-
ferred over UUID keys.

9.2.1 UUID identifiers

Nevertheless, some enterprise systems use UUID primary keys, so it is worth knowing what
Hibernate types work best for this task. The UUID key can either be generated by the
application using the java.util.uuID class or it can be assigned by the database system.

If the database system does not have a built-in UUID type, a BINARY(16) column
type is preferred. Although a cHArR(32) column could also store the UUID textual
representation, the additional space overhead makes it a less favorable pick.

Shttp:// en.wikipedia.org/wiki/Globally_Unique_Identifier
4http:/ /en.wikipedia.org /wiki/Universally_Unique_Identifier
Shttps:/ /www.ietf.org /rfc /rfc4122.txt

http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://en.wikipedia.org/wiki/Universally_Unique_Identifier
https://www.ietf.org/rfc/rfc4122.txt
http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://en.wikipedia.org/wiki/Universally_Unique_Identifier
https://www.ietf.org/rfc/rfc4122.txt

Mapping Types and Identifiers 165

Oracle

There is no UUID type in Oracle, so a Raw(16) column must be used instead. The sys_cuip()*
database function can generate a globally unique identifier.

Ahttp:/ /docs.oracle.com/database /121 /SQLRF /functions202.htm#SQLRF06120

SQL Server

The uniqueidentifier® data type is used for storing GUID identifiers. The NEwID()P function can
generate a UUID compatible with the RFC 4122 standard.

Because by default SQL Server uses clustered indexes for primary keys, to avoid the frag-
mentation effect, the NewseQUENTIALID()¢ function can assign pseudo-sequential UUID numbers
(greater than previously generated ones). This guarantee is kept as long as the Windows
server is not restarted.

Ahttps:/ /msdn.microsoft.com/en-us/library /ms187942.aspx
bhttps: //msdn.microsoft.com/en-us/library /ms190348.aspx
Chttps://msdn.microsoft.com /en-us/library /ms189786.aspx

PostgreSQL

The vuip type® can store RFC 4122 compliant unique identifiers. The database does not offer
a built-in UUID generation function, so the identifier must be generated by the data access
layer.

Ahttp:/ /www.postgresql.org/docs/current5 /static /datatype-uuid.html

MySQL

The UUID must be stored in a BINARY(16) column type. The vuip()* functions can generate a
128-bit unique identifier. Because the vuip() function might cause problems for statement-
based replication, passing the generated identifier as a variable” is a workaround to this
limitation.

Ahttp://dev.mysqgl.com/doc/refman /5.7 /en/miscellaneous-functions.html#function_uuid
bhttps:/ /dev.mysql.com /doc /refman /5.7 /en /replication-features-functions.html

http://docs.oracle.com/database/121/SQLRF/functions202.htm#SQLRF06120
http://docs.oracle.com/database/121/SQLRF/functions202.htm#SQLRF06120
https://msdn.microsoft.com/en-us/library/ms187942.aspx
https://msdn.microsoft.com/en-us/library/ms190348.aspx
https://msdn.microsoft.com/en-us/library/ms189786.aspx
https://msdn.microsoft.com/en-us/library/ms187942.aspx
https://msdn.microsoft.com/en-us/library/ms190348.aspx
https://msdn.microsoft.com/en-us/library/ms189786.aspx
http://www.postgresql.org/docs/current5/static/datatype-uuid.html
http://www.postgresql.org/docs/current5/static/datatype-uuid.html
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/replication-features-functions.html
http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/5.7/en/replication-features-functions.html

Mapping Types and Identifiers 166

For generating UUID identifiers, Hibernate offers three generators (assigned, uuid, uuid2),
which we'll be discussed in greater detail in the following sections.

9.2.1.1 The assigned generator
By simply omitting the eGeneratedvalue® annotation, Hibernate falls back to the assigned

identifier, which allows the data access layer to control the identifier generation process.
The following example maps a java.util.uuID identifier to a BINARY(16) column type:

@Entity @Table(name = "post")
public class Post {

@Id @Column(columnDefinition = "BINARY(16)")
private UUID id;

public Post() {}

public Post(UUID id) {
this.id = id;

When persisting a post, Hibernate generates the following insert statement:

INSERT INTO post (id) VALUES
([86, 10, -104, 26, 60, -115, 79, 78, -118, -45, 64, 94, -64, -40, 66, 100])

The uuibBinaryType translates the java.util.uuID to an array of byte(s) that is stored in the
associated BINARY(16) column type.

Because the identifier is generated in the data access layer, the database server is freed
from this responsibility, and so it can allocate its resources to other data processing
tasks.

Hibernate can also generate a UUID identifier on behalf of the application developer, as
described in the following two sections.

Bhttps:/ /docs.oracle.com /javaee /7/api/javax /persistence /GeneratedValue.html

https://docs.oracle.com/javaee/7/api/javax/persistence/GeneratedValue.html
https://docs.oracle.com/javaee/7/api/javax/persistence/GeneratedValue.html

Mapping Types and Identifiers 167

9.2.2 The legacy UUID generator

The UUID hex generator’ is registered under the uuid name and generates hexadecimal UUID
string representations. Using a 8-8-4-8-4 hex digit layout, the UUID hex generator is not
compliant with the RFC 4122 standard, which uses a 8-4-4-4-12 hex digit format. The following
code snippet depicts the uuiDHexGenerator mapping and the associated insert statement.

@Entity @Table(name = "post")
public class Post {

@Id @Column(columnDefinition = "CHAR(32)")
@GeneratedValue(generator = "uuid")
@GenericGenerator(name = "uuid", strategy = "uuid")
private String id;

INSERT INTO post (id) VALUES (402880e451724a820151724a83d00000)

9.2.2.1 The newer UUID generator

The newer UUID generator® is RFC 4122 compliant (variant 2) and is registered under the uuia2
name (working with java.lang.uuip, byte[] and string Domain Model object types). Compared
to the previous use case, the mapping and the test case look as follows:

@Entity @Table(name = "post")
public class Post {

@Id @Column(columnDefinition = "BINARY(16)")
@GeneratedValue(generator = "uuid2")
@GenericGenerator(name = "uuid2", strategy = "uuid2")
private UUID id;

INSERT INTO post (id) VALUES
([77, 2, 31, 83, -45, -98, 70, 40, -65, 40, -50, 30, -47, 16, 30, 124])

"https://docs.jboss.org/hibernate /orm/current/javadocs /org /hibernate /id /UUIDHexGenerator.html
8https://docs.jboss.org /hibernate /orm/current /javadocs /org /hibernate /id /UUIDGenerator.html

https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/id/UUIDHexGenerator.html
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/id/UUIDGenerator.html
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/id/UUIDHexGenerator.html
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/id/UUIDGenerator.html

Mapping Types and Identifiers 168

Being RFC 4122 compliant and able to operate with BINARY column type, the
UUIDGenerator iS preferred over the legacy UUIDHexGenerator.

9.2.3 Numerical identifiers

As previously explained, a numerical surrogate key is usually preferred since it takes less space
and indexes work better with sequential identifiers. To generate numerical identifiers, most
database systems offer either identity (or auto_increment) columns or sequence objects.

JPA defines the GenerationType? enumeration for all supported identifier generator types:

* IDENTITY is for mapping the entity identifier to a database identity column.

* seQuence allocates identifiers by calling a given database sequence.

* TABLE is for relational databases that do not support sequences (e.g. MySQL 5.7), the table
generator emulating a database sequence by using a separate table.

* auto decides the identifier generation strategy based on the current database dialect.

As explained in the JDBC part, database sequences work better with batch updates
and allow various application-side optimization techniques as well.

9.2.3.1 Identity generator

The identity column type (included in the SQL:2003'° standard) is supported by Oracle 12c",
SQL Server!? and MySQL (AUTO_INCREMENT)!3, and it allows an INTEGER Or a BIGINT column
to be auto-incremented on demand.

The incrementation process is very efficient since it uses a lightweight locking mechanism,
as opposed to the more heavyweight transactional course-grain locks. The only drawback is
that the newly assigned value can only be known after executing the actual insert statement.

9https:/ /docs.oracle.com/javaee /7/api /javax /persistence /GenerationType.html
Ohttp: / /en.wikipedia.org /wiki/SQL:2003

Ihttp:/ /docs.oracle.com /database /121/SQLRF /statements_7002.htm#SQLRF55657
2http: / /msdn.microsoft.com/en-us /library /ms186775.aspx

BBhttp: / /dev.mysql.com /doc/refman /5.7 /en /example-auto-increment.html

https://docs.oracle.com/javaee/7/api/javax/persistence/GenerationType.html
http://en.wikipedia.org/wiki/SQL:2003
http://docs.oracle.com/database/121/SQLRF/statements_7002.htm#SQLRF55657
http://msdn.microsoft.com/en-us/library/ms186775.aspx
http://dev.mysql.com/doc/refman/5.7/en/example-auto-increment.html
https://docs.oracle.com/javaee/7/api/javax/persistence/GenerationType.html
http://en.wikipedia.org/wiki/SQL:2003
http://docs.oracle.com/database/121/SQLRF/statements_7002.htm#SQLRF55657
http://msdn.microsoft.com/en-us/library/ms186775.aspx
http://dev.mysql.com/doc/refman/5.7/en/example-auto-increment.html

Mapping Types and Identifiers 169

Batch updates

Because Hibernate separates the id generation from the actual entity insert statement, enti-
ties using the identity generator may not participate in JDBC batch updates. Hibernate issues
the insert statement during the persist() method call, therefore breaking the transactional
write-behind caching semantic used for entity state transitions.

Even if some JDBC drivers allow fetching the associated generated keys when executing a
batch update, Hibernate still needs an improvement in this regard.

The identity generator can be mapped as follows:

@Entity @Table(name = "post")
public class Post

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

The following example demonstrates how the transaction write-behind caching model is
circumvented by the identity column semantics. Although disabled by default, IDBC batching
was enabled to compare results between identity and sequence generators.

doInJPA(entityManager -> {
for (int i = 0; i < batchSize; i++) {
entityManager .persist(new Post());

}
LOGGER.debug("Flush is triggered at commit-time");

});

Executing the previous test case generates the following output.

INSERT INTO post (id) VALUES (DEFAULT)
INSERT INTO post (id) VALUES (DEFAULT)

DEBUG - Flush is triggered at commit-time

Because the associated entity identifier can only be known after the insert statement is
executed, Hibernate triggers the entity state transition prior to flushing the currently running
Persistence Context.

Mapping Types and Identifiers 170

9.2.3.2 Sequence generator

Asequence is a database object that generates consecutive numbers. Defined by the SQL:2003
standard, database sequences are supported by Oracle, SQL Server 2012 and PostgreSQL, and,
compared to identity columns, sequences offer the following advantages:

* The same sequence can be used to populate multiple columns, even across tables.

 Values may be preallocated to improve performance.

* Allowing incremental steps, sequences can benefit from application-level optimization
techniques.

* Because the sequence call can be decoupled from the actual insert statement, Hibernate
does not disable JDBC batch updates.

To demonstrate the difference between the identity and the sequence identifier generators,
the previous example is changed to use a database sequence this time.

@Entity @Table(name = "post")
public class Post {

@Id

@GeneratedValue(strategy=GenerationType.SEQUENCE)
private Long id;

Running the previous test case generates the following output:

CALL NEXT VALUE FOR hibernate_sequence
CALL NEXT VALUE FOR hibernate_sequence

DEBUG - Flush is triggered at commit-time

INSERT INTO post (id) VALUES (1, 2)

When executing the persist() method, Hibernate calls the associated database sequence and
fetches an identifier for the newly persisted entity. The actual insert statement is postponed
until flush time, which allows Hibernate to take advantage of JDBC batching.

Mapping Types and Identifiers 17

9.2.3.3 Table generator

Because of the mismatch between the identifier generator and the transactional write-behind
cache, JPA offers an alternative sequence-like generator that works even when sequences are
not natively supported.

A database table is used to hold the latest sequence value, and row-level locking is employed
to prevent two concurrent connections from acquiring the same identifier value.

Escaping transactional row-level locking

A database sequence is a non-transactional object because the sequence value allocation
happens outside of the transactional context associated with the database connection
requesting a new identifier. Database sequences use dedicated locks to prevent concurrent
transactions from acquiring the same value, but locks are released as soon as the counter
is incremented. This design ensures minimal contention even when the sequence is used
concomitantly by multiple concurrent transactions.

Using a database table as a sequence is challenging, as, to prevent two transactions from
getting the same sequence value, row-level locking must be used. However, unlike the
sequence object locks, the row-level lock is transactional, and, once acquired, it can only be
released when the current transaction ends (either committing or rolling back). This would
be a terrible scalability issue because a long-running transaction would prevent any other
transaction from acquiring a new sequence value.

To cope with this limitation, a separate database transaction is used for fetching a new
sequence value. This way, the row-level lock associated with incrementing the sequence
counter value can be released as soon as the sequence update transaction ends.

For local transactions, a new transaction means fetching another database connection and
committing it after executing the sequence processing logic. This can put additional pressure
on the underlying connection pool, especially if there is already a significant contention for
database connections.

In a JTA environment, the currently running transaction must be suspended, and the se-
quence value is fetched in a separate transaction. The JTA transaction manager has to do
additional work to accommodate the transaction context switch, and that can also have an
impact on the overall application performance.

Without any application-level optimization, the row-level locking approach can be-
come a performance bottleneck if the sequence logic is called way too often.

Mapping Types and Identifiers 172

To continue the previous example, the post uses the table generator this time:

@Entity @Table(name = "post")
public class Post {

@Id
@GeneratedValue(strategy=GenerationType.TABLE)
private Long id;

The following output is obtained when inserting a new post:

SELECT tbl.next_val

FROM hibernate_sequences tbl
WHERE tbl.sequence_name=default
FOR UPDATE

INSERT INTO hibernate_sequences (sequence_name, next_val)
VALUES (default, 1)

UPDATE hibernate_sequences SET next_val=2
WHERE next_val=1 AND sequence_name=default

SELECT tbl.next_val

FROM hibernate_sequences tbl
WHERE tbl.sequence_name=default
FOR UPDATE

UPDATE hibernate_sequences SET next_val=3
WHERE next_val=2 AND sequence_name=default

DEBUG - Flush is triggered at commit-time

INSERT INTO post (id) values (1, 2)

The table generator benefits from JDBC batching, but every table sequence update incurs
three steps:

» The lock statement is executed to ensure that the same sequence value is not allocated
for two concurrent transactions.

* The current value is incremented in the data access layer.

* The new value is saved back to the database and the secondary transaction is committed
to release the row-level lock.

Mapping Types and Identifiers 173

Unlike identity columns and sequences, which can increment the sequence in a single
request, the table generator entails a significant performance overhead. For this reason,
Hibernate comes with a series of optimizers which can improve performance for both
sequence and table generators.

a serializable execution (the row-level lock), which can hinder scalability. Compared
to this application-level sequence generation technique, identity columns and se-
quences are highly optimized for high concurrency scenarios and should be the
preferred choice anyway.

P Although it is a portable identifier generation strategy, the table generator introduces

9.2.3.4 Optimizers

As previously mentioned, both the sequence and the table identifier generator have multiple
implementations which can improve the performance of the identifier generation process.
The sequence and table generators can be split into two categories:

* Legacy implementations (being deprecated since Hibernate 5.0) like sequenceGenerator,
SequenceHiloGenerator and MultipleHiLoPerTableGenerator.

* Newer and more efficient implementations such as SequenceStyleGenerator and TableGen-
erator.

These two categories are not compatible, and the application developer must either choose
the legacy identifiers or the enhanced ones. Prior to Hibernate 5.0, the legacy identifier
generators were provided by default and the application developer could switch to the newer
ones by setting the following configuration property:

<property name="hibernate.id.new_generator_mappings" value="true"/>

Hibernate 5 has decided to drop support for the legacy identifiers and to use the enhanced
ones by default.

Among the legacy identifier generators, the SequenceGenerator did not offer any optimization,
as every new identifier value would require a call to the underlying database sequence. On
the other hand, the SequenceHiLoGenerator and the MultipleHiLoPerTableGenerator offered a hi/lo
optimization mechanism aimed to reduce the number of calls to a database server. Although
these generators are deprecated, the legacy hi/lo algorithm is still a valid optimizer even for
the newer identifier generators.

Mapping Types and Identifiers

9.2.3.4.1 The hi/lo algorithm

174

The hi/lo algorithm splits the sequences domain into hi groups. A hi value is assigned
synchronously, and every hi group is given a maximum number of lo entries, that can be
assigned offline without worrying about identifier value conflicts.

Id=[(nx(hi-1)+1),(nxhi)]

Alice DB Bob
n=23 n=3
get the next hi value————>*
| 1d=¢7,8,9} |||[hi=3]
hi=3,l0=0,Id=7——>
<«—get the next hi value
[hi=4]||[1d={10,11,12}]
Id = 10| ||« hi=4,lo=0,1d=10
hi=3,lo=1,ld=8— >
hi=3,l0=21d=9—————
Id=11| |[€——hi=4,lo=1,I1d= 11
get the next hi value——— >
lld = {13, 14,15}] || [hi=5]
Id= 12| ||[€«——hi=4,10=2,1d=12
hi=5,10=0,1d=13——>||ld= 13

Figure 9.2: The hi/lo algorithm

1. The hi token is assigned either by the database sequence or the table generator, so two
consecutive calls are guaranteed to see monotonically increasing values.
2. Once a hi token is retrieved, the increment size (n - the number of *lo* entries) defines
the range of identifier values a transaction can safely allocate. The identifiers range is
bounded by the following interval: Id = [n x (hi — 1) + 1,n x hi] and the allocation is done
as follows:

3. When all lo values are used, a new hi va

* the current group values start from n x (hi —1) +1
* the lo value is taken from the following interval: {SS} [0, n - 1] {$S}

* by adding the lo value to the initial igroup value, a unique identifier is obtained.
ue is fetched, and the cycle continues.

Mapping Types and Identifiers 175

The following example shows how the hi/lo algorithm works in practice. The entity is mapped
as follows:

@Entity
public class Post {

@Id
@GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "hilo")
@GenericGenerator (
name = "hilo",
strategy = "org.hibernate.id.enhanced.SequenceStyleGenerator",
parameters = {
@Parameter (name = "sequence_name", value = "sequence"),
@Parameter(name = "initial_value", value = "1"),
@Parameter (name = "increment_size", value = "3"),
@Parameter(name = "optimizer", value = "hilo")
}
)

private Long id;

Because the increment size is 3, the following test inserts 4 entities to show the number of
database sequence calls.

doInJPA(entityManager -> {
for(int i = 0; i < 4; i++) {
Post post = new Post();
entityManager .persist(post);

});

Running the previous test generates the following output:

CALL NEXT VALUE FOR hilo_segeunce
CALL NEXT VALUE FOR hilo_seqgeunce

INSERT INTO post (id) VALUES (1)
INSERT INTO post (id) VALUES (2)
INSERT INTO post (id) VALUES (3)
INSERT INTO post (id) VALUES (4)

Mapping Types and Identifiers 176

The first sequence call is for the first three values, while the second one is generated when
reaching the forth entity that needs to be persisted. The more inserts a transaction requires,
the better the performance gain from reducing the number of database sequence calls.

Unfortunately, this optimizer has a major limitation. Because the database sequence
only assigns group values, all database clients must be aware of this algorithm. If the
DBA mustinsert a row in the table above, he must use the hi/lo algorithm to determine
the range of values that she can safely use.

For this reason, Hibernate offers other optimizer algorithms that are interoperable
with external clients, unaware of the application-level optimization technique in use.

9.2.3.4.2 The default sequence identifier generator

The JPA identifier generator strategy only specifies the identifier type and not the algorithm
used for generating such identifiers.

For the sequence generator, considering the following JPA mapping:

@Id

@GeneratedValue(generator = "sequence", strategy=GenerationType.SEQUENCE)
@SequenceGenerator (name = "sequence", allocationSize = 3)

private Long id;

Hibernate chooses the SequenceHiloGenerator when the hibernate. id. new_generator_mappings COIN-
figuration property is false. This was the default setting for Hibernate 3 and 4. The legacy
SequenceHiloGenerator uses the hi/lo algorithm, and, if the allocation size is greater than one,
database interoperability could be compromised (every insert must be done according to the
hi/lo algorithm rules).

If the aforementioned configuration property is true (the default setting for Hibernate 5), then
the JPA mapping above will use the sequenceStyleGenerator instead.

Unlike its previous predecessor, the sequenceStyleGenerator uses configurable identifier op-
timizer strategies, and the application developer can even supply its own optimization
implementation.

Mapping Types and Identifiers 177

9.2.3.4.3 The default table identifier generator

Just like with sequences, the JPA table generator mapping can use a legacy or an enhanced
generator, depending on the current Hibernate configuration settings:

@Id

@GeneratedValue(generator = "table", strategy=GenerationType.TABLE)
@TableGenerator(name = "table", allocationSize = 3)

private Long id;

If the hibernate.id.new_generator_mappings configuration property is false, then Hibernate will
choose the MultipleHiLoPerTableGenerator. This generator requires a single table for managing
multiple identifiers, and just like SequenceHilLoGenerator, it also uses the hi/lo algorithm by
default.

When the enhanced identifier generators are activated, Hibernate uses the TableGenerator
instead, which can also take configurable optimizer strategies.

For both the enhanced sequence and the table identifier generator, Hibernate comes with
the following built-in optimizers:

Table 9.8: Hibernate identifier optimizers

Optimizer type Implementation class Description

none NoopOpt imizer Every identifier is fetched using a new roundtrip to the
database

hi/lo HilLoOptimizer It allocates identifiers by using the legacy hi/lo
algorithm

pooled PooledOptimizer It is an enhanced version of the hi/lo algorithm which is

interoperable with other systems unaware of this
identifier generator

pooled-lo PooledLoOptimizer It is a variation of the pooled optimizer, the database
sequence value representing the lo value instead of the
hi one

By default, the SequencestyleGenerator and TableGenerator identifier generators uses the pooled
optimizer. If the hibernate.id.optimizer.pooled.prefer_lo configuration property is set to true,
Hibernate will use the pooled-10 optimizer by default.

Both the pooled and the pooled-10 encode the database sequence value into the identifier
range boundaries, so allocating a new value using the actual database sequence call does
not interfere with the identifier generator allocation process.

Mapping Types and Identifiers 178

9.2.3.4.4 The pooled optimizer

The pooled optimizer can be configured as follows:

@Entity
public class Post {

@Id
@GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "pooled")
@GenericGenerator (
name = "pooled",
strategy = "org.hibernate.id.enhanced.SequenceStyleGenerator",
parameters = {
@Parameter (name = "sequence_name", value = "sequence"),
@Parameter(name = "initial_value", value = "1"),
@Parameter (name = "increment_size", value = "3"),
@Parameter (name = "optimizer", value = "pooled")

)

private Long id;

The increment size gives the range of values allocated by the sequence generator with one
database roundtrip. Although it is inefficient to flush the Persistence Context after every
persist method call, in this test, the flush outlines when the database sequence was called.

doInJPA(entityManager -> {

for (int i = 0; i < 5; i++) {
entityManager .persist(new Post());
entityManager. flush();

}

entityManager .unwrap(Session.class).doWork(connection -> {
try(Statement statement = connection.createStatement()) {

statement . executeUpdate(
"INSERT INTO post VALUES NEXT VALUE FOR sequence"

);

1)

for (int i = 0; i < 3; i++) {
entityManager .persist(new Post());
entityManager. flush();

});

Mapping Types and Identifiers 179

Id=[(hi-n)+1) hi]

Application Database External System

I T
' :
|

—L —

|
L
n=3
get the next hi value—)E

get the next hi value————>{4]

Id =1 >
Id =2 >
Id =3 >
Id =4 >

get the next hi value——» 7|

Id =5 >
INSERT INTO post
10l«— VALUES —
Id =6 > NEXT VALUE FOR sequence
Id =7 >

&l

get the next hi value———»

ld =11 >

Figure 9.3: The pooled optimizer

If increment size (n) is the number of identifiers within a range, the pooled optimizer will
generate identifiers with the following formula: 7d = [(hi — n) + 1, h4].

* The first sequence call generates the lo value and the second one determines the hi value,
so the first range of identifiers is {2, 3, 4}.

* When adding the 5th entity, the pooled optimizer calls the sequence again and obtains
the next hi value, the next identifier range being {5, 6, 7}.

* After inserting the 5th entity, an external system adds a post row and assigns the primary
key with the value returned by the sequence call.

* The Hibernate application thread resumes and inserts the identifiers 6 and 7.

* The 8th entity requires a new sequence call, and so a new range is allocated {11, 12, 13}.

Mapping Types and Identifiers

9.2.3.4.5 The pooled-lo optimizer

By changing the previous mapping to use the pooled-1o optimizer, the identifier generation

changes as follows:

Application

I

!

!
—L

n=3

Id=[lo,(lo+n)-1]

Database

get the next lo value ——»

I

|

I
1

1]

If increment size (n) is the number of identifiers within a range, the pooled-lo optimizer will

Id =1 >
Id =2 >
Id =3 >
get the next lo value —>z
Id =4 >
Id =5 >
7]
Id =6 >
get the next lo value —)E
Id =10 >
Id =11 >

External System

INSERT INTO post

<«<—VALUES

NEXT VALUE FOR sequence

Figure 9.4: The pooled-lo optimizer

generate identifiers with the following formula: 7d = [lo, (lo +n) — 1].

* The first sequence call generates the lo value, so the first range of identifiers is {1, 2, 3}.
* When adding the 4th entity, the pooled-lo optimizer calls the sequence and obtains the

next lo value, the next identifier range being {4, 5, 6}.

* After inserting the 5th entity, an external system adds a post row and assigns the primary

key with the value returned by the sequence call.
» The Hibernate application thread resumes and inserts the identifier 6.

* The 7th entity requires a new sequence call, and so a new range is allocated {10, 11, 12}.

T

I

I
—L

Mapping Types and Identifiers 181

9.2.3.5 Optimizer gain

To visualize the performance gain of using sequence and table generator optimizers, the
following test measures the identifier allocation time when inserting 50 post entities and
while varying the increment size (1, 5, 10, and 50).

9.2.3.5.1 Sequence generator performance gain

When using a sequence generator with the default pooled optimizer, the following 99th
percentile is being recorded:

1 5 10 50

Sequence increment size

0.45

0.4

0.35

0.3

0.25

Time (ms)
o
[\)

0.15

0.1

0.05

Figure 9.5: Sequence pooled optimizer gain

Database sequences are fast, but, even so, the pooled optimizer manages to reduce
the identifier generation time considerably.

For write-intensive applications, the increment size needs to be adjusted according
to the number of rows being inserted in one transaction.

Mapping Types and Identifiers 182

9.2.3.5.2 Table generator performance gain

The same test suite is run against a table generator with a pooled optimizer, and the
increment size also varies between 1, 5, 10, and 50. Because of the row-level locking and
the extra database connection switch overhead, the table generator is less efficient than a
database sequence.

3

2.5

) I I . .
0
1 5 10 50

Table increment size
Figure 9.6: Table pooled optimizer gain

Time (ms)
'—\
(6]

=

Just like with the database sequence, the pooled optimizer managed to reduce the time it
took for assigning a new entity identifier.

9.2.3.6 Identifier generator performance

To evaluate the concurrency cost of each identifier generators, the following test measures
the time it takes to insert 100 post entities when multiple running threads are involved. JDBC
batching is enabled, and the connection pool is adjusted to accommodate the maximum
number of database connection required (e.g. 32).

In reality, the application might not be configured with so many database connections,
and the table generator connection acquisition cost might be even higher.

Mapping Types and Identifiers 183

The first relational database system under test supports identity columns, so it is worth
measuring how the identifier and the table generator compete. Unlike the previous test,
this one measures the total time taken for inserting all entities, and not just the identifier
allocation time interval.

Each test iteration increases contention by allocating more worker threads that need to
execute the same database insert load.

2500

2000
% 1500
E
]
£
F 1000

) IIIIIIII IIII‘|||
o e
1 2 4 8 16

Thread count
M Identity M Table
Figure 9.7: Identity vs. Table

Even if it cannot benefit from JDBC batching, the identity generator still manages to outper-
form the table generator, which uses a pooled optimizer with an increment size of 100.

The more threads are used, the less efficient the table generator becomes. On the
other hand, identity columns scale much better with more concurrent transactions.

Evenif does not support JDBC batching, native identity columns are still a valid choice,
and, in future, Hibernate might even support batch inserts for those as well.

The gap between the sequence and the table generator is even higher because, just like the
table generator, the sequence generator can also take advantage of the pooled optimizer as
well as JDBC batch inserts.

Mapping Types and Identifiers 184

Running the same test against a relational database supporting sequences, the following
results are being recorded:

1200
1000
800

600

Time (ms)

400

200
2 4 8

Thread count

16

W Sequence M Table
Figure 9.8: Sequence vs. Table

The performance impact of the table generator becomes noticeable in high concurrent
environments, where the row-level locking and the database connection switch introduces a

serial execution.

Because they use lightweight synchronization mechanisms, database sequences scale
better than row-level locking concurrency control mechanisms.

Database sequences are the most efficient Hibernate identifier choice, allowing
sequence call optimizers and without compromising JDBC batching.

10. Relationships

In a relational database, associations are formed by correlating rows belonging to different
tables. A relationship is established when a child table defines a foreign key referencing the
primary key of its parent table. Every database association is built on top of foreign keys,

resulting three table relationship types:

* one-to-many is the most common relationship, and it associates a row from a parent

table to multiple rows in a child table.
* one-to-one requires the child table Primary Key to be associated via a Foreign Key with

the parent table Primary Key column.
* many-to-many requires a link table containing two Foreign Key columns that reference
the two different parent tables.

The following diagram depicts all these three table relationships:

_| post_comment ¥
| post_ tag Vv _| post v post
id BIGINT(20)

% post_id BIGINT(20) id BIGINT(20)
______ |< > review VARCHAR(255)

» tag_id BIGINT(20) title VARCHAR(255)
post_id BIGINT(20)
| 2 >
>
\'4
|
|
|
|
|
|
|
1)
T m post_details v
_tag v ? id BIGINT(20)
id BIGINT(20) created_by VARCHAR(255)
name VARCHAR(255) created_on DATETIME

> >
Figure 10.1: Table relationships

The post table has a one-to-many relationship with the post_comment table because a post row
might be referenced by multiple comments. The one-to-many relationship is established
through the post_ia column which has a foreign key referencing the post table primary key.
Because a post_comment cannot exist without a post, the post is the parent-side while the

post_comment iS the child-side.
The post table has a one-to-one relationship with the post_details. Like the one-to-many

association, the one-to-one relationship involves two tables and a foreign key. The foreign
key has a uniqueness constraint, so only one child row can reference a parent record.

Relationships 186

The post and the tag are both independent tables and neither one is a child of the other. A post
can feature several tag(s), while a tag can also be associated with multiple post(s). This is a
typical many-to-many association, and it requires a junction table to resolve the child-side of
these two parent entities. The junction table requires two foreign keys referencing the two
parent tables.

The foreign key is, therefore, the most important construct in building a table
relationship, and, in a relational database, the child-side controls a table relationship.

In a relational database, the foreign key is associated with the child-side only. For this reason,
the parent-side has no knowledge of any associated child relationships, and, from a mapping
perspective, table relationships are always unidirectional (the child foreign key references the
parent primary key).

10.1 Relationship types

When mapping a JPA entity, besides the underlying table columns, the application developer
can map entity relationships either in one direction or in a bidirectional way. This is another
impedance mismatch between the object-oriented Domain Model and relational database
system because, when using an ORM tool, the parent and the child-side can reference each
other.

A relationship is unidirectional if only one entity side maps the table relationship and is
bidirectional if the table relationship can be navigated in both directions (either from the
entity parent-side or the child-side).

To properly represent both sides of an entity relationship, JPA defines four association
mapping constructs:

* @ManyToOne represents the child-side (where the foreign key resides) in a database one-
to-many table relationship.

* @0neToMany is associated with the parent-side of a one-to-many table relationship.

* eElementCollection defines a one-to-many association between an entity and multiple
value types (basic or embeddable).

* aoneToOne is used for both the child-side and the parent-side in a one-to-one table
relationship.

* @ManyToMany Mirrors a many-to-many table relationship.

Relationships 187

Because the entity relationship choice has a considerable impact on the overall application
performance, this chapter analyzes the data access operation efficiency of all these JPA
associations.

Mapping collections

In a relational database, all table relationships are constructed using foreign keys and
navigated through SQL queries. JPA allows mapping both the foreign key side (the child entity
has a reference to its parent), as well as the parent side (the parent entity has one or more
child entities).

Although eoneToMany, @ManyToMany Or @ElementCollection are convenient from a data access
perspective (entity state transitions can be cascaded from parent entities to children), they
are definitely not free of cost. The price for reducing data access operations is paid in terms
of result set fetching flexibility and performance. A JPA collection, either of entities or value
types (basic or embeddables), binds a parent entity to a query that usually fetches all the
associated child records. Because of this, the entity mapping becomes sensitive to the number
of child entries.

If the children count is relatively small, the performance impact of always retrieving all child
entities might be unnoticeable. However, if the number of child records grows too large,
fetching the entire children collection may become a performance bottleneck. Unfortunately,
the entity mapping is done during the early phases of a project development, and the
development team might be unaware of the number of child records a production system
exhibits.

Not just the mere size can be problematic, but also the number of attributes of the child entity.
Because entities are usually fetched as a whole, the result set is, therefore, proportional to the
number of columns the child table contains. Even if a collection is fetched lazily, Hibernate
might still require to fully load each entity when the collection is accessed for the first time.
Although Hibernate supports extra lazy collection fetching, this is only a workaround and
does not address the root problem.

Alternatively, every collection mapping can be replaced by a data access query, which can use
a SQL projection that is tailored to the data requirements of each business use case. This way,
the query can take business case specific filtering criteria. Although JPA 2.1 does not support
dynamic collection filtering, Hibernate offers Persistence Context-bound collection Filters.

When handling large data sets, it is good practice to limit the result set size, both
for UI (to increase responsiveness) or batch processing tasks (to avoid long running
transactions). Just because JPA supports collection mapping, it does not mean they are
mandatory for every domain model mapping. Until there is a clear understanding of
the number of child records (or if there is even need to fetch child entities entirely), it
is better to postpone the collection mapping decision. For high-performance systems,
a data access query is often a much more flexible alternative.

Relationships 188

10.2 @ManyToOne

The emanyToone relationship is the most common JPA association, and it maps exactly to the
one-to-many table relationship. When using a eManyToone association, the underlying foreign
key is controlled by the child-side, no matter the association is unidirectional or bidirectional.

This section focuses on unidirectional emanyToone relationships only, the bidirectional case
being further discussed with the eoneToMany relationship. In the following example, the post
entity represents the parent-side, while the postcomment is the child-side.

As already mentioned, the JPA entity relationship diagram matches exactly the one-to-many
table relationship.

— | post_comment ¥

:] post v
id BIGINT(20)
id BIGINT(20)
n————— | review VARCHAR(255)
title VARCHAR(255)
> post_id BIGINT(20)
>
Figure 10.2: The one-to-many table relationship
£ PostComment
£ = Post foid Long
f review String
f id Long
f post Post
f title String
. m & getld() Long
m getld() Long e
m setld(Long) void
m setld(Long) void
m getReview() String
m & getTitle() String
m setReview(String) void
m setTitle(String) void
m getPost() Post
m setPost(Post) void

Figure 10.3: @ManyToOne relationship

Instead of mapping the post_id foreign key column, the postComment uses a eManyToone relation-
ship to the parent post entity. The postComment can be associated with an existing post object
reference, and the postcomment can also be fetched along with the post entity.

@ManyToOne
@JoinColumn(name = "post_id")
private Post post;

Hibernate translates the internal state of the eManyToone Post object reference to the post_id
foreign key column value.

Relationships 189

If the emanyToone attribute is set to a valid post entity reference:

Post post = entityManager.find(Post.class, 1L);
PostComment comment = new PostComment("My review");
comment .setPost(post) ;

entityManager .persist(comment);

Hibernate will generate an insert statement populating the post_id column with the identifier
of the associated post entity.

INSERT INTO post_comment (post_id, review, id) VALUES (1, 'My review',6 2)
If the post attribute is later set to null:

comment .setPost(null);

The post_id column will also be updated with a nuLL value:

UPDATE post_comment SET post_id = NULL, review = 'My review' WHERE id = 2

Because the emManyToone association controls the foreign key directly, the automatically
generated DML statements are very efficient.

Actually, the best-performing JPA associations always rely on the child-side to trans-
late the JPA state to the foreign key column value.

This is one of the most important rules in JPA relationship mapping, and it will be
further emphasized for @oneToMany, @neToone and even @ManyToMany associations.

10.3 @OneToMany

While the emanyToone association is the most natural mapping of the one-to-many table
relationship, the eoneToMany association can also mirror this database relationship, but only
when being used as a bidirectional mapping. A unidirectional eoneToMany association uses an
additional junction table, which no longer fits the one-to-many table relationship semantics.

Relationships 190

10.3.1 Bidirectional @OneToMany

The bidirectional eoneToMany association has a matching emManyToone child-side mapping that
controls the underlying one-to-many table relationship. The parent-side is mapped as a
collection of child entities.

& Post
& PostComment
e _ fid Long
I title String))
I review String
I comments List<PostComment> - b
post ost
- G e m getld() Long
m setld(Long) void '® > @ setid(Long) -
m getTitle Strin
J Tt 2) Z m getReview() String
m setTitle(Strin vol
(9 m setReview(String) void
m getComments() List<PostComment> Post) .
m getPost ost
m addComment(PostComment) void Post(Post) .
m setPost(Post Vol
m removeComment(PostComment) void

Figure 10.4: Bidirectional @OneToMany relationship

In a bidirectional association, only one side can control the underlying table relationship. For
the bidirectional eoneToMany mapping, it is the child-side emanyToone association in charge of
keeping the foreign key column value in sync with the in-memory Persistence Context. This
is the reason why the bidirectional eoneToMany relationship must define the mappedsy attribute,
indicating that it only mirrors the eManyToone child-side mapping.

@OneToMany(mappedBy = "post", cascade = CascadeType.ALL, orphanRemoval = true)
private List<PostComment> comments = new ArraylList<>();

Even if the child-side is in charge of synchronizing the entity state changes with the
database foreign key column value, a bidirectional association must always have both
the parent-side and the child-side in sync.

Relationships 191

To synchronize both ends, it is practical to provide parent-side helper methods that add /re-
move child entities.

public void addComment(PostComment comment) {
comments.add(comment) ;
comment .setPost(this);

public void removeComment(PostComment comment) {
comments.remove(comment) ;
comment .setPost(null);

One of the major advantages of using a bidirectional association is that entity state transitions
can be cascaded from the parent entity to its children. In the following example, when
persisting the parent post entity, all the postcomment child entities are persisted as well.

Post post = new Post("First post");

PostComment commenti1 = new PostComment("My first review");
post .addComment (commenti) ;

PostComment comment2 = new PostComment("My second review");
post.addComment (comment2) ;

entityManager .persist(post);

INSERT INTO post (title, id) VALUES ('First post', 1)

INSERT INTO post_comment (post_id, review, id) VALUES (1, 'My first review',6 2)
INSERT INTO post_comment (post_id, review, id) VALUES (1, 'My second review', 3)

When removing a comment from the parent-side collection:
post . removeComment (commentd) ;

The orphan removal attribute instructs Hibernate to generate a delete DML statement on the
targeted child entity:

DELETE FROM post_comment WHERE id = 2

Relationships 192

Equality-based entity removal

The helper method for the child entity removal relies on the underlying child object equality
for matching the collection entry that needs to be removed.

If the application developer does not choose to override the default equals and hashCode
methods, the java.lang.object identity-based equality is going to be used. The problem with
this approach is that the application developer must supply a child entity object reference
that is contained in the current child collection.

Sometimes child entities are loaded in one web request and saved in a HttpSession or a Stateful
Enterprise Java Bean. Once the Persistence Context, which loaded the child entity is closed,
the entity becomes detached. If the child entity is sent for removal into a new web request,
the child entity must be reattached or merged into the current Persistence Context. This way,
if the parent entity is loaded along with its child entities, the removal operation will work
properly since the removing child entity is already managed and contained in the children
collection.

If the entity has not changed, reattaching this child entity will be redundant and so the equals
and the hashcode methods must be overridden to express equality in terms of a unique business
key. In case the child entity has aenatural1d or a unique attribute set, the equals and the hashCode
methods can be implemented on top of that. Assuming the postcomment entity has the following
two columns whose combination render a unique business key, the equality contract can be
implemented as follows:

private String createdBy;

@Temporal (TemporalType . TIMESTAMP)
private Date createdOn = new Date();

@0verride
public boolean equals(Object o) {
if (this == o) return true;
if (0o == null || getClass() != o.getClass()) return false;
PostComment that = (PostComment) o;
return Objects.equals(createdBy, that.createdBy) &&
Objects.equals(createdOn, that.createdOn);

@Override
public int hashCode() {
return Objects.hash(createdBy, createdOn);

Relationships 193

Identifier-based equality

The java.lang.Object.equals® method Javadoc demands the strategy be reflexive, symmetric,
transitive, and consistent.

While the first three equality properties (reflexive, symmetric, transitive) are easier to achieve,
especially with the java.util.ob jects? equals and hashcode utilities, consistency requires more
diligence.

For a JPA or Hibernate entity, consistency means that the equality result is reflexive,
symmetric and transitive across all entity state transitions (e.g. new/transient, man-
aged, detached, removed).

If the entity has a enaturalId attribute, then ensuring consistency is simple since the natural
key is assigned even from the transient state, and this attribute never changes afterward.
However, not all entities have a natural key to use for equality checks, so another table column
must be used instead.

Luckily, most database tables have a primary key, which uniquely identifies each row of a
particular table. The only caveat is to ensure consistency across all entity state transitions.

A naive implementation would look like this:

@Entity
public class Post

@Id @GeneratedValue
private Long id;

//Getters and setters omitted for brevity

@0Override
public boolean equals(Object o) {
if (this == o) return true;

if (!(o instanceof Post)) return false;
return Objects.equals(id, ((Post) o).getId());

@0Override
public int hashCode() {
return Objects.hash(id);

Ahttps://docs.oracle.com/javase /8 /docs /api/java/lang /Object.html#equals-java.lang.Object-
bhttps://docs.oracle.com/javase/7/olocs/api/java/util/object's.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-
https://docs.oracle.com/javase/7/docs/api/java/util/Objects.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-
https://docs.oracle.com/javase/7/docs/api/java/util/Objects.html

Relationships 194

Now, when running the following test case:

Set<Post> tuples = new HashSet<>();
tuples.add(entity);
assertTrue(tuples.contains(entity));

doInJPA(entityManager -> {
entityManager .persist(entity);
entityManager. flush();
assertTrue(tuples.contains(entity));

1)

The final assertion will fail because the entity can no longer be found in the set collection
since the new identifier value is associated with a different set bucket than the one where the
entity got stored in.

To fix it, the equals and hashcode methods must be changed as follows:

@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof Post)) return false;
return id !'= null && id.equals(((Post) o).getId());

@0verride
public int hashCode() {
return 31;

When the entity identifier is null, equality can only be guaranteed for the same object
references. Otherwise, no transient object is equal to any other transient or persisted object.
That’s why the equals method above skips the identifier check if the current object has a null
identifier value.

Using a constant hashCode value solves the previous bucket-related problem associated with
Set(s) orMap(s) because, this time, only a single bucket is going to be used. Although in general,
using a single set bucket is not very efficient for large collection of objects, in this particular
use case, this workaround is valid since managed collections should be rather small to be
efficient. Otherwise, fetching a eoneToMany set with thousands of entities is orders of magnitude
more costly than the one-bucket search penalty.

When using List(s), the constant hashCode value is not an issue at all, and, for bidirectional
collections, the Hibernate-internal PersistentList(s) are more efficient than PersistentSet(s).

Relationships 195

the emanyToone mapping is in charge of the table relationship. Because it simplifies data
access operations as well, the bidirectional @oneToMany association is worth considering
when the size of the child records is relatively low.

P The bidirectional eoneToMany association generates efficient DML statements because

10.3.2 Unidirectional @OneToMany

The unidirectional eoneToMany association is very tempting because the mapping is simpler
than its bidirectional counterpart. Because there is only one side to take into consideration,
there is no need for helper methods and the mapping does not feature a mappedsy attribute
either.

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
private List<PostComment> comments = new ArraylList<>();

Unfortunately, in spite its simplicity, the unidirectional eoneToMany association is less efficient
than the unidirectional emanyToone mapping or the bidirectional eoneToMany association.

Against any intuition, the unidirectional eoneToMany association does not map to a one-to-many
table relationship. Because there is no emanyToone side to control this relationship, Hibernate
uses a separate junction table to manage the association between a parent row and its child
records.

| post v —| post_post_comment ¥ ~| post_comment ¥
id BIGINT(20) » Post_id BIGINT(20) id BIGINT(20)
e ——] ——— 4
title VARCHAR(255) » comments_id BIGINT(20) review VARCHAR(255)
> » | 4

Figure 10.5: The @OneToMany table relationship

The table post_post_comment has two foreign key columns, which reference both the parent-
side row (the post_id column is a foreign key to the post table primary key) and the child-side
entity (the comments_id references the primary key of the post_comment table).

Without going into analyzing the associated data access operations, it is obvious that joining
three tables is less efficient than joining just two. Because there are two foreign keys, there
need to be two indexes (instead of one), so the index memory footprint increases. However,
since this is a regular table mapping for a many-to-many relationship, the extra table and
the increased memory footprint are not even the biggest performance issue. The algorithm
for managing the collection state is what makes any unidirectional eoneToMany association less
attractive.

Relationships 196

Considering there is a post entity with two postComment child records, obtained by running the
following example:

Post post = new Post("First post");

post.getComments().add(new PostComment("My first review"));
post.getComments().add(new PostComment("My second review"));
post.getComments().add(new PostComment("My third review"));

entityManager .persist(post);

While for a bidirectional eoneToMany association there were three child rows being added, the
unidirectional association requires three additional inserts for the junction table records.

INSERT INTO post (title, id) VALUES ('First post', 1)

INSERT INTO post_comment (review, id) VALUES ('My first review', 2)
INSERT INTO post_comment (review, id) VALUES ('My second review', 3)
INSERT INTO post_comment (review, id) VALUES ('My third review', 4)
INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 2)
INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 3)
INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 4)

When removing the first element of the collection:
post.getComments().remove(Q);
Hibernate generates the following DML statements:

DELETE FROM post_post_comment WHERE Post_id = 1

INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 3)
INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 4)
DELETE FROM post_comment WHERE id = 2

First, all junction table rows associated with the parent entity are deleted, and then the
remaining in-memory records are added back again. The problem with this approach is
that instead of a single junction table remove operation, the database has way more DML
statements to execute.

Another problem is related to indexes. If there is an index on each foreign key column (which
is the default for many relational databases), the database engine must delete the associated
index entries only to add back the remaining ones. The more elements a collection has, the
less efficient a remove operation gets.

Relationships 197

The unidirectional eoneTomany relationship is less efficient both for reading data (three
joins are required instead of two), as for adding (two tables must be written instead of
one) or removing (entries are removed and added back again) child entries.

10.3.3 Ordered unidirectional @OneToMany
If the collection can store the index of every collection element, the unidirectional @oneToMany

relationship may benefit for some element removal operations. First, an eorderColumn annota-
tion must be defined along the @oneTomany relationship mapping:

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
@0rderColumn(name = "entry")
private List<PostComment> comments = new ArraylList<>();

At the database level, the entry column is included in the junction table.

| post_post_comment ¥

:] post v :] post_comment ¥
! Post_id BIGINT(20)
id BIGINT(20) id BIGINT(20)
comments_id BIGINT(20) —_———
title VARCHAR(255) review VARCHAR(255)
entry INT(11)
> . >

Figure 10.6: The unidirectional @OneToMany with an @OrderColumn

the former allows the JPA provider to materialize the element index into a dedicated
database column so that the collection is sorted using an orDER BY clause, the latter
does the sorting at runtime based on the ordering criteria provided by the eordery
annotation.

P It is better not to mistake the @ordercolumn with the eorderBy JPA annotation. While

Relationships 198

Considering there are three postcomment entities added for a given post parent entity:

post.getComments().add(new PostComment("My first review"));
post.getComments().add(new PostComment("My second review"));
post.getComments().add(new PostComment("My third review"));

The index of every collection element is going to be stored in the entry column of the junction
table:

INSERT INTO post_comment (review, id) VALUES ('My first review', 2)
INSERT INTO post_comment (review, id) VALUES ('My second review', 3)
INSERT INTO post_comment (review, id) VALUES ('My third review', 4)
INSERT INTO post_post_comment (Post_id, entry, comments_id) VALUES (1, 9, 2)
INSERT INTO post_post_comment (Post_id, entry, comments_id) VALUES (1, 1, 3)
INSERT INTO post_post_comment (Post_id, entry, comments_id) VALUES (1, 2, 4)

When removing elements from the tail of the collection:
post.getComments().remove(2);
Hibernate only requires a single junction table delete statement:

DELETE FROM post_post_comment WHERE Post_id = 1 AND entry = 2
DELETE FROM post_comment WHERE id = 4

Unfortunately, this optimization does not hold for entries that are located towards the head
of the collection. So, if we remove the first element:

post.getComments().remove(Q);

Hibernate deletes the last entry associated with the parent row from the junction table,
and then it updates the remaining entries to preserve the same element ordering as the in-
memory collection snapshot:

DELETE FROM post_post_comment WHERE Post_id = 1 AND entry = 2

UPDATE post_post_comment SET comments_id = 4 WHERE Post_id = 1 AND entry = 1
UPDATE post_post_comment SET comments_id = 3 WHERE Post_id = 1 AND entry = 0
DELETE FROM post_comment WHERE id = 2

Relationships 199

If the unidirectional eoneToMany collection is used like a stack and elements are always
removed from the collection tail, the remove operations will be more efficient when
using an eordercolumn. But the closer an element is to the head of the list, the more
update statements must be issued, and the additional updates have an associated
performance overhead.

10.3.4 @OneToMany with @JoinColumn

JPA 2.0 added support for mapping the eoneToMany association with a eJjoinColumn so that it
can map the one-to-many table relationship. With the @Joincoilumn, the @oneToMany association
controls the child table foreign key, so there is no need for a junction table.

On the JPA side, the class diagram is identical to the aforementioned unidirectional @éoneToMany
relationship, and the only difference is the JPA mapping which takes the additional eJoinColumn:

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
@JoinColumn(name = "post_id")
private List<PostComment> comments = new ArraylList<>();

When adding three postComment entities, Hibernate generates the following SQL statements:

post.getComments().add(new PostComment("My first review"));
post.getComments().add(new PostComment("My second review"));
post.getComments().add(new PostComment("My third review"));

INSERT INTO post_comment (review, id) VALUES ('My first review',6 2)
INSERT INTO post_comment (review, id) VALUES ('My second review', 3)
INSERT INTO post_comment (review, id) VALUES ('My third review', 4)
UPDATE post_comment SET post_id = 1 WHERE id = 2
UPDATE post_comment SET post_id = 1 WHERE id = 3
UPDATE post_comment SET post_id = 1 WHERE id = 4

Besides the regular insert statements, Hibernate issues three update statements for setting
the post_id column on the newly inserted child records. The update statements are generated
by the Hibernate-internal collectionRecreateAction which tries to preserve the element order
whenever the collection state changes. In this particular case, the CollectionRecreateAction
should not be scheduled for execution, however, as of writing (Hibernate 5.2.3), this issue still
replicates.

Relationships 200

When deleting the last element of the collection:
post.getComments().remove(2);
Hibernate generates the following SQL statements:

UPDATE post_comment SET post_id = null WHERE post_id = 1 AND id = 4
DELETE from post_comment WHERE id = 4

Again, there is an additional update statement associated with the child removal operation.
When a child entity is removed from the parent-side collection, Hibernate sets the child table
foreign key column to null. Afterward, the orphan removal logic kicks in, and it triggers a
delete statement against the disassociated child entity.

Unlike the regular eoneToMany association, the eJoinColumn alternative is consistent in regard to
the collection entry position that is being removed. So, when removing the first element of
the collection:

post.getComments().remove(Q);
Hibernate still generates an additional update statement:

UPDATE post_comment SET post_id = null WHERE post_id = 1 AND id = 2
DELETE from post_comment WHERE id = 2

Bidirectional @oneToMany With eJoincolumn relationship

The eoneToMany with eJoinColumn association can also be turned into a bidirectional relationship,
but it requires instructing the child-side to avoid any insert and update synchronization:

@ManyToOne
@JoinColumn(name = "post_id", insertable = false, updatable = false)
private Post post;

The redundant update statements are generated for both the unidirectional and the
bidirectional association, so the most efficient foreign key mapping is the eManyToone
association.

Relationships 201

10.3.5 Unidirectional @OneToMany Set

All the previous examples were using List(s), but Hibernate supports set(s) as well. For the
next exercise, the postcomment entity uses the following mapping:

@Entity(name = "PostComment") @Table(name = "post_comment")
public class PostComment {

@Id @GeneratedValue
private Long id;

private String slug;
private String review;

public PostComment() {
byte[] bytes = new byte[8];
ByteBuffer.wrap(bytes).putDouble(Math.random());
slug = Base64.getEncoder().encodeToString(bytes);

public PostComment(String review) {
this();
this.review = review;

//Getters and setters omitted for brevity

@0verride
public boolean equals(Object o) {
if (this == 0) return true;
if (o == null || getClass() != o.getClass()) return false;
PostComment comment = (PostComment) o;
return Objects.equals(slug, comment.getSlug());

@Override
public int hashCode() {
return Objects.hash(slug);

This time, the postcomment entity uses a siug attribute which provide a way to uniquely identify
each comment belonging to a given post entity.

Relationships 202

Because the postcomment references are going to be stored in a java.util.Set, it is best to
override the equals and hashCode object methods according to the entity business key. In
this particular example, the postcomment does not have any meaningful business key, so the
slug attribute is used for the equality checks.

The parent post entity has a unidirectional eoneToMany association that uses a java.util.Set:

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
private Set<PostComment> comments = new HashSet<>();

When adding three postComment entities:

post.getComments().add(new PostComment("My first review"));
post.getComments().add(new PostComment("My second review"));
post.getComments().add(new PostComment("My third review"));

Hibernate generates the following SQL statements:

INSERT INTO post_comment (review, slug, id)
VALUES ('My second review', 'P+HLCF25scI=', 2)
INSERT INTO post_comment (review, slug, id)
VALUES ('My first review', 'P9y80GLTCyg=', 3)
INSERT INTO post_comment (review, slug, id)
VALUES ('My third review', 'P+fWF+Ck/LY=', 4)

INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 2)
INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 3)
INSERT INTO post_post_comment (Post_id, comments_id) VALUES (1, 4)

The remove operation is much more effective this time because the collection element order
needs not be enforced anymore.

When removing the postComment child entities:

for(PostComment comment: new ArraylList<>(post.getComments())) {
post.getComments().remove(comment);

Hibernate generates one statement for removing the junction table entries and three delete
statements for the associated post_comment records.

Relationships 203

DELETE FROM post_post_comment WHERE Post_id = 1

DELETE FROM post_comment WHERE id = 2
DELETE FROM post_comment WHERE id = 3
DELETE FROM post_comment WHERE id = 4

To avoid using a secondary table, the eoneToMany mapping can use the eJoinColumn annotation.

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
@JoinColumn(name = "post_id")
private Set<PostComment> comments = new HashSet<>();

Upon inserting three postcomment entities, Hibernate generates the following statements:

INSERT INTO post_comment (review, slug, id)
VALUES ('My third review', 'P8pcnLprqcQ=', 2)
INSERT INTO post_comment (review, slug, id)
VALUES ('My second review', 'P+Gaul+Hhxs=',6 3)
INSERT INTO post_comment (review, slug, id)
VALUES ('My first review', 'P+kroLOQTK@=', 4)

UPDATE post_comment SET post_id = 1 WHERE id = 2
UPDATE post_comment SET post_id = 1 WHERE id =
UPDATE post_comment SET post_id 1 WHERE 1id

w

Il
NN

When deleting all three postcomment entities, the generated statements look like this:

UPDATE post_comment SET post_id = null WHERE post_id = 1

DELETE FROM post_comment WHERE id = 2
DELETE FROM post_comment WHERE id
DELETE FROM post_comment WHERE id

noo
S W

Although it is an improvement over the unidirectional unordered or ordered List, the
unidirectional set is still less efficient than the bidirectional @oneToMany association.

Relationships 204

10.4 @ElementCollection

Although it is not an entity association type, the @ElementCollection is very similar to the
unidirectional eoneToMany relationship. To represent collections of basic types (e.g. string, int,
BigDecimal) or embeddable types, the eElementCollection must be used instead. If the previous
associations involved multiple entities, this time, there is only a single post entity with a
collection of string comments.

Value types inherit the persistent state from their parent entities, so their lifecycle is
also bound to the owner entity. Any operation against the entity collection is going to be
automatically materialized into a DML statement.

From a database perspective, there is one child table holding both the foreign key column
and the collection element value.

| post v | post_comments ¥
id BIGINT(20) » Post_id BIGINT(20)
H_—
title VARCHAR(255) comments VARCHAR(255)
> | 2

Figure 10.7: The @ElementCollection table relationship

10.4.1 @ElementCollection List

Let’s consider the use case when a List is used with @ElementCollection:

&' Post

I id Long
I title String
I comments List<String>
m getld() Long
m setld(Long) void
m getTitle() String
m setTitle(String) void
m getComments() List<String>

Figure 10.8: The @ElementCollection relationship

Relationships 205

The mapping for the comments collection looks as follows:

@ElementCollection
private List<String> comments = new ArraylList<>();

When it comes to adding or removing child records, the eelementCollection behaves like a
unidirectional eoneToMany relationship, annotated with CascadeType.ALL and orphanRemoval.

To persist three comments, the data access layer only has to add them to the parent entity
collection:

post.getComments().add("My first review");
post.getComments().add("My second review");
post.getComments().add("My third review");

Hibernate issues the insert statements during Persistence Context flushing:
INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My first review')
INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My second review')

INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My third review')

Unfortunately, the remove operation uses the same logic as the unidirectional @oneToMany
association, so when removing the first collection element:

post.getComments().remove(0Q);

Hibernate deletes all the associated child-side records and re-inserts the in-memory ones
back into the database table:

DELETE FROM Post_comments WHERE Post_id = 1
INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My second review')
INSERT INTO Post_comments (Post_id, comments) VALUES (1, 'My third review')

Using an eElementCollection With a List is not very efficient because the association is
considered to be a bag, in Hibernate terminology.

A bag does not guarantee that elements are uniquely identifiable, hence Hibernate
needs to delete and reinsert the elements associated with a given parent entity
whenever a change occurs to the @ElementCollection List.

Relationships 206

10.4.2 @ElementCollection Set

On the other hand, when using a set, the eElementCollection no longer behaves like a bag, and
the generated SQL statements are going to be more efficient.

So, let’s changing the comments collection to use a set this time:

@ElementCollection
private Set<String> comments = new HashSet<>();

After inserting the same 3 comments, as we did when using a List with eElementCollection, let’s
see how the set behaves when it comes to removing elements.

When removing the first element, we added to the set:
post.getComments().remove("My first review");

Hibernate generates a single SQL delete statement:

DELETE FROM Post_comments WHERE Post_id = 1 and comments = 'My first review'
When removing the last element, we added to the set:
post.getComments().remove("My third review");

Again, Hibernate generates a single SQL delete statement:

DELETE FROM Post_comments WHERE Post_id = 1 and comments = 'My third review'

So, if you want to use an eelementCollection and benefit from its simplicity, it's much better if
you are using a Set, instead of a List.

using a List, it's still much better if you replace the eElementCollection with either a
bidirectional @oneToMany association or just a simple eManyToone association that maps
the Foreign Key column.

P However, even if using a set can render more efficient SQL statements than when

This way, you can remove elements without having to fetch the collection via the
parent entity.

Relationships 207

10.5 @OneToOne

From a database perspective, the one-to-one association is based on a foreign key that is
constrained to be unique. This way, a parent row can be referenced by at most one child
record only.

In JPA, the eoneToone relationship can be either unidirectional or bidirectional.

10.5.1 Unidirectional @OneToOne

In the following example, the post entity represents the parent-side, while the postDetails is
the child-side of the one-to-one association.

As already mentioned, the JPA entity relationship diagram matches exactly the one-to-one
table relationship.

—| post_details v

| post v id BIGINT(20)
id BIGINT(20) created_by VARCHAR(255)
fitle VARCHAR(255) |0~ 1| created_on DATETIME
> post_id BIGINT(20)

Figure 10.9: The one-to-one table relationship

Even from the Domain Model side, the unidirectional eoneToone relationship is strikingly similar
to the unidirectional emanyToone association.

&£ PostDetails

fid Long
& Post I createdOn Date
fid Long f createdBy String
I title String ! post Post
m getld() Long @ m getld() Long
m setld(Long) void m setld(Long) void
m getTitle() String m getCreatedOn() Date
m setTitle(String) void m getCreatedBy() String

m getPost() Post

m setPost(Post) void

Figure 10.10: The unidirectional @OneToOne relationship

Relationships 208

The mapping is done through the eoneToone annotation, which, just like the eMmanyToone mapping,
might also take a @JoinColumn as well.

@0OneToOne
@JoinColumn(name = "post_id")
private Post post;

The unidirectional eoneToone association controls the associated foreign key, so, when the post
attribute is set:

Post post = entityManager.find(Post.class, 1L);
PostDetails details = new PostDetails("John Doe");
details.setPost(post);

entityManager .persist(details);

Hibernate populate the foreign key column with the associated post identifier:

INSERT INTO post_details (created_by, created_on, post_id, id)
VALUES ('John Doe', '2016-01-08 11:28:21.317', 1, 2)

Even if this is a unidirectional association, the post entity is still the parent-side of this
relationship. To fetch the associated postDetails, a JPQL query is needed:

PostDetails details = entityManager.createQuery(
"select pd " +
"from PostDetails pd " +
"where pd.post = :post", PostDetails.class)
.setParameter ("post", post)
.getSingleResult();

If the post entity always needs its postDetails, a separate query might not be desirable. To
overcome this limitation, it is important to know the postbetails identifier prior to loading
the entity.

One workaround would be to use a enaturalld, which might not require a database access if
the entity is stored in the second-level cache. Fortunately, there is even a simpler approach
which is also portable across JPA providers as well. The JPA 2.0 specification added support for
derived identifiers, making possible to link the postDetails identifier to the post table primary
key.

This way, the post_details table primary key can also be a foreign key referencing the post table
identifier.

Relationships 209

The PostDetails @oneToone mapping is changed as follows:

@0neToOne
@MapsId
private Post post;

This time, the table relationship does not feature any additional foreign key column since the
post_details table primary key references the post table primary key:

__| post_details v
—| post v
‘ created_by VARCHAR(255)
id BIGINT(20)
H | created_on DATETIME
title VARCHAR(255)
> ! post_id BIGINT(20)

Figure 10.11: The shared key one-to-one

Because postDetails has the same identifier as the parent post entity, it can be fetched without
having to write a JPQL query.

PostDetails details = entityManager.find(PostDetails.class, post.getlId());

The shared primary key efficiency

First of all, the shared primary key approach reduces the memory footprint of the child-side
table indexes since it requires a single indexed column instead of two. The more records a
child table has, the better the improvement gain for reducing the number of indexed columns.

More, the child entity can now be simply retrieved from the second-level cache, therefore
preventing a database hit. In the previous example, because the child entity identifier was
not known, a query was inevitable. To optimize the previous use case, the query cache would
be required as well, but the query cache is not without issues either.

retrieval, the JPA 2.0 derived identifier is the preferred eoneToone mapping strategy.
The shared primary key is not limited to unidirectional associations, being available
for bidirectional eoneToone relationships as well.

P Because of the reduced memory footprint and enabling the second-level cache direct

Relationships 210

10.5.2 Bidirectional @OneToOne

A bidirectional eoneToone association allows the parent entity to map the child-side as well:

&£ PostDetails
& Post '
® i] I id Long
i ong
D il S I createdOn Date
title trin
) .g I createdBy String
I details PostDetails . =
post ost
m getld() Long
] * ® m getld() Long
m setld(Long) void @ setid(Long) -
m getTitle() String
)]] m getCreatedOn() Date
m setTitle(String) void)
] _ m getCreatedBy() String
m getDetails() PostDetails S o
m getPost ost
m setDetails(PostDetails) void
m setPost(Post) void

Figure 10.12: The bidirectional @OneToOne relationship

The parent-side defines a mappedBy attribute because the child-side (which can still share the
primary key with its parent) is still in charge of this JPA relationship:

@0neToOne(mappedBy = "post", cascade = CascadeType.ALL, fetch = FetchType.LAZY)
private PostDetails details;

Because this is a bidirectional relationship, the post entity must ensure that both sides of this
relationship are set upon associating a postDetails entity:

public void setDetails(PostDetails details) {
if (details == null) {
if (this.details != null) this.details.setPost(null);
}
else details.setPost(this);
this.details = details;

Unlike the parent-side eoneToMany relationship where Hibernate can simply assign a proxy even
if the child collection is empty, the eoneToone relationship must decide if to assign the child
reference to null or to an object, be it the actual entity object type or a runtime Proxy.

This is an issue that affects the parent-side eoneToone association, while the child-side, which
has an associated foreign key column, knows whether the parent reference should be null or
not. For this reason, the parent-side must execute a secondary query to know if there is a
mirroring foreign key reference on the child-side.

Relationships 211

Even if the association is lazy, when fetching a post entity:
Post post = entityManager.find(Post.class, 1L);

Hibernate fetches the child entity as well, so, instead of only one query, Hibernate requires
two select statements:

SELECT p.id AS id1_0_0_, p.title AS title2_0_0_
FROM post p
WHERE p.id =1

SELECT pd.post_id AS post_id3_1_0_, pd.created_by AS created_1_1_0_,
pd.created_on AS created_2_1_0_
FROM post_details pd

WHERE pd.post_id = 1

If the application developer only needs parent entities, the additional child-side secondary
queries will be executed unnecessarily, and this might affect application performance. The
more parent entities are needed to be retrieved, the more obvious the secondary queries
performance impact gets.

Limitations

Even if the foreign key is nor nuLL and the parent-side is aware about its non-nullability
through the optional attribute (eg @0neToOne(mappedBy = "post", fetch = FetchType.LAZY, optional
= false)), Hibernate still generates a secondary select statement.

For every managed entity, the Persistence Context requires both the entity type and the
identifier, so the child identifier must be known when loading the parent entity, and the only
way to find the associated post_details primary key is to execute a secondary query. Because
the child identifier is known when using emapsid, in future, HHH-10771* should address the
secondary query issue.

parent side is annotated with eLazyToOne(LazyToOneOption.NO_PROXY) and the child side
is not using emapsId. Because it's simpler and more predictable, the unidirectional
@oneToone relationship is often preferred.

P Bytecode enhancement is the only viable workaround. However, it only works if the

Ahttps:/ /hibernate.atlassian.net /browse /HHH-10771

https://hibernate.atlassian.net/browse/HHH-10771
https://hibernate.atlassian.net/browse/HHH-10771

Relationships 212

10.6 @ManyToMany

From a database perspective, the emanyToMany annotation mirrors a many-to-many table
relationship:

—| post v _| post_tag ¥ | tag v
id BIGINT(20) » post_id BIGINT(20) id BIGINT(20)
——— — — —
title VARCHAR(255) » tag_id BIGINT(20) name VARCHAR(255)
| | 2 | 2

Figure 10.13: The many-to-many table relationship

Like the eoneToMany and eoneToone relationships, the eManyToMany association can be either
unidirectional or bidirectional.

10.6.1 Unidirectional @ManyToMany List

In our case, if we need to map a unidirectional emanyTomMany association between the post and
Tag entities, it makes sense to have the post entity map the eManyToMany relationship since there
is not much need for navigating this association from the Tag side (although we can still do it
with a JPQL query).

& Post

£ id Long & Tag

I title String fid Long
I tags List<Tag> I name String
m getld() Long S———> m getld() Long
m setld(Long) void m setld(Long) void
m getTitle() String m getName() String
m setTitle(String) void m setName(String) void
m getTags() List<Tag>

Figure 10.14: The unidirectional @ManyToMany relationship

In the post entity, the tags collection using a List, like this:

@ManyToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
@JoinTable(name = "post_tag",
joinColumns = @JoinColumn(name = "post_id"),
inverseJoinColumns = @JoinColumn(name = "tag_id")

)

private List<Tag> tags = new ArraylList<>();

Relationships 213

When adding several entities:

Post post1 = new Post("JPA with Hibernate");
Post post2

new Post("Native Hibernate");

Tag tagl = new Tag("Java");
Tag tag2 = new Tag("Hibernate");

postil.getTags().add(tagl);
postil.getTags().add(tag2);
post2.getTags().add(tagl);

entityManager .persist(postl);
entityManager .persist(post2);

Hibernate manages to persist both the rost and the Tag entities along with their junction
records.

INSERT INTO post (title, id) VALUES ('JPA with Hibernate', 1)
INSERT INTO post (title, id) VALUES ('Native Hibernate',6 4)

INSERT INTO tag (name, id) VALUES ('Java', 2)
INSERT INTO tag (name, id) VALUES ('Hibernate', 3)

INSERT INTO post_tag (post_id, tag_id) VALUES (1, 2)
INSERT INTO post_tag (post_id, tag_id) VALUES (1, 3)
INSERT INTO post_tag (post_id, tag_id) VALUES (4, 2)

Cascading

For eManyToMany associations, CascadeType .REMOVE does not make too much sense when both sides
represent independent entities. In this case, removing a post entity should not trigger a Tag
removal because the Tag can be referenced by other posts as well. The same arguments apply
to orphan removal since removing an entry from the tags collection should only delete the
junction record and not the target rag entity.

CascadeType.REMOVE mapping. Instead of cascadeType.ALL, the cascade attributes should

’ For both unidirectional and bidirectional associations, it is better to avoid the
be declared explicitly (€.g. CascadeType . PERSIST, CascadeType . MERGE).

Relationships 214

But just like the unidirectional eoneToMany association, problems arise when it comes to
removing the junction records from the List:

postl.getTags().remove(tagl);

Hibernate deletes all junction rows associated with the post entity whose Tag association is
being removed and inserts back the remaining ones:

DELETE FROM post_tag WHERE post_id = 1
INSERT INTO post_tag (post_id, tag_id) VALUES (1, 3)

10.6.2 Unidirectional @ManyToMany Set

When using a List, the eManyToMany association behaves like a bag, and, as explained in the
@ElementCollection section, Hibernate bags are not very efficient.

Therefore, let’s change the tags collection to use a set:

@ManyToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
@JoinTable(name = "post_tag",
joinColumns = @JoinColumn(name = "post_id"),
inverseJoinColumns = @JoinColumn(name = "tag_id")

)
private Set<Tag> tags = new HashSet<>();

Assuming, we added the same 3 Tag entities to the post entity, if we remove the first Tag from
the tags collection:

posti1.getTags().remove(tagl);
Hibernate is going to generate a single SQL delete statement, this time:

DELETE FROM post_tag WHERE post_id = 1 AND tag_id = 2

P For a eManyToMany association, it’s better to use the set collection type, instead of List.

Relationships 215

10.6.3 Bidirectional @ManyToMany

The bidirectional emanyTomMany relationship can be navigated from both the post and the Tag side.

& Post

£ id Long & Tag

f title String fid Long
I tags Set<Tag> I name String
m getld() Long I posts Set<Post>
m setld(Long) void m getld() Long
m getTitle() String N 4 > m setld(Long) void
m setTitle(String) void m getName() String
m getTags() Set<Tag> m setName(String) void
m addTag(Tag) void m getPosts() Set<Post>
m removeTag(Tag) void m equals(Object) boolean
m equals(Object) boolean m hashCode() int
m hashCode() int

Figure 10.15: The bidirectional @ManyToMany relationship

While in the one-to-many and many-to-one associations the child-side is the one holding
the foreign key, for a many-to-many table relationship both ends are parent-sides and the
junction table plays the child-side role.

Because the junction table is hidden when using the default emanyToMany mapping, the appli-
cation developer must choose an owning and a mappedsy side.

The post entity uses the same mapping as shown in the unidirectional emanyToMany section:

@ManyToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE})

@JoinTable(name = "post_tag",
joinColumns = @JoinColumn(name = "post_id"),
inverseJoinColumns = @JoinColumn(name = "tag_id")
)

private Set<Tag> tags = new HashSet<>();
while the Tag entity adds a emanyToMany association that looks as follows:

@ManyToMany (mappedBy = "tags")
private Set<Post> posts = new HashSet<>();

Relationships 216

The mappedBy attribute tells Hibernate that the post entity is the owning side of this association.
In our case, the mappedsy attribute of the emanyToMany annotation in the Tag entity points to
the tags collection of the post entity, meaning that the post entity is going to propagate the
association state changes to the underlying junction table.

Hibernate manages each side of a bidirectional eManyToMany relationship just like a
unidirectional eoneToMany association between the parent-side (e.g. Post or the Tag) and
the hidden child-side (e.g. the post_tag table post_id or tag_id foreign keys).

For this reason, it's much more efficient to use a set collection type, no matter if the
@ManyToMany is unidirectional or bidirectional.

Like any bidirectional associations, helper methods are needed to keep both parent sides in
sync. For a bidirectional emanyTomany association, the helper methods must be added to the
entity that is more likely to interact with. In our case, the root entity is the post, so the helper
methods are added to the post entity:

public void addTag(Tag tag) {
tags.add(tag);
tag.getPosts().add(this);

}

public void removeTag(Tag tag) {
tags.remove(tag);
tag.getPosts().remove(this);

Both post and Tag entities have unique attributes which can simplify the entity removal
operation even when mixing detached and managed entities.

10.6.4 The @OneToMany alternative

We can also map a many-to-many table relationship using bidirectional eoneToMany associa-
tions from the parent entities to the child entity that maps the junction table.

Therefore, the post_tag child table is mapped by the postTag entity, and its composite identifier
is encapsulated in the postTagid embeddable type as illustrated by the following diagram.

Relationships 217

£ Post K
0S
of 7 L b id Long
i on
D i s 'g & PostTagld I name String
title trin
) 9 I postld Long I posts List<PostTag>
I tags List<PostTag>
- 1 I tagld Long m getld() Long
m get on
E Tags0 List<PostT . m getPostld() Long m setld(Long) void
m getTags ist<PostTag>
gddTg(T) g'd m getTagld() Long m getName() String
m addTag(Ta voi
gT g(T ; 9 m equals(Object) boolean m setName(String) void
m removeTag(Ta voi
9 . m hashCode() int m getPosts() List<PostTag>
m equals(Object) boolean N)
i m equals(Object) boolean
m hashCode() int |
| I m hashCode() int
I ¢ !
! | ¢
b QT ’
! I
¢ | W
& PostTag
Bid PostTagld
I post Post
f tag Tag
m getld() PostTagld
m getPost() Post
m setPost(Post) void
m getTag() Tag
m setTag(Tag) void
m equals(Object) boolean
m hashCode() int

Figure 10.16: The @OneToMany as a many-to-many table relationship

The pPostTagld maps the post1d and tagld foreign key columns, and the postTag entity uses the
postId and tagld properties of the postTagid identifier to map the post and the tag @ManyToone
associations.

The post entity maps the bidirectional @oneTomMany side of the post emanyToone association from
the postTag child entity:

@OneToMany (mappedBy = "post", cascade = CascadeType.ALL, orphanRemoval = true)
private List<PostTag> tags = new ArraylList<>();

The Tag entity maps the bidirectional eoneTomany side of the tag eManyToone association defined
by the postTag child entity:

@OneToMany(mappedBy = "tag", cascade = CascadeType.ALL, orphanRemoval = true)
private List<PostTag> posts = new ArraylList<>();

This way, the bidirectional emanyTomMany relationship is transformed in two bidirectional eone-
ToMany associations.

Relationships 218

The postTag entity has a composed identifier made out of the post_id and tag_id columns.

@Embeddable
public class PostTagIld implements Serializable {

@Column(name = "post_id")
private Long postId;

@Column(name = "tag_id")
private Long tagld;

public PostTagId() {}

public PostTagId(Long postld, Long tagld) {
this.postld = postld;
this.tagld = tagld;

public Long getPostId() {
return postld;

public Long getTagId() {
return tagld;

@Override
public boolean equals(Object o) {
if (this == 0) return true;
if (o == null || getClass() != o.getClass()) return false;
PostTagld that = (PostTagld) o;
return Objects.equals(postId, that.getPostId() &&
Objects.equals(tagld, that.getTagld());

@Override
public int hashCode() {
return Objects.hash(postld, tagld);

The JPA specification requires the composite identifiers embeddable types to implement the
Serializable interface, as well as implementing equals and hashCode based on the associated
foreign key column values.

Relationships 219

The postTag entity defines two eManyToone associations, as follows:

@Entity
@Table(name = "post_tag")
public class PostTag {

@EmbeddedId
private PostTagld id;

@ManyToOne
@MapsId("postId")
private Post post;

@ManyToOne
@MapsId("tagId")
private Tag tag;

private PostTag() {}

public PostTag(Post post, Tag tag) {
this.post = post;
this.tag = tag;
this.id = new PostTagld(post.getId(), tag.getld());

//Getters and setters omitted for brevity

@0Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
PostTag that = (PostTag) o;
return Objects.equals(post, that.getPost() &&
Objects.equals(tag, that.getTag());

@Override
public int hashCode() {
return Objects.hash(post, tag);

The emMaps1d annotation instructs Hibernate that the post_id and tag_id foreign key columns
are managed by the postTagld composite identifier, not by the eManyToone property.

Relationships 220

Just like with any bidirectional association, we need to define the helper methods that allow
us to keep the @ManyToone and @oneToMany sides in sync.

However, as opposed to a standard bidirectional eoneToMany association, the removeTag helper
method in the post entity is much more complex because it needs to locate the PostTag
associated with the current post entity, as well as the Tag object reference in the tags collection
that needs to be disassociated.

public void removeTag(Tag tag) {
for (Iterator<PostTag> iterator = tags.iterator(); iterator.hasNext();) {

PostTag postTag = iterator.next();

if (postTag.getPost().equals(this) && postTag.getTag().equals(tag)) {
iterator.remove();
postTag.getTag().getPosts().remove(postTag);
postTag.setPost(null);
postTag.setTag(null);
break;

Notice that, the removeTag method relies on the PostTag equals and hashCode methods in order to
remove the desired entry.

When rerunning the entity removal example featured in the unidirectional @ManyToMany section:
postl.removeTag(tagl);

Hibernate issues a single delete statement, therefore targeting a single postTag junction
record:

DELETE FROM post_tag WHERE post_id = 1 AND tag_id = 3

Because the eManyToone side manages the foreign key column changes, the internal collection
state of the eoneToMany side is not taken into consideration unless we remove an entry.

For this reason, reversing the order of the tags elements has absolutely no effect:

postl.getTags().sort(
Comparator . comparing(
(PostTag postTag) -> postTag.getlId().getTagld()
)

.reversed()

);

Relationships 221

To materialize the order of elements, the @ordercolumn must be used instead:

@OneToMany (mappedBy = "post", cascade = CascadeType.ALL, orphanRemoval = true)
@0rderColumn(name = "entry")
private List<PostTag> tags = new ArraylList<>();

When using the aforementioned mapping, rhe post_tag junction table features an entry column
storing the collection element order.

Therefore, if we reverse the element order as we did previously, Hibernate is going to update
the entry column to maintain the current PostTag element order:

UPDATE post_tag SET entry = © WHERE post_id = 1 AND tag_id
UPDATE post_tag SET entry = 1 WHERE post_id 1 AND tag_id

|

|

I
N

1
w

Mapping the junction entity of a many-to-many table relationship allows us to persist
additional column into the junction table (e.g. created_on, created_by), which cannot be
done when using the JPA eManyToMany annotation.

Relationships 222

10.7 Hypersistence Optimizer

Knowing which are the most efficient associations is of paramount importance when it comes
to designing a high-performance data access layer. But choosing the right mappings is not
sufficient. You also have to check the Hibernate configuration properties, as well as the
queries that get executed.

For this purpose, I created the Hypersistence Optimizer! tool. While you could manually
investigate the JPA and Hibernate mappings and configurations, having a tool to do this task
on your behalf is going to save you a lot of time.

More, Hypersistence Optimizer can validate your JPA and Hibernate usage during testing, and
you could even assert the number of issues detected by the tool and trigger a build failure
whenever a performance-impacting issue is detected. This way, you can ensure that future
data access logic changes won't affect the performance of your application.

Because you purchased this book, you have a 258 discount for any Hypersistence Optimizer
license. All you have to do is to use the HO250FF coupon code when making the purchase.
Or, you can use this link? to quickly navigate to the Hypersistence Optimizer sales page with
the discount coupon activated.

10.7.1 Testimonials

“It really pays off when it comes to analyzing complex applications. For architectures that are
difficult to manage, it quickly provides clues for further analysis.

This is a huge help both when setting up a new implementation and when optimizing a legacy
application.”

— Kevin Peters (Software Engineer - codecentric AG)

“Let’s face it, JPA and Hibernate are very powerful but not simple tools. Even experienced
developers make mistakes that may result in very heavy database queries, dramatically
lowering overall application performance.

Hypersistence Optimizer feels like an additional team member - a JPA expert that is there to
help and show how can you optimize your mappings and configurations before you ship them
to production”

— Maciej Walkowiak (Freelance Tech Lead)

Ihttps:/ /vladmihalcea.com /hypersistence-optimizer /
Zhttps:/ /vladmihalcea.teachable.com /p /hypersistence-optimizer /2coupon_code=HO250FF

https://vladmihalcea.com/hypersistence-optimizer/
https://vladmihalcea.teachable.com/p/hypersistence-optimizer/?coupon_code=HO25OFF
https://vladmihalcea.com/hypersistence-optimizer/
https://vladmihalcea.teachable.com/p/hypersistence-optimizer/?coupon_code=HO25OFF

11. Inheritance

Java, like any other object-oriented programming language, makes heavy use of inheritance
and polymorphism. Inheritance allows defining class hierarchies that offer different imple-
mentations of a common interface.

Conceptually, the Domain Model defines both data (e.g. persisted entities) and behavior
(business logic). Nevertheless, inheritance is more useful for varying behavior rather than
reusing data (composition is much more suitable for sharing structures). Even if the data
(persisted entities) and the business logic (transactional services) are decoupled, inheritance
can still help varying business logic (e.g. Visitor pattern?).

& Board
fid Long

I name String

& Topic
£ id Long
& Post f title String < & Announcement
I content String I owner String I validUntil Date
' createdOn Date
' board Board

& TopicStatistics

£ id Long
I topic Topic
' views long

Figure 11.1: Domain Model Inheritance

Ihttps:/ /en.wikipedia.org /wiki/Visitor_pattern

https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Visitor_pattern

Inheritance 224

The root entity of this Domain Model is the Board entity because, either directly or indirectly,
all the other entities are associated with a Board.

@Entity @Table(name = "board")
public class Board {

@Id @GeneratedValue
private Long id;

private String name;

//Getters and setters omitted for brevity

The end user can submit either a Post or an Announcement on a particular Board. Because the post
and the Announcement share the same functionality (differing only in data), they both inherit
from a Topic base class.

The Topic class defines a relationship to a Board entity, hence the post and the Announcement
entities can also be associated with a Board instance.

@Entity @Table(name = "topic")
public class Topic {

@Id @GeneratedValue
private Long id;

private String title;
private String owner;

@Temporal (TemporalType . TIMESTAMP)
private Date createdOn = new Date();

@ManyToOne(fetch = FetchType.LAZY)
private Board board;

//Getters and setters omitted for brevity

Inheritance 225

Both the post and the Announcement entities extend the Topic class and define their own specific
attributes.

@Entity @Table(name = "post")
public class Post extends Topic {

private String content;

//Getters and setters omitted for brevity
@Entity @Table(name = "announcement")
public class Announcement extends Topic {

@Temporal (TemporalType. TIMESTAMP)
private Date validUntil;

//Getters and setters omitted for brevity

The Topicstatistics is at the bottom of this Domain Model as it is only needed for monitoring
purposes, without being directly associated with the main business logic. Because statistics
are needed for both post and Announcement entities, the TopicStatistics defines a Topic entity
association.

@Entity @Table(name = "topic_statistics")
public class TopicStatistics {

@Id @GeneratedValue
private Long id;

@0OneToOne @JoinColumn(name = "id") @MapsId
private Topic topic;

private long views;

//Getters and setters omitted for brevity

Inheritance 226

rows would then reference the topic_statistics records. For the sake of demonstrating
how entity association polymorphism works, the TopicStatistics was chosen to be the
child-side.

P Another approach would be to add this relationship into the Topic class, and the topic

As natural as this Domain Model may be represented in an object-oriented programming
language, transposing it to a relational database is anything but straightforward. Although
SQL-99 added support for type inheritance, this feature is seldom implemented. Therefore,
relational database systems are relying on tuples and relational algebra for representing and
manipulating data. For this reason, mapping inheritance in a relational database is one of the
most obvious object-relational impedance mismatches.

Without native support from the database system, inheritance can only be emulated through
table relationships. In the Patterns of Enterprise Application Architecture book, Martin Fowler
defines three ways of mapping inheritance into a relational database:

* Single Table Inheritance?, which uses a single database table to represent all classes in
a given inheritance hierarchy.

* Class Table Inheritance?, which maps each class to a table, and the inheritance associa-
tion is resolved through table joins.

» Concrete Table Inheritance*, where each table defines all fields that are either defined
in the subclass or inherited from a superclass.

The JPA specification defines all these three inheritance mapping models through the
following strategies:

® InheritanceType.SINGLE_TABLE
® InheritanceType.JOINED
® InheritanceType.TABLE_PER_CLASS.

JPA also covers the case when inheritance is only available in the Domain Model, without
being mirrored into the database (€.g. @MappedSuperclass).

Whenever the data access layer implements a functionality without support from the un-
derlying database system, care must be taken to ensure that application performance is
not compromised. This chapter aims to analyze what trade-offs are required for employing
inheritance as well as its impact on application performance.

2http:/ /martinfowler.com /eaaCatalog /singleTableInheritance.html
3http:/ /martinfowler.com / eaaCatalog/classTablelnheritance.html
4http:/ /martinfowler.com /eaaCatalog /concreteTableInheritance.html

http://martinfowler.com/eaaCatalog/singleTableInheritance.html
http://martinfowler.com/eaaCatalog/classTableInheritance.html
http://martinfowler.com/eaaCatalog/concreteTableInheritance.html
http://martinfowler.com/eaaCatalog/singleTableInheritance.html
http://martinfowler.com/eaaCatalog/classTableInheritance.html
http://martinfowler.com/eaaCatalog/concreteTableInheritance.html

Inheritance 227

11.1 Single table

The single table inheritance is the default JPA strategy, funneling a whole inheritance Domain
Model hierarchy into a single database table.

To employ this strategy, the Topic entity class must be mapped with one of the following
annotations:

* eInheritance (being the default inheritance model, it is not mandatory to supply the
strategy when using single table inheritance).
® @Inheritance(strategy = InheritanceType.SINGLE_TABLE).

The post and the Announcement entities do not need any extra mapping (the Java inheritance
semantics being sufficient).

Preserving the same layout as depicted in the Domain Model class diagram, the table
relationships associated with this inheritance strategy look like this:

_| board v
id BIGINT(20)

name VARCHAR(255)
>

o

i

A
:] topic v

DTYPE VARCHAR(31)
id BIGINT(20)
createdOn DATETIME
owner VARCHAR(255)
title VARCHAR(255)
content VARCHAR(255)
validuntil DATETIME
board_id BIGINT(20)
| 2
_| topic_statistics ¥

! id BIGINT(20)
views BIGINT(20)

»
Figure 11.2: Single table

The topic table contains columns associated with the Topic base class as well as columns
related to attributes from post and Announcement entities.

Inheritance 228

In the following example, one Post and one Announcement entities are going to be persisted along
with their associated @oneToOne TopicStatistics relations.

Post post = new Post();
post.setOwner("John Doe");
post.setTitle("Inheritance");
post.setContent("Best practices");
post.setBoard(board) ;

entityManager .persist(post);

Announcement announcement = new Announcement();

announcement . setOwner ("John Doe");

announcement .setTitle("Release x.y.z.Final");

announcement .setValidUntil(Timestamp.valueOf(LocalDateTime.now().plusMonths(1)));
announcement . setBoard(board) ;

entityManager .persist(announcement);

TopicStatistics postStatistics = new TopicStatistics(post);
postStatistics.incrementViews();
entityManager .persist(postStatistics);

TopicStatistics announcementStatistics = new TopicStatistics(announcement);
announcementStatistics.incrementViews();
entityManager.persist(announcementStatistics);

Both the post and the Announcement entities are saved in the topic table whose primary key is
shared with the topic_statistics table.

INSERT INTO topic (board_id, createdOn, owner, title, content, DTYPE, id)
VALUES (1, '2016-01-17 ©9:22:22.11', 'John Doe', 'Inheritance',
'Best practices', 'Post', 2)

INSERT INTO topic (board_id, createdOn, owner, title, validUntil, DTYPE, id)
VALUES (1, '2016-01-17 ©9:22:22.11"', 'John Doe', 'Release x.y.z.Final',
'2016-02-17 ©9:22:22.114"', 'Announcement', 3)

INSERT INTO topic_statistics (views, id) VALUES (1, 2)

INSERT INTO topic_statistics (views, id) VALUES (1, 3)

Inheritance 229

One advantage of using inheritance in the Domain Model is the support for polymorphic
queries. When the application developer issues a select query against the Topic entity:

List<Topic> topics = entityManager.createQuery(

"select t from Topic t where t.board.id = :boardId", Topic.class)
.setParameter("boardId", 1L)
.getResultlList();

Hibernate goes to the topic table, and, after fetching the result set, it maps every row to its
associated subclass instance (e.g. Post Or Announcement) by analyzing the discriminator column
(e.g. pTYPE) Value.

SELECT t.id AS id2_1_, t.board_id AS board_id8_1_, t.createdOn AS created03_1_,
t.owner AS owner4_1_, t.title AS title5_1_, t.content AS content6_1_,
t.validUntil AS validUnt7_1_, t.DTYPE AS DTYPE1_1_

FROM topic t

WHERE t.board_id = 1

Domain Model inheritance allows base class entity associations to be automatically resolved
upon being retrieved. When loading a Topicstatistics along with its Topic relation:

TopicStatistics statistics = entityManager.createQuery(
"select s from TopicStatistics s join fetch s.topic t where t.id = :topicId"
, TopicStatistics.class)

.setParameter("topicId", topicld)

.getSingleResult();

Hibernate joins the topic_statistics and the topic tables so that it can create a Topicstatistics
entity with an actual Post or Announcement attribute object reference.

SELECT
ts.id AS id1_2_0 t.id AS id2_1_1 ts.views AS views2_2_0

—a —t LYy

t.board_id AS board_id8_1_1 t.createdOn AS created03_1_1

—t—t— —t—t—

t.owner AS owner4_1_1_, t.title AS titleb5_1_1_, t.content AS content6_1_1_,
t.validUntil AS validunt7_41_1_, t.DTYPE AS DTYPE1_1_1_

FROM topic_statistics ts

INNER JOIN topic t ON ts.id = t.id

WHERE t.id = 2

Even if not practical in this particular example, eoneToMany associations are also possible.

Inheritance 230

The Board entity can map a bidirectional eoneTomMany relationship as follows:

@0OneToMany (mappedBy = "board")
private List<Topic> topics = new ArraylList<>();

Fetching the collection lazily generates a separate select statement, identical to the afore-
mentioned Topic entity query. When fetching the collection eagerly, Hibernate requires a
single table join.

Board board = entityManager.createQuery(

"select b from Board b join fetch b.topics where b.id = :id", Board.class)
.setParameter("id", id)
.getSingleResult();

SELECT b.id AS id1_©0_0_, t.id AS id2_1._1 b.name AS name2_0_0

—L Y —t =t — Y

t.board_id AS board_id8_1_1 t.createdOn AS created03_1_1

— =t —t =t

t.owner AS owner4_1_1 t.title AS titleb_1_1 t.content AS content6_1_1

—t—t— —t—t— —t—t—

t.validUntil AS validuUnt7_1_1_, t.DTYPE AS DTYPE1_1_1_,
t.board_id AS board_id8_1_©_ , t.id AS id2_1_0__

FROM board b

INNER JOIN topic t ON b.id = t.board_id

WHERE b.id = 1

Performance and data integrity considerations

Since only one table is used for storing entities, both reads and writes are fast. Even when
using a eManyToOne OT @ @0neToOne base class association, Hibernate needs a single join between
parent and child tables. The eoneTomMany base class entity relationship is also efficient since it
either generates a secondary select or a single table join.

Because all subclass attributes are collocated in a single table, noT NuLL constraints are not
allowed for columns belonging to subclasses. Being automatically inherited by all subclasses,
the base class attributes may be non-nullable. From a data integrity perspective, this limita-
tion defeats the purpose of Consistency (guaranteed by the ACID properties).

Nevertheless, the data integrity rules can be enforced through database trigger procedures
or CHECK constraints (a column non-nullability is accounted based on the class discriminator
value). Another approach is to move the check into the data access layer. Bean Validation
can validate enotNull attributes at runtime. JPA also defines callback methods (e.g. éPrepersist,
@PreUpdate) as well as entity listeners (€.g. @éEntityListeners) which can throw an exception when
a non-null constraint is violated.

Inheritance 231

11.1.1 Data integrity constraints

The SQL standard defines the cHeck constraint which can be used to apply a row-level
verification for each table record that is inserted. Depending on the underlying database,
the cHeck constraint can be enforced (e.g. Oracle, SQL Server, PostgreSQL, MySQL 8.0.16°) or
ignored (e.g. MySQL prior to 8.0.165).

For the aforementioned database tables, the content column must never be null if the
underlying record is a post, and the validuntil column should not be null if the database row
represents an Announcement entity. Luckily, the default oryre column specifies the entity type
associated with each particular table row.

To ensure the aforementioned data integrity rules, the following cHeck constraints needs to
be added:

ALTER TABLE topic ADD CONSTRAINT post_content_check CHECK (
CASE WHEN DTYPE = 'Post'
THEN CASE WHEN content IS NOT NULL THEN 1 ELSE © END
ELSE 1
END = 1

ALTER TABLE topic ADD CONSTRAINT announcement_validUntil_check CHECK (
CASE WHEN DTYPE = 'Announcement'
THEN CASE WHEN validUntil IS NOT NULL THEN 1 ELSE © END
ELSE 1
END = 1

With these cHeck constraints in place, when trying to insert a post entity without a content:
entityManager .persist(new Post());

PostgreSQL generates the following error message:

INSERT INTO topic (board_id, createdOn, owner, title, content, DTYPE, id)
VALUES ((NULL(BIGINT), '2016-07-15 13:45:16.705"', NULL(VARCHAR), NULL(VARCHAR),
NULL(VARCHAR), 'Post', 4)

-- SQL Error: ©, SQLState: 23514
-- new row for relation "topic" violates check constraint "post_content_check"

Shttps:// dev.mysql.com/doc/refman/8.0 /en/create-table-check-constraints.html
Bhttp:/ /dev.mysql.com/doc/refman /5.7 /en /create-table.html

https://dev.mysql.com/doc/refman/8.0/en/create-table-check-constraints.html
http://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-check-constraints.html
http://dev.mysql.com/doc/refman/5.7/en/create-table.html

Inheritance 232

For MySQL versions older than 8.0.16, the same outcome can be achieved with database
triggers. For instance, you could add the following BEFORE INSERT triggers:

CREATE
TRIGGER post_content_check BEFORE INSERT
ON topic
FOR EACH ROW
BEGIN
IF NEW.DTYPE = 'Post'
THEN
IF NEW.content IS NULL
THEN
signal sqglstate '45000'
set message_text = 'Post content cannot be NULL';
END IF;
END IF;
END;

CREATE
TRIGGER announcement_validUntil_check BEFORE INSERT
ON topic
FOR EACH ROW
BEGIN
IF NEW.DTYPE = 'Announcement'
THEN
IF NEW.validUntil IS NULL
THEN
signal sqglstate '45000'
set message_text = 'Announcement validUntil cannot be NULL';
END IF;
END IF;
END;

’

When running the previous post insert, MySQL generates the following output:

INSERT INTO topic (board_id, createdOn, owner, title, content, DTYPE, id)
VALUES ((NULL(BIGINT), '2016-07-15 13:50:51.989"', NULL(VARCHAR), NULL(VARCHAR),
NULL(VARCHAR), 'Post', 4)

-- SQL Error: 1644, SQLState: 45000
-- Post content cannot be NULL

You also need to add BeFORE UPDATE triggers, so that you can cover modifications for the post and
announcement tables, which could compromise data integrity if the subclass-specific columns
were set to null.

Inheritance 233

CREATE
TRIGGER post_content_update_check BEFORE UPDATE
ON topic
FOR EACH ROW
BEGIN
IF NEW.DTYPE = 'Post’
THEN
IF NEW.content IS NULL
THEN
signal sqglstate '45000'
set message_text = 'Post content cannot be NULL';
END IF;
END IF;
END;
CREATE
TRIGGER announcement_validUntil_update_check BEFORE UPDATE
ON topic
FOR EACH ROW
BEGIN
IF NEW.DTYPE = 'Announcement'
THEN
IF NEW.validUntil IS NULL
THEN
signal sqlstate '45000'
set message_text = 'Announcement validUntil cannot be NULL';
END IF;
END IF;
END;

7

Now, if we try to update an Announcement entity and set the validuntil column to nul1l, MySQL
will fail with the following error message:

UPDATE topic

SET board_id = 1, createdOn = '2016-07-15 13:50:51.989', OWNER = 'John Doe',
title = 'John Doe, Release x.y.z.Final', validUntil = NULL(TIMESTAMP)

WHERE id = 3

-- SQL Error: 1644, SQLState: 45000
-- Announcement validUntil cannot be NULL

Although a little bit verbose, the cHeck and TRIGGER constraints are very useful to ensure data
integrity when using single table inheritance.

Inheritance 234

11.2 Join table

The join table inheritance resembles the Domain Model class diagram since each class is
mapped to an individual table. The subclass tables have a foreign key column referencing
the base class table primary key.

"] board %
id BIGINT(20)
name VARCHAR(255)

>
o}
|
|
1
A
m topic v
id BIGINT(20)
j post v :] announcement V
createdOn DATETIME
content VARCHAR(255) validUntil DATETIME
owner VARCHAR(255)
! id BIGINT(20) ! id BIGINT(20)
title VARCHAR(255)
> >
- board_id BIGINT(20)
»

| topic_statistics ¥
! id BIGINT(20)
views BIGINT(20)
»>

Figure 11.3: Join table

To use this inheritance strategy, the Topic entity must be annotated with:

@Inheritance(strategy = InheritanceType.JOINED)

The post and the Announcement entities can use a ePrimarykeyJoinColumn mapping to define
the base class foreign key column.

By default, the subclass table primary key column is used as a foreign key as well.

Inheritance 235

When persisting the same entities defined in the single table section, Hibernate generates
the following SQL statements:

INSERT INTO topic (board_id, createdOn, owner, title, id)
VALUES (1, '2016-01-17 ©9:27:10.694', 'John Doe', 'Inheritance', 2)

INSERT INTO post (content, id) VALUES ('Best practices', 2)

INSERT INTO topic (board_id, createdOn, owner, title, id)
VALUES (1, '2016-01-17 ©09:27:10.694', 'John Doe', 'Release x.y.z.Final', 3)

INSERT INTO announcement (validUntil, id) VALUES ('2016-02-17 09:27:10.698', 3)
INSERT INTO topic_statistics (views, id) VALUES (1, 2)

INSERT INTO topic_statistics (views, id) VALUES (1, 3)

The base class information goes into the topic table while the subclass content goes in the
post Or the announcement tables. When fetching all Topic entities associated with a specific Boarad:

List<Topic> topics = entityManager.createQuery(

"select t from Topic t where t.board.id = :boardId", Topic.class)
.setParameter("boardId", 1L)
.getResultList();

Hibernate must join the base class with each individual subclass table.

SELECT

t.id AS id1_3_,
.board_id AS board_id5_3_,
.createdOn AS created02_3_,
.owner AS owner3_3._,
.title AS titled4_3_,
t1_.content AS content1_2

—L—

t2_.validUntil AS validUnt1_0_,
CASE WHEN t1_.id IS NOT NULL THEN 1
WHEN t2_.id IS NOT NULL THEN 2
WHEN t.id IS NOT NULL THEN ©
END AS clazz_
FROM topic t
LEFT OUTER JOIN post t1_ ON t.id = t1_.id
LEFT OUTER JOIN announcement t2_ ON t.id = t2_.id

WHERE t.board_id = 1

ct

Inheritance 236

When loading a TopicsStatistics entity along with its Topic association:

TopicStatistics statistics = entityManager.createQuery(
"select s from TopicStatistics s join fetch s.topic t where t.id = :topicId"
, TopicStatistics.class)

.setParameter("topicId", topicld)

.getSingleResult();

Hibernate must join four tables to construct the desired result set:

SELECT
ts.id AS id1_4.0

—x Yy

t.id AS id1_8_1_,

ts.views AS views2_4_0_,
t.board_id AS board_id5_3_1_,
t.createdOn AS created02_3_1_,
t.owner AS owner3_3_1_,
t.title AS title4_3_1_,
t1_.content AS content1_2_1

R

t2_.validUntil AS validunt1_0_1_,
CASE WHEN t1_.id IS NOT NULL THEN 1
WHEN t2_.id IS NOT NULL THEN 2
WHEN t.id IS NOT NULL THEN ©
END AS clazz_1_
FROM topic_statistics ts
INNER JOIN topic t ON ts.id = t.id
LEFT OUTER JOIN post t1_ ON t.id = t1_.1id
LEFT OUTER JOIN announcement t2_ ON t.id = t2_.id

WHERE t.id = 2
Considering that the Board entity defines a @oneToMany Topic association:

@OneToMany (mappedBy = "board")
private List<Topic> topics = new ArraylList<>();

Fetching the collection lazily generates a separate select statement, identical to the previous
Topic entity query.

Inheritance 237

When fetching the collection eagerly:

Board board = entityManager.createQuery(

"select b from Board b join fetch b.topics where b.id = :id", Board.class)
.setParameter("id", id)
.getSingleResult();

Hibernate requires three joins to fetch all topic-related information.

SELECT
b.id AS id1_1_0 t.id AS id1_3_1 b.name AS name2_1_0

— = ——t— ———

t.board_id AS board_id5_3_1 t.createdOn AS created02_3_1

— Lt —

t.owner AS owner3_3_1_, t.title AS title4_3_1_,
t1_.content AS content1_2_1_, t2_.validUntil AS validUnt1_0_1_,
CASE WHEN t1_.id IS NOT NULL THEN 1
WHEN t2_.id IS NOT NULL THEN 2
WHEN t.id IS NOT NULL THEN ©
END AS clazz_1_,
t.board_id AS board_id5_38_©_ , t.id AS id1_3_0__
FROM board b
INNER JOIN topic t ON b.id = t.board_id
LEFT OUTER JOIN post t1_ ON t.id = t1_.id
LEFT OUTER JOIN announcement t2_ ON t.id = t2_.id
WHERE b.id = 1

Performance considerations

Unlike single table inheritance, the joined table strategy allows nullable subclass attribute
columns.

When writing data, Hibernate requires two insert statements for each subclass entity, so
there’s a performance impact compared to single table inheritance. The index memory
footprint also increases because instead of a single table primary key, the database must index
the base class and all subclasses primary keys.

When reading data, polymorphic queries require joining the base class with all subclass tables,
so, if there are n subclasses, Hibernate will need N+1 joins. The more joins, the more difficult
it is for the database to calculate the most efficient execution plan.

Inheritance 238

11.3 Table-per-class

The table-per-class inheritance model has a table layout similar to the joined table strategy,
but, instead of storing base class columns in the topic table, each subclass table also stores
columns from the topic table. There is no foreign key between the topic and the post or
announcement subclass tables, and there is no foreign key in the topic_statistics table either.

L] topic v
id BIGINT(20)
createdOn DATETIME

owner VARCHAR(255)
title VARCHAR(255)
board_id BIGINT(20)
>
\4
|
| post v | | announcement ¥
id BIGINT(20) ¢ id BIGINT(20)
createdOn DATETIME —| board v createdOn DATETIME
owner VARCHAR(255) id BIGINT(20) owner VARCHAR(255)
title VARCHAR(255) S hame VARCHAR(2SS) | — < title VARCHAR(255)
board_id BIGINT(20) > board_id BIGINT(20)
content VARCHAR(255) validUntil DATETIME
> >

"] topic_statistics ¥
id BIGINT(20)
views BIGINT(20)
>

Figure 11.4: Table-per-class

To use this inheritance strategy, the Topic must be annotated with @Inheritance(strategy =
InheritanceType.TABLE_PER_CLASS).

Inserting the post and the Announcement entities defined in the single table inheritance section
generates the following SQL statements:

INSERT INTO post (board_id, createdOn, owner, title, content, id)
VALUES (1, '2016-01-17 ©9:31:12.018', 'John Doe', 'Inheritance',
'Best practices', 2)

INSERT INTO announcement (board_id, createdOn, owner, title, validUntil, id)
VALUES (1, '2016-01-17 ©9:31:12.018', 'John Doe', 'Release x.y.z.Final',
'2016-02-17 09:31:12.023"', 3)

Inheritance 239

INSERT INTO topic_statistics (views, id) VALUES (1, 2)

INSERT INTO topic_statistics (views, id) VALUES (1, 3)

Unlike the joined table inheritance, each persisted subclass entity requires a single insert
statement.

When fetching all Topic entities associated with a specific Board:

List<Topic> topics = entityManager.createQuery(

"select t from Topic t where t.board.id = :boardId", Topic.class)
.setParameter("boardId", 1L)
.getResultList();

Hibernate uses unton ALL to fetch rows from the base class and every subclass table in this
particular inheritance tree.

SELECT

t.id AS id1_3_,
.board_id AS board_id5_3_,
.createdOn AS created02_3_,
.owner AS owner3_3_,
.title AS title4_3

——

.content AS content1_2_,
.validUntil AS validuUnt1_0_,
.clazz_ AS clazz_
FROM (
SELECT id, createdOn, owner, title, board_id,
CAST(NULL AS VARCHAR(100)) AS content,
CAST(NULL AS TIMESTAMP) AS validuntil, © AS clazz_
FROM topic
UNION ALL
SELECT id, createdOn, owner, title, board_id, content,
CAST(NULL AS TIMESTAMP) AS validUntil, 1 AS clazz_
FROM post
UNION ALL
SELECT id, createdOn, owner, title, board_id,
CAST(NULL AS VARCHAR(100)) AS content, validUntil, 2 AS clazz_
FROM announcement) t
WHERE t.board_id = 1

c ¢

Inheritance 240

When loading a Topicstatistics while also fetching its associated Topic relation, Hibernate
must use UNION ALL for the inheritance tables to construct the desired result set:

TopicStatistics statistics = entityManager.createQuery(
"select s from TopicStatistics s join fetch s.topic t where t.id = :topicId"
, TopicStatistics.class)

.setParameter("topicId", topicld)

.getSingleResult();

SELECT
ts.id AS id1_4.0_, t.id AS id1_3.1 ts.views AS views2_4_0

—x—)t —E Y

t.board_id AS board_id5_3_1 t.createdOn AS created02_3_1_,

——t—

t.owner AS owner3_3_1_, t.title AS title4_3_1_, t.content AS content1_2_1_,
t.validUntil AS validUnt1_©_1_, t.clazz_ AS clazz_1_
FROM topic_statistics ts
INNER JOIN (
SELECT id, createdOn, owner, title, board_id,
CAST(NULL AS VARCHAR(100)) AS content,
CAST(NULL AS TIMESTAMP) AS validUntil, © AS clazz_
FROM topic
UNION ALL
SELECT id, createdOn, owner, title, board_id,
content,
CAST(NULL AS TIMESTAMP) AS validuUntil, 1 AS clazz_
FROM post
UNION ALL
SELECT id, createdOn, owner, title, board_id,
CAST(NULL AS VARCHAR(100)) AS content,
validuntil, 2 AS clazz_
FROM announcement
) t ON ts.id = t.id
WHERE t.id = 2

The identity generator is not allowed with this strategy because rows belonging
to different subclasses would share the same identifier, therefore conflicting in
polymorphic @ManyToOne Or @0neToOne associations.

Inheritance 241

Considering that the Board entity defines a @oneToMany Topic association:

@0OneToMany (mappedBy = "board")
private List<Topic> topics = new ArraylList<>();

Fetching the collection lazily generates a separate select statement, identical to the previous
Topic entity query.

When fetching the topics collection eagerly:

Board board = entityManager.createQuery(

"select b from Board b join fetch b.topics where b.id = :id", Board.class)
.setParameter("id", id)
.getSingleResult();

Hibernate requires a join with the result of unifying all three topic-related tables.

SELECT
b.id AS id1_1_0_, t1.id AS id1_3_1 b.name AS name2_1_0

— =Y ——t— — =

t1.board_id AS board_id5_3_1 t1.createdOn AS created02_3_1

— —

t1.owner AS owner3_3_1 t1.title AS title4_3_1

Dt — i

t1.content AS content1_2_1_, t1.validUntil AS validunt1_0©_1_,
t1.clazz_ AS clazz_1_, t1.board_id AS board_id5_3_0_ , t1.id AS id1_3_0__
FROM board b
INNER JOIN (
SELECT id, createdOn, owner, title, board_id,
CAST(NULL AS VARCHAR(100)) AS content,
CAST(NULL AS TIMESTAMP) AS validuntil, © AS clazz_
FROM topic
UNION ALL
SELECT id, createdOn, owner, title, board_id,
content,
CAST(NULL AS TIMESTAMP) AS validUntil, 1 AS clazz_
FROM post
UNION ALL
SELECT id, createdOn, owner, title, board_id,
CAST(NULL AS VARCHAR(100)) AS content,
validUntil, 2 AS clazz_
FROM announcement
) t1 ON b.id = t1.board_id
WHERE b.id = 1

Inheritance 242

Performance considerations

While write operations are faster than for the joined table strategy, the read operations are
only efficient when querying against the actual subclass entities. Polymorphic queries can
have a considerable performance impact because Hibernate must select all subclass tables
and use UNION ALL to build the whole inheritance tree result set. As a rule of thumb, the more
subclass tables, the less efficient the polymorphic queries get.

11.4 Mapped superclass

If the Topic class is not required to be a stand-alone entity, it will be more practical to leave
inheritance out of the database. This way, the Topic can be made abstract and marked with
the eMappedsuperclass annotation so that JPA can acknowledge the inheritance model on the
entity-side only.

£ Board

fid Long

I name String

&£ Topic
fid Long
& Post : I title String | & Announcement
f content String I owner String I validUntil Date
' createdOn Date
. board Board
#£ PostStatistics & AnnouncementStatistics
I topic Post I topic Announcement

Figure 11.5: Mapped superclass class diagram

Having a single TopicStatistics entity with a @oneToone Topic association is no longer possible
because the Topic class is not an entity. This way, each Topic subclass must define its own
statistics associations (€.g. PostStatistics, AnnouncementStatistics).

Inheritance 243

The Poststatistics and the AnnouncementStatistics entities looks as follows:

@Entity @Table(name = "post_statistics")
public class PostStatistics
extends TopicStatistics<Post> {

@0neToOne
@JoinColumn(name = "id")
@MapsId

private Post topic;

private PostStatistics() {}

public PostStatistics(Post topic) {
this.topic = topic;

@Override
public Post getTopic() {
return topic;

@Entity @Table(name = "announcement_statistics")
public class AnnouncementStatistics
extends TopicStatistics<Announcement> {

@0OneToOne

@JoinColumn(name = "id")
@MapslId

private Announcement topic;

private AnnouncementStatistics() {}
public AnnouncementStatistics(Announcement topic) {

this.topic = topic;

@Override
public Announcement getTopic() {
return topic;

Inheritance 244

To retain the inheritance semantics, the base class attributes are going to be merged with
the subclass ones, so the associated subclass entity table contains both. This is similar to the
table-per-class inheritance strategy, with the distinction that the base class is not mapped
to a database table (hence, it cannot be used in polymorphic queries or associations).

:| post v :] announcement V
id BIGINT(20) id BIGINT(20)
createdOn DATETIME | board v createdOn DATETIME
owner VARCHAR(255) id BIGINT(20) owner VARCHAR(255)
title VARCHAR(255) N____{4 mmwmmmﬁ$g____K title VARCHAR(255)
content VARCHAR(255) > validUntil DATETIME
board_id BIGINT(20) » board_id BIGINT(20)
> >
:] post_statistics v j announcement_statistics Vv
! id BIGINT(20) ! id BIGINT(20)
views BIGINT(20) views BIGINT(20)
> [2

Figure 11.6: Mapped superclass

The post and the announcement tables feature columns that were inherited from the Topic base
class. When persisting the same post and Announcement entities and saving statistics using the
newly defined entity classes:

TopicStatistics postStatistics = new PostStatistics(post);
postStatistics.incrementViews();
entityManager .persist(postStatistics);

TopicStatistics announcementStatistics =

new AnnouncementStatistics(announcement);
announcementStatistics. incrementViews();
entityManager .persist(announcementStatistics);

Hibernate generates the following SQL statements:

INSERT INTO post (board_id, createdOn, owner, title, content, id)
VALUES (1, '2016-01-17 ©9:11:07.525', 'John Doe', 'Inheritance',
'Best practices', 1)

Inheritance 245

INSERT INTO announcement (board_id, createdOn, owner, title, validUntil, id)
VALUES (1, '2016-01-17 ©9:11:07.525', 'John Doe', 'Release x.y.z.Final',
'2016-02-17 09:11:07.529', 2)

INSERT INTO post_statistics (views, id) VALUES (1, 1)

INSERT INTO announcement_statistics (views, id) VALUES (1, 2)
Querying for statistics require specifying the actual Topic subclass statistics:

PostStatistics statistics = entityManager.createQuery(
"select s from PostStatistics s join fetch s.topic t where t.id = :postId”,
PostStatistics.class)
.setParameter("postId", postId)
.getSingleResult();

This entity query generates a single SQL join statement:

SELECT

s.id AS id1_4 o_,
.id AS id1_3_1_,
.views AS views2_4_0

—t Y

.board_id AS board_id6_3_1

— L

.createdOn AS created02_3_1

—

.owner AS owner3_3_1

— L

.title AS title4_3_1_,
.content AS content5_3_1_
FROM post_statistics s

INNER JOIN post p ON s.id = p.id

WHERE p.id = 1

© T T T T 0 T

Polymorphic queries against the Topic class are not permitted and the Board entity cannot
define a @oneToMany Topic collection either.

Performance considerations

Although polymorphic queries and associations are no longer permitted, the eMappedSuperciass
yields very efficient read and write operations. Like single and table-per-class inheritance,
write operations require a single insert statement and only one table is used for reading data.

Inheritance 246

Inheritance best practices

All the inheritance mapping models above require trading something in order to accom-
modate the impedance mismatch between the relational database system and the object-
oriented Domain Model.

The default single table inheritance performs the best in terms of reading and writing data,
but it forces the application developer to overcome the column nullability limitation. This
strategy is useful when the database can provide support for trigger procedures, and the
number of subclasses is relatively small.

The join table is worth considering when the number of subclasses is higher, and the data
access layer does not require polymorphic queries. When the number of subclass tables is
large, polymorphic queries require many joins, and fetching such a result set has a noticeable
impact on application performance. This issue can be mitigated by restricting the result
set (e.g. pagination), but that only applies to queries and not to @oneToMany Or @ManyToMany
associations. On the other hand, polymorphic eManyToone and @oneToone associations are fine
since, in spite of joining multiple tables, the result set can have at most one record only.

Table-per-class is the least effective when it comes to polymorphic queries or associations.
If each subclass is stored in a separate database table, the eMappedSuperciass Domain Model
inheritance might often be a better alternative.

Although a powerful concept, Domain Model inheritance should be used sparingly and
only when the benefits supersede trade-offs.

12. Flushing

As explained in the write-based optimizations section, the Persistence Context acts as a
transactional write-behind cache. The Hibernate session is commonly referred to as the first-
level cache since every managed entity is stored in a Map, and, once an entity is loaded, any
successive request serves it from the cache, therefore avoiding a database roundtrip.

However, aside from caching entities, the Persistence Context acts as an entity state tran-
sition buffer. Both the Entitymanager and the Hibernate session expose various entity state
management methods:

The persist method takes a transient entity and makes it managed.

The merge method copies the internal state of a detached entity onto a freshly loaded
entity instance.

Hibernate also supports reattaching entity instances (e.g. update, saveOrUpdate OT lock)
which, unlike merge, does not require fetching a new entity reference copy.

* To remove an entity, the EntityManager defines the remove method, while Hibernate offers
a delete method.

Like any write-behind cache, the Persistence Context requires flushing in order to synchro-
nize the in-memory persistent state with the underlying database. At flush time, Hibernate
can detect if a managed entity has changed since it was loaded and trigger a table row update.
This process is called dirty checking, and it greatly simplifies data access layer operations.

So, when using JPA, the application developer can focus on entity state changes, and the
Persistence Context takes care of the underlying DML statements. This way, the data access
layer logic is expressed using Domain Model state transitions, rather than through insert,
update, or delete SQL statements.

This approach is very convenient for several reasons:

* Entity state changes being buffered, the Persistence Context can delay their execution,
therefore minimizing the row-level lock interval, associated with every database write
operation.

* Being executed at once, the Persistence Context can use JDBC batch updates to avoid
executing each statement in a separate database roundtrip.

However, having an intermediate write-behind cache is not without challenges and the
Persistence Context can be subject to data inconsistencies. Since efficiency is meaningless if
effectiveness is being compromised, this chapter aims to analyze the inner-workings of the
flushing mechanism, so the application developer knows how to optimize it without affecting
data consistency.

Flushing 248

12.1 Flush modes

The Persistence Context can be flushed either manually or automatically.

Both EntityManager and the Hibernate native session interface define the fiush() method for
triggering the synchronization between the in-memory Domain Model and the underlying
database structures. Even so, without an automatic flushing mechanism, the application
developer would have to remember to flush prior to running a query or before a transaction
commit.

Triggering a flush before executing a query guarantees that in-memory changes are visible
to the currently executing query, therefore preventing read-your-own-writes consistency
issues.

Flushing the Persistence Context right before a transaction commit ensures that in-memory
changes are durable. Without this synchronization, the pending entity state transitions would
be lost once the current Persistence Context is closed.

For this purpose, JPA and Hibernate define automatic flush modes which, from a data access
operation perspective, are more convenient than the manual flushing alternative.

JPA defines two automatic flush mode types:

* FlushModeType.AUTO is the default mode and triggers a flush before every query (JPQL or
native SQL query) execution and prior to committing a transaction.
* FlushModeType.COMMIT only triggers a flush before a transaction commit.

Hibernate defines four flush modes:

* FlushMode.AUTO is the default Hibernate API flushing mechanism, and, while it flushes the
Persistence Context on every transaction commit, it does not necessarily trigger a flush
before every query execution.

* FlushMode.ALWAYS flushes the Persistence Context prior to every query (HQL or native SQL
query) and before a transaction commit.

* FlushMode.COMMIT triggers a Persistence Context flush only when committing the currently
running transaction.

* FlushMode.MANUAL disables the automatic flush mode, and the Persistence Context can only
be flushed manually.

While the FlushModeType.COMMIT and FlushMode.COMMIT are equivalent, the JPA FlushModeType.AUTO
is closer to FlushMode.ALwAYS than to the Hibernate FiushMode.AuTo (unlike FlushMode.ALWAYS,
FlushMode.AUTO does not trigger a flush on every executing query).

Flushing 249

FlushMode.AUTO SQL query consistency

The default Hibernate-specific FiushMode.AuTo employs a smart flushing mechanism. When
executing an HQL query, Hibernate inspects what tables the current query is about to scan,
and it triggers a flush only if there is a pending entity state transition matching the query
table space. This optimization aims to reduce the number of flush calls and delay the first-
level cache synchronization as much as possible.

Unfortunately, this does not work for native SQL queries. Because Hibernate does not have
a parser for every database-specific query language, it cannot determine the database tables
associated with a given native SQL query. However, instead of flushing before every such
query, Hibernate relies on the application developer to instruct what table spaces need to be
synchronized.

To guarantee SQL query consistency, the application developer can switch to FlushMode . ALWAYS
(either at the session level or on a query basis)

List<ForumCount> result = session.createSQLQuery(
"SELECT b.name as forum, COUNT (p) as count " +
"FROM post p " +
"JOIN board b on b.id = p.board_id " +
"GROUP BY forum")
.setFlushMode(FlushMode . ALWAYS)
.setResultTransformer(Transformers.aliasToBean(ForumCount.class))
Jlist();

Another alternative is to explicitly set the table spaces affected by the native query:

List<ForumCount> result = session.createSQLQuery(

"SELECT b.name as forum, COUNT (p) as count " +

"FROM post p " +

"JOIN board b on b.id = p.board_id " +

"GROUP BY forum")
.addSynchronizedEntityClass(Board.class)
.addSynchronizedEntityClass(Post.class)
.setResultTransformer(Transformers.aliasToBean(ForumCount.class))
Jlist();

Only the Hibernate native API (e.g. session) uses the smart flushing mechanism. When
using the Java Persistence API (e.g. EntityManager), Hibernate flushes before every JPQL
or native SQL query.

Flushing 250
12.2 Events and the action queue

Internally, each entity state change has an associated event (e.g. PersistEvent, MergeEvent,
DeleteEvent, etc) which is handled by an event listener (e.g. DefaultPersistEventListener, Default-
MergeEventlListener, DefaultDeleteEventListener).

Hibernate allows the application developer to substitute the default event listeners
with custom implementations.

The Hibernate event listeners translate the entity state transition into an internal EntityAction

that only gets executed at flush time. For this reason, Hibernate defines the following entity
actions:

* When a transient entity becomes persistent, Hibernate generates either an entityInser-
tAction Or an EntityldentityInsertAction, therefore triggering a SQL insert statement at
flush time. For the identity generator strategy, Hibernate must immediately execute the
insert statement because the entity identifier value must be known upfront.

* During flushing, for every modified entity, an entityuUpdateAction is generated which, when
executed, triggers a SQL update statement.

* When an entity is marked as removed, Hibernate generates an entityDeleteAction. During
flushing, the associations marked with orphan removal can also generate an orphan-
RemovalAction if a child-side entity is being dereferenced. These two actions trigger a
database delete statement.

Because the Persistence Context can manage multiple entities, the pending entity actions are
stored in the ActionQueue and executed at flush time.

case the original parent entity event is propagated to child entities. For example, when
cascading the persist entity state transition, Hibernate behaves as if the application
developer has manually called the persist method on every child entity.

P Entity state transitions can be cascaded from parent entities to children, in which

Flushing 251

12.2.1 Flush operation order

Towards the end of the Persistence Context flush, when all entityAction(s) are in place,
Hibernate executes them in a very strict order.

OrphanRemovalAction

EntityInsertAction an(iEntityIdentityInsertAction
EntityUpdateAction

CollectionRemoveAction

. CollectionUpdateAction

. CollectionRecreateAction

. EntityDeleteAction.

NP YA LN

The following exercise demonstrates why knowing the flush operation plays a very important
role in designing the data access layer actions. Considering the following post entity:

@Entity
@Table(name = "post", uniqueConstraints =
@UniqueConstraint(name = "slug_uqg", columnNames = "slug"))

public class Post {
@Id
@GeneratedValue
private Long id;
private String title;

private String slug;

//Getters and setters omitted for brevity

Assuming the database already contains this post record:

Post post = new Post();
post.setTitle("High-Performance Java Persistence");
post.setSlug("high-per formance- java-persistence");

entityManager .persist(post);

Flushing 252

When removing a post and persisting a new one with the same s1ug:

Post post = entityManager.find(Post.class, postld);
entityManager.remove(post);

Post newPost = new Post();

newPost .setTitle("High-Performance Java Persistence Book");
newPost .setSlug("high-performance- java-persistence");
entityManager .persist(newPost);

Hibernate throws a ConstraintViolationException:

INSERT INTO post (slug, title, id) VALUES (high-performance-java-persistence,
"High-Performance Java Persistence Book™, 2)

SqlExceptionHelper - integrity constraint violation:
unique constraint or index violation; SLUG_UQ table: POST

Even if the remove method is called before persist, the flush operation order executes the insert
statement first and a constraint violation is thrown because there are two rows with the same
slug value.

To override the default flush operation order, the application developer can trigger a manual
flush after the remove method call:

Post post = entityManager.find(Post.class, postld);
entityManager .remove(post);
entityManager. flush();

Post newPost = new Post();

newPost .setTitle("High-Per formance Java Persistence Book");
newPost .setSlug("high-Performance- java-persistence");
entityManager.persist(newPost);

This time, the statement order matches that of the data access operations:

DELETE FROM post WHERE id = 1
INSERT INTO post (slug, title, id) VALUES (high-Performance-java-persistence’,
"High-Performance Java Persistence Book ™, 2)

Flushing 253

Hibernate only retains the data access operation order among actions of the same
type. Even if the manual flush fixes this test case, in practice, an update is much more
efficient than a pair of an insert and a delete statements.

12.3 Dirty Checking

Whenever an entity changes its state from transient to managed, Hibernate issues a SQL
insert statement. When the entity is marked as removed, a SQL delete statement is issued.

Unlike insert and delete, the update statement does not have an associated entity state
transition. When an entity becomes managed, the Persistence Context tracks its internal state
and, during flush time, a modified entity is translated to an update statement.

12.3.1 The default dirty checking mechanism

By default, when an entity is loaded, Hibernate saves a snapshot of persisted data in the
currently running Persistence Context. The persisted data snapshot is represented by an
Object array that is very close to the underlying table row values. At flush time, every entity
attribute is matched against its loading time value:

Persistence . DefaultFlush DefaultFlushEntity Abstract
Context ST EventListener EventListener EntityPersister WisIenlliel
| | | i ! i
I I 1 1 1 I
| | I 1 1 1
| | I 1 1 1
| | I 1 1 1
| | I 1 1 1
| | I 1 1 1
| | I 1 1 1
I I 1 1 1 I
| | I 1 1 1
| | I 1 1 1
| | I 1 1 1
| | I 1 1 1
| | I 1 1 1
I I 1 1 1 I
il L il 1 il i
flush()—>
—onFlush(event) >
—onFlushEntity(event) >
——findDirty() —>
——findDirty()—>

event.setDirtyProperties(dirtyProperties)
Figure 12.1: Default dirty checking mechanism

Flushing 254

The number of individual dirty checks is given by the following formula:
N=> p
k=1

* n - the number of managed entities
* p - the number of entity attributes.

Even if only one entity attribute changed, Hibernate would still have to go through all
managed entities in the current Persistence Context. If the number of managed entities is
fairly large, the default dirty checking mechanism might have a significant impact on CPU
resources.

12.3.1.1 Controlling the Persistence Context size

Since the entity loading time snapshot is held separately, the Persistence Context requires
twice as much memory to store a managed entity.

If the application developer does not need to update the selected entities, a read-only
transaction will be much more suitable. From a Persistence Context perspective, a read-only
transaction should use a read-only Session. By default, the session loads entities in read-write
mode, but this strategy can be customized either at the session level or on a query basis:

//session-level configuration
Session session = entityManager.unwrap(Session.class);
session.setDefaultReadOnly(true);

//query-level configuration

List<Post> posts = entityManager.createQuery(
"select p from Post p", Post.class)

.setHint(QueryHints . HINT_READONLY, true)

.getResultlList();

When entities are loaded in read-only mode, there is no loading time snapshot being taken
and the dirty checking mechanism is disabled for these entities.

This optimization addresses both memory and CPU resources. Since the persistent data
snapshot is not stored anymore, the Persistence Context consumes half the memory required
by a default read-write session. Having fewer objects to manage, the Garbage Collector re-
quires fewer CPU resources when it comes to reclaiming the memory of a closed Persistence
Context. Flushing the Persistence Context is also faster and requires fewer CPU resources
since the read-only entities are no longer dirty-checked.

Flushing 255

When doing batch processing, it is very important to keep the Persistence Context size
within bounds. One approach is to periodically flush and clear the Persistence Context. To
avoid the issues associated with a long-running database transaction (e.g. locks being held
for long periods of times, database memory consumption), the Java Persistence API allows a
Persistence Context to span over multiple database transactions. This way, each batch job
iteration clears the Persistence Context, commits the underlying transaction, and starts a
new one for the next iteration.

EntityManager entityManager = null;
EntityTransaction transaction = null;

try {
entityManager = entityManagerFactory().createbEntityManager();

transaction = entityManager.getTransaction();
transaction.begin();

for (int i = 0; i < entityCount; ++i) {

if (i > 08 i % batchSize == 0) {
entityManager. flush();
entityManager.clear();

transaction.commit();
transaction.begin();

Post post = new Post(String.format("Post %d", i +1));
entityManager .persist(post);

transaction.commit();
} catch (RuntimeException e) {
if (transaction != null && transaction.isActive()) {
transaction.rollback();
}
throw e;
} finally {
if (entityManager != null) {
entityManager.close();

Another approach is to split the load into multiple smaller batch jobs and possibly process
them concurrently. This way, long-running transactions are avoided and the Persistence
Context has to manage only a limited number of entities.

Flushing 256

The Persistence Context should be kept as small as possible. As a rule of thumb,
only the entities that need to be modified should ever become managed. Read-only
transactions should either use DTO projections or fetch entities in read-only mode.

12.3.2 Bytecode enhancement

Although Hibernate has supported bytecode enhancement for a long time, prior to Hibernate
5, the dirty checking mechanism was not taking advantage of this feature. Hibernate 5 has
re-implemented the bytecode instrumentation mechanism, and now it is possible to avoid
the reflection-based dirty checking mechanism. The bytecode enhancement can be done at
compile-time, runtime or during deployment. The compile-time alternative is preferred for
the following reasons:

* The enhanced classes can be covered by unit tests.

* The Java EE application server or the stand-alone container (e.g. Spring) can bootstrap
faster because there’s no need to instrument classes at runtime or deploy-time.

* Class loading issues are avoided since the application server does not have to take care
of two versions of the same class (the original and the enhanced one).

The Hibernate tooling project comes with bytecode enhancement plugins for both Maven
and Gradle. For Maven, the following plugin must be configured in the pom.xm1 file:

<plugin>
<grouplId>org.hibernate.orm.tooling</groupId>
<artifactId>hibernate-enhance-maven-plugin</artifactId>
<version>${hibernate.version}</version>
<executions>
<execution>
<configuration>
<enableDirtyTracking>true</enableDirtyTracking>
</configuration>
<goals>
<goal>enhance</goal>
</goals>
</execution>
</executions>
</plugin>

Flushing 257

The bytecode enhancement plugin supports three instrumentation options which must be
explicitly enabled during configuration:

* lazy initialization (allows entity attributes to be fetched lazily)

« dirty tracking (the entity tracks its own attribute changes)

* association management (allows automatic sides synchronization for bidirectional as-
sociations).

After the Java classes are compiled, the plugin goes through all entity classes and modifies
their bytecode according to the instrumentation options chosen during configuration.

When enabling the dirty tracking option, Hibernate tracks attribute changes through the $$_-
hibernate_tracker attribute. Every setter method also calls the $$_hibernate_trackChange method
to register the change.

@Transient
private transient DirtyTracker $$_hibernate_tracker;

public void $$_hibernate_trackChange(String paramString) f{
if (this.$$_hibernate_tracker == null) {
this.$$_hibernate_tracker = new SimpleFieldTracker();

}
this.$$_hibernate_tracker.add(paramString);

Considering the following original Java entity class setter method:

public void setTitle(String title) {
this.title = title;

Hibernate transforms it to the following bytecode representation:

public void setTitle(String title) {
if(!EqualsHelper.arebEqual(this.title, title)) {
this.$$_hibernate_trackChange("title");

}
this.title = title;

When the application developer calls the setTitle method with an argument that differs from
the currently stored title, the change is going to be recorded in the $$_hibernate_tracker class
attribute.

Flushing 258

During flushing, Hibernate inspects the $$_hibernate_hasDirtyAttributes method to validate if
an entity was modified. The $$_hibernate_getDirtyAttributes method returns the names of all
changed attributes.

public boolean $$_hibernate_hasDirtyAttributes() {
return $$_hibernate_tracker != null && !$$_hibernate_tracker.isEmpty();

public String[] $$_hibernate_getDirtyAttributes() {
if($$_hibernate_tracker == null) {
$$_hibernate_tracker = new SimpleFieldTracker();

}

return $$_hibernate_tracker.get();

To validate the bytecode enhancement performance gain, the following test measures the
dirty tracking time for 10, 20, 50, and 100 post entity hierarchies (each post is associated with
one PostDetails, tWO PostComment and two Tag entities). Each iteration modifies six attributes:
the post title, the PostDetails creation date and owner, the PostComment review and the Tag name.

0.8

| I
10 20 50 100

Entity count

Time (ms)
o o o o o o
= N w H (03] [e)}

o

M Reflection-based M Bytecode enhancement

Figure 12.2: Bytecode enhancement performance gain

Both dirty checking mechanisms are very fast, and, compared to how much it takes to run
a database query, the in-memory attribute modification tracking is insignificant. Up to 50
Post entities, the reflection-based and the bytecode enhancement dirty checking mechanisms
perform comparably.

Flushing 259

Although bytecode enhancement dirty tracking can speed up the Persistence Con-
text flushing mechanism, if the size of the Persistence Context is rather small, the
improvement will not be that significant.

The entity snapshot is still saved in the Persistence Context even when using bytecode
enhancement because the persisted data might be used for the second-level cache
entries. For this reason, keeping the Persistence Context in reasonable boundaries
stays true no matter the dirty tracking mechanism in use.

13. Batching

As explained in the JDBC Batch Updates chapter, grouping multiple statements can reduce
the number of database roundtrips, therefore, lowering transaction response time.

When it comes to translating entity state transitions, Hibernate uses only Preparedstatement(s)
for the automatically generated insert, update, and delete DML operations. This way, the
application is protected against SQL injection attacks, and the data access layer can better
take advantage of JDBC batching and statement caching.

With plain JDBC, batch updates require programmatic configuration because, instead of
calling executeUpdate, the application developer must use the addBatch and executeBatch meth-
ods. Unfortunately, performance tuning is sometimes done only after the application is
deployed into production, and switching to batching JDBC statements requires significant
code changes.

By default, Hibernate doesn’t use JDBC batch updates, so when inserting 3 post entities:
for (int i = 0; 1 < 3; i++) {

entityManager .persist(new Post(String.format("Post no. %d", i + 1)));
}

Hibernate executes 3 insert statements, each one in a separate database roundtrip:

INSERT INTO post (title, id) VALUES (Post no. 1, 1)
INSERT INTO post (title, id) VALUES (Post no. 2, 2)
INSERT INTO post (title, id) VALUES (Post no. 3, 3)

Unlike JDBC, Hibernate can switch to batched preparedstatement(s) with just one configuration
property, and no code change is required:

<property name="hibernate. jdbc.batch_size" value="5"/>

P The hibernate. jdbe.batch_size configuration is applied globally for all session(s).

Batching 261

Session-level DBC batching

Hibernate 5.2 adds support for Session-level JDBC batching. Prior to this release, there was no
way to customize the JDBC batch size on a per-business use case basis. However, this feature
is really useful since not all business use cases have the same data persistence requirements.

The JDBC batch size can be set programmatically on a Hibernate session as follows:

doInJPA(entityManager -> {
entityManager.unwrap(Session.class).setJdbcBatchSize(10);

for (long i = ©; i < entityCount; ++i) {
Post post = new Post();
post.setTitle(String. format("Post nr %d", i));
entityManager .persist(post);

1);

If the EntityManager uses a PersistenceContextType.EXTENDED SCOPE, it is good practice to reset the
custom JDBC batch size before existing the current business method:

@PersistenceContext(type = PersistenceContextType.EXTENDED)
private EntityManager entityManager;

@TransactionAttribute(value=REQUIRED)
public void savePosts() {
entityManager.unwrap(Session.class).setJdbcBatchSize(10);
try {
for (long i = ©0; i < entityCount; ++i) {
Post post = new Post();
post.setTitle(String. format("Post nr %d", i));
entityManager .persist(post);
}
entityManager . flush();
} finally {
entityManager .unwrap(Session.class).setJdbcBatchSize(null);

By setting the session-level JDBC batch size tonul1, Hibernate is going to use the SessionFactory
configuration (e.g. hibernate.jdbc.batch_size) the next time the EXTENDED EntityManager gets

reused.

Batching 262

13.1 Batching insert statements

After setting the batch size property, when rerunning the previous test case, Hibernate
generates a single insert statement:

Query: ["INSERT INTO post (title, id) VALUES (?, ?)"],
Params: [('Post no. 1', 1), ('Post no. 2', 2), ('Post no. 3', 3)]

Identity columns and JDBC batching

If the Post identifier used an identity column, Hibernate would disable batched inserts.

INSERT INTO post (id, title) VALUES (default, 'Post no. 1')
INSERT INTO post (id, title) VALUES (default, 'Post no. 2')
INSERT INTO post (id, title) VALUES (default, 'Post no. 3')

Once an entity becomes managed, the Persistence Context needs to know the entity identifier
to construct the first-level cache entry key, and, for identity columns, the only way to find
the primary key value is to execute the insert statement.

This restriction does not apply to update and delete statements which can still benefit
from JDBC batching even if the entity uses the identity strategy.

Assuming the post entity has a @oneTomMany association with the postcomment entity, and the persist
event is cascaded from the post entity to its PostComment children:

@OneToMany(cascade = CascadeType.ALL, mappedBy = "post", orphanRemoval = true)
private List<PostComment> comments = new ArraylList<>();

When persisting three post(s) along with their postcomment child entities:

for (int i = 0; i < 3; i++) {
Post post = new Post(String. format("Post no. %d", i));
post.addComment (new PostComment("Good"));
entityManager .persist(post);

Batching 263

Hibernate executes one insert statement for each persisted entity:

INSERT INTO post (title, id) VALUES ('Post no. @', 1)
INSERT INTO post_comment (post_id, review, id) VALUES (1, 'Good', 2)

INSERT INTO post (title, id) VALUES ('Post no. 1', 3)
INSERT INTO post_comment (post_id, review, id) VALUES (3, 'Good', 4)

INSERT INTO post (title, id) VALUES ('Post no. 2', 5)
INSERT INTO post_comment (post_id, review, id) VALUES (5, 'Good', 6)

Even if the JDBC batching is enabled, Hibernate still executes each statement separately. This
is because JDBC batching requires executing the same preparedstatement, and, since the parent
and the child entity persist operations are interleaved, the batch must be flushed prior to
proceeding with an entity of different type.

To fix this, the inserts must be ordered while still maintaining the parent-child referential
integrity rules. For this purpose, Hibernate offers the following configuration property:

<property name="hibernate.order_inserts" value="true"/>
With this setting in place, Hibernate can benefit from JDBC batching once more:

INSERT INTO post (title, id)
VALUES (Post no. 9, 1), (Post no. 1, 3), (Post no. 2, 5)

INSERT INTO post_comment (post_id, review, id)
VALUES (1, Good, 2), (8, Good, 4), (5, Good, 6)

13.2 Batching update statements

Once the hibernate. jdbc.batch_size configuration property is set up, JDBC batching applies to
SQL update statements too. Running the following test case:

List<Post> posts = entityManager.createQuery(

"

"select p from Post p ", Post.class)

.getResultList();

posts. forEach(post -> post.setTitle(post.getTitle().replaceAll("no", "nr")));

Batching 264

Hibernate generates only one SQL update statement:

Query: ["UPDATE post SET title = ? WHERE id = ?"],
Params: [('Post nr. 1', 1), ('Post nr. 2', 2), ('Post nr. 3', 3)]

Just like it was the case for batching insert statements, when updating entities of different
types:

List<PostComment> comments = entityManager.createQuery(
"select ¢ " +
"from PostComment ¢ " +
"join fetch c.post ", PostComment.class)
.getResultList();

comments. forEach(comment -> {
comment . setReview(comment.getReview().replaceAll("Good", "Very good"));
Post post = comment.getPost();
post.setTitle(post.getTitle().replaceAll("no", "nr"));

1)

Hibernate flushes the batched preparedstatement before switching to an entity of a different
type:

Query: ["UPDATE post_comment SET post_id = ?, review = ? WHERE id
Params: [(1, 'Very good',6 2)]

2]

!

Query: ["UPDATE post SET title = ? WHERE id = ?"],
Params: [('Post nr. 0', 1)]

Query: ["UPDATE post_comment SET post_id = ?, review = ? WHERE id
Params: [(3, 'Very good', 4)]

2]

Query: ["UPDATE post SET title = ? WHERE id = ?"],
Params: [('Post nr. 1', 3)]

Query: ["UPDATE post_comment SET post_id = ?, review = ? WHERE id
Params: [(5, 'Very good', 6)]

2]

Query: ["UPDATE post SET title = ? WHERE id = ?"],
Params: [('Post nr. 2', 5)]

Batching 265

Analogous to ordering inserts, Hibernate offers the possibility of reordering batch updates as
well:

<property name="hibernate.order_updates" value="true"/>

With this configuration in place, when rerunning the previous example, Hibernate generates
only two update statements:

Query: ["UPDATE post SET title = ? WHERE id = ?"
Params: [('Post nr. @', 1), ('Post nr. 1', 3), ('Post nr. 2', 5)]

Query: ["UPDATE post_comment SET post_id = ?, review = ? WHERE id = ?"],
Params: [(1, 'Very good', 2), (3, 'Very good', 4), (5, 'Very good',6 6)]

Batching versioned data

An entity is versioned if the eversion annotation is associated with a numerical or a timestamp
attribute. The presence of the eversion attribute activates the implicit optimistic locking
mechanism for update and delete statements. When the entity is updated or deleted, Hiber-
nate includes the entity version in the where clause of the currently executing SQL statement.
If the entity was modified by a concurrent transaction, the version of the underlying table
row would not match the one supplied by the current running statement. The update count
returned by an update or a delete statement reports the numbers of rows affected by the
statement in question, and, if the count value is zero (or even less), a StaleobjectStateException
is thrown.

Prior to Hibernate 5, JDBC batching was disabled for versioned entities during update
and delete operations. This limitation was due to some JDBC drivers inability of correctly
returning the update count of the affected table rows when enabling JDBC batching.

Validating the underlying JDBC driver support is fairly simple. Once the hibernate. jdbc.batch_-
versioned_data property is activated, if there is no optimistic locking exception being mistak-
enly thrown during a non-concurrent batch update, then the driver supports versioned JDBC
batching.

Since Hibernate 5, the hibernate. jdbc.batch_versioned_data configuration property is enabled by
default, and it is disabled when using a pre-12c Oracle dialect (e.g. Oracle 8i, Oracle 9i, Oracle
10g). Because the Oracle 12c JDBC driver manages to return the actual update count even
when using batching, the oraclet2cdialect sets the hibernate. jdbc.batch_versioned_data property
to true.

For Hibernate 3 and 4, the hibernate. jdbc.batch_versioned_data should be enabled if the
JDBC driver supports this feature.

Batching 266

13.3 Batching delete statements

Considering that the hibernate. jdbc.batch_size configuration property is set, when running the
following test case:

List<Post> posts = entityManager.createQuery(
"select p " +
"from Post p

.getResultlList();

"

, Post.class)

posts. forEach(entityManager: :remove);
Hibernate will generate a single preparedstatement:

Query: ["DELETE FROM post WHERE id = ?"],
Params: [(1), (2), (3)]

If the post entity has a @oneToMany PostComment association, and since CascadeType.REMOVE is
inherited from the cascadeType.ALL attribute, when the post entity is removed, the associated
PostComment child entities will be removed as well.

List<Post> posts = entityManager.createQuery(
"select p " +
"from Post p " +
"join fetch p.comments
.getResultlList();

n

, Post.class)

posts. forEach(entityManager: :remove);

Even if the JDBC batching setting is enabled, Hibernate still issues each delete statement
separately.

DELETE FROM post_comment WHERE id = 2
DELETE FROM post WHERE id = 1

DELETE FROM post_comment WHERE id = 4
DELETE FROM post WHERE id = 3
DELETE FROM post_comment WHERE id = 6

DELETE FROM post WHERE id = 5

Batching 267

Once the HHH-10483* is resolved, Hibernate will support delete statement ordering.

The hibernate. jdbc.batch_versioned_data property applies to batched deletes just like for update
statements.
Ahttps:/ /hibernate.atlassian.net /browse /HHH-10483

Fortunately, there are multiple workarounds to this issue. Instead of relying on cascade-
Type.REMOVE, the child entities can be manually removed before deleting the parent entities.

for (Post post : posts) {
for (Iterator<PostComment> commentIterator = post.getComments().iterator();
commentIterator.hasNext();) {
PostComment comment = commentIterator.next();
comment .setPost(null);
commentIterator.remove();

}
entityManager. flush();
posts. forEach(entityManager: :remove);

Prior to deleting the post entities, the Persistence Context is flushed to force the postComment
delete statements to be executed. This way, the Persistence Context does not interleave the
SQL delete statements of the removing post and PostComment entities.

Query: ["DELETE FROM post_comment WHERE id = ?"],
Params: [(2), (4), (6)

Query: ["DELETE FROM post WHERE id = ?"],
Params: [(1), (3), (5)]

A more efficient alternative is to execute a bulk HQL delete statement instead. First, the
PostComment collection mapping must be modified to remove the orphanremoval, as well as the
CascadeType . REMOVE setting.

@0OneToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE}, mappedBy = "post")
private List<PostComment> comments = new ArraylList<>();

https://hibernate.atlassian.net/browse/HHH-10483
https://hibernate.atlassian.net/browse/HHH-10483

Batching 268

Without removing the orphanRemoval and the CascadeType.REMOVE setting, Hibernate will
issue a select statement for every child entity that gets removed. Not only the SQL
statements are more effective (due to batching), but the flushing is also faster since
the Persistence Context doesn’'t have to propagate the remove action.

With this new mapping in place, the remove operation can be constructed as follows:

List<Post> posts = entityManager.createQuery(
"select p " +
"from Post p ", Post.class)
.getResultList();

entityManager .createQuery(
"delete " +
"from PostComment ¢ " +
"where c.post in :posts")
.setParameter("posts", posts)
.executeUpdate();

posts. forEach(entityManager: :remove);

This time, Hibernate generates only two statements. The child entities are deleted using
a single bulk delete statement, while the parent entities are removed using a batched
PreparedStatement.

Query: ["DELETE FROM post_comment WHERE post_id in (? , ?2 , ?)"],
Params: [(1, 3, 5)]

Query: ["DELETE FROM post WHERE id = ?"],
Params: [(1), (3), (5)]

The most efficient approach is to rely on database-level cascading. For this purpose, the
post_comment table should be modified so that the post_id foreign key defines a DELETE CASCADE
directive.

ALTER TABLE post_comment ADD CONSTRAINT fk_post_comment_post
FOREIGN KEY (post_id) REFERENCES post ON DELETE CASCADE

Batching 269

This way, the deletion operation can be reduced to simply removing the post entities:

List<Post> posts = entityManager.createQuery(
"select p " +

"

"from Post p ", Post.class)

.getResultList();

posts. forEach(entityManager: :remove);
Running the post removal operation generates only one batched preparedsStatement:

Query: ["DELETE FROM post WHERE id = ?"],
Params: [(1), (3), (5)]

Because the Hibernate session is unaware of the table rows being deleted on the database side,
it is good practice to avoid fetching the associations that will be removed by the database.

List<Post> posts = entityManager.createQuery(
"select p " +
"from Post p

.getResultList();

"

, Post.class)

List<PostComment> comments = entityManager.createQuery(
"select ¢ " +
"from PostComment ¢ " +
"where c.post in :posts", PostComment.class)
.setParameter("posts", posts)

.getResultList();

posts. forEach(entityManager: :remove);
comments . forEach(comment -> comment.setReview("Excellent"));

When running the test case above, Hibernate generates the following SQL statements:

Query: ["UPDATE post_comment SET post_id=?, review=? WHERE id=?"],
Params: [(1, 'Excellent', 2), (3, 'Excellent', 4), (5, 'Excellent',6 6)]

Query: ["DELETE FROM post WHERE id=?"],
Params: [(1), (3), (5)]

Luckily, the EntityDeleteAction is the last action being executed during flushing, so, even if the
PostComment(s) are changed, the update statement is executed before the parent deletion.

Batching 270

But if the Persistence Context is flushed before changing the postComment entities:

List<Post> posts = entityManager.createQuery(
"select p " +

"

"from Post p ", Post.class)

.getResultList();

List<PostComment> comments = entityManager.createQuery(
"select ¢ " +
"from PostComment ¢ " +
"where c.post in :posts", PostComment.class)
.setParameter("posts", posts)

.getResultlList();
posts. forEach(entityManager: :remove);
entityManager. flush();

comments. forEach(comment -> comment.setReview("Excellent"));

An optimisticLockException Will be thrown because the associated table rows cannot be found
anymore.

Query: ["DELETE FROM post WHERE id=?"],
Params: [(1), (3), (5)]

Query: ["UPDATE post_comment SET post_id=?, review=? WHERE id=?"],
Params: [(1, 'Excellent', 2), (3, 'Excellent', 4), (5, 'Excellent',6 6)]

o.h.e.j.b.i.BatchingBatch - HHHOQO315: Exception executing batch
[Batch update returned unexpected row count from update [0];
actual row count: 0; expected: 1]

Because the row count value is zero, Hibernate assumes that the records were modified by
some other concurrent transaction and it throws the exception to notify the upper layers of
the data consistency violation.

14. Fetching

While in SQL data is represented as tuples, the object-oriented Domain Model uses graphs
of entities. Hibernate takes care of the object-relational impedance mismatch, allowing the
data access operations to be expressed in the form of entity state transitions.

It is definitely much more convenient to operate on entity graphs and let Hibernate translate
state modifications to SQL statements, but convenience has its price. All the automatically
generated SQL statements need to be validated, not only for effectiveness but for ensuring
their efficiency as well.

With JDBC, the application developer has full control over the underlying SQL statements, and
the select clause dictates the amount of data being fetched. Because Hibernate hides the SQL
statement generation, fetching efficiency is not as transparent as with JDBC. More, Hibernate
makes it very easy to fetch an entire entity graph with a single query, and too-much-fetching
is one of the most common JPA-related performance issues.

To make matters worse, many performance issues can go unnoticed during development
because the testing data set might be too small, in comparison to the actual production data.
For this purpose, this chapter goes through various Java Persistence fetching strategies, and
it explains which ones are suitable for a high-performance data-driven application.

As explained in the JDBC ResultSet Fetching chapter, fetching too many rows or columns can
greatly impact the data access layer performance, and Hibernate is no different.

Hibernate can fetch a given result set either as a projection or as a graph of entities.
The former is similar to JDBC and allows transforming the resuitset into a list of DTO
(Data Transfer Objects). The latter is specific to ORM tools, and it leverages the automatic
persistence mechanism.

Unfortunately too often, this distinction is being forgotten, and data projections are unnec-
essarily replaced by entity queries. There are multiple reasons why entity queries are not a
universal solution for reading data:

1. If a graph of entities has been loaded, but only a subset of the whole graph is used during
Ul rendering, the unused data will become a waste of database resources, network
bandwidth, and server resources (objects need to be created and then reclaimed by the
Java Garbage Collector without serving any purpose).

2. Entity queries are more difficult to paginate especially if they contain child collections.

3. The automatic dirty checking and the optimistic locking mechanisms are only relevant
when data is meant to be modified.

So, projections are ideal when rendering subsets of data (e.g. read-only tables, auto-scrolling
selectors), while entity queries are useful when the user wants to edit the fetched entities
(e.g. forms, in-place editing).

Fetching 272

When loading a graph of entities, the application developer must pay attention to the amount
of data being fetched and also the number of statements being executed.

currently executing business logic. Fetching more data than necessary can increase

P As a rule of thumb, a transaction should fetch just as much data as required by the
response time and waste resources.

Fetching entity graphs is useful when the data access layer needs to modify the
currently loading entities.

14.1 DTO projection

While Hibernate allows fetching projections as an object array, it is much more convenient to
materialize the Resultset in a DTO projection. Unlike returning an object[], the DTO projection
is type-safe.

Considering the following PostCommentSummary DTO type:

public class PostCommentSummary {

private Number id;

private String title;

private String review;

public PostCommentSummary(Number id, String title, String review) {
this.id = id;
this.title = title;
this.review = review;

public PostCommentSummary() {}

public Number getId() { return id; }

public String getTitle() { return title; }

public String getReview() { return review; }

Fetching 273

When executing the following postCommentSummary projection query:

List<PostCommentSummary> summaries = entityManager.createQuery(
"select new " +

com.vladmihalcea.book.hpjp.hibernate. fetching.PostCommentSummary(" +
" p.id, p.title, c.review) " +
"from PostComment ¢ " +

"join c.post p")

.getResultlList();

Hibernate is only selecting the columns that are needed for building a postCommentSummary
instance.

SELECT p.id AS col_©_0_, p.title AS col_1_0_, c.review AS col_2_0_
FROM post_comment ¢
INNER JOIN post p ON c.post_id = p.id

14.1.1 DTO projection pagination

Selecting too much data is a common cause of performance-related issues. A UI can display
as much as the screen resolution allows it, and paginating data sets allows the UI to request
only the info that is needed to be displayed in the current view. Pagination is also a safety
measure since it sets an upper boundary on the amount of data that is fetched at once, and
this is especially relevant when the tables being scanned tend to grow with time.

Pagination is a good choice even for batch processing because it limits the transaction size,
therefore avoiding long-running transactions.

As explained in the JDBC ResultSet limit clause section, the SQL:2008 ResultSet pagination
syntax hast started being supported since Oracle 12¢, SQL Server 2012, and PostgreSQL
8.4, and many relational database systems still use a vendor-specific SQL syntax for offset
pagination.

In the SQL Performance Explained* book, Markus Winand explains why keyset pagination
scales better than the default offset pagination mechanism. Unfortunately, Hibernate 5.1 does
not support it, and the Keyset pagination requires executing a native SQL query instead.

As long as the filtering criteria are highly-selective so that the scanning result set is relatively
small, the offset pagination performs reasonably well.

Ahttp:/ /sql-performance-explained.com/

For the offset pagination, JPA can insulate the data access layer from database-specific
syntax quirks. First, the Resultset size can be limited by calling setMaxrResults which Hibernate

http://sql-performance-explained.com/
http://sql-performance-explained.com/

Fetching 274

translates to a Dialect-specific statement syntax. While it would have been much easier
for Hibernate to use the setMaxrRows method of the underlying JDBC statement, the database-
specific query syntax is desirable since it can also influence the database execution plan.

When running the following projection query on a PostgreSQL database:

List<PostCommentSummary> summaries = entityManager .createQuery(
"select new " +
" com.vladmihalcea.book.hpjp.hibernate. fetching.PostCommentSummary(" +
" p.id, p.title, c.review) " +
"from PostComment ¢ " +
"join c.post p " +
"order by p.id")
.setFirstResult(pageStart)
.setMaxResults(pageSize)
.getResultlList();

Hibernate generates the select statement as follows:

SELECT p.id AS col 0 _0_, p.title AS col_1_0_, c.review AS col_2_0_
FROM post_comment ¢

INNER JOIN post p ON c.post_id = p.id

ORDER BY p.id

LIMIT 10 OFFSET 20

In this particular example, the LimiT and the oFrser PostgreSQL directives are used to control
the window of data that needs to be fetched by the currently executing query.

ORDER BY

Without the ORDER BY clause, the order of rows in a result set is not deterministic. However,
in the pagination use case, the fetched record order need to be preserved whenever moving
from one page to another. According to the SQL standard, only the ORDER BY clause can
guarantee a deterministic result set order because records are sorted after being extracted.

In the context of pagination, the ORDER BY clause needs to be applied on a column
or a set of columns that are guarded by a unique constraint.

Fetching 275

14.1.2 Native query DTO projection

DTO projections can be fetched with native queries as well. When using JPA, to fetch a list of
PostCommentSummary objects with an SQL query, a eNamedNativeQuery with a @sqlResultSetMapping iS
required:

@NamedNativeQuery(name = "PostCommentSummary",
query =
"SELECT p.id as id, p.title as title, c.review as review " +
"FROM post_comment c " +
"JOIN post p ON c.post_id = p.id " +
"ORDER BY p.id",
resultSetMapping = "PostCommentSummary"
)
@SqlResultSetMapping(name = "PostCommentSummary",
classes = @ConstructorResult(
targetClass = PostCommentSummary.class,
columns = {

@ColumnResult(name = "id"),
@ColumnResult(name = "title"),
@ColumnResult(name = "review"

To execute the above SQL query, the createNamedQuery method must be used:

List<PostCommentSummary> summaries = entityManager.createNamedQuery(
"PostCommentSummary")

.setFirstResult(pageStart)

.setMaxResults(pageSize)

.getResultlList();

Hibernate generating the following paginated SQL query:

SELECT p.id as id, p.title as title, c.review as review
FROM post_comment ¢

JOIN post p ON c.post_id = p.id

ORDER BY p.id

LIMIT 10 OFFSET 20

Fetching 276

While JPQL might be sufficient in many situations, there might be times when a native
SQL query is the only reasonable alternative because, this way, the data access layer
can take advantage of the underlying database querying capabilities.

A much simpler alternative is to use the Hibernate-native API which allows transforming the
ResultSet to a DTO through Java Reflection:

List<PostCommentSummary> summaries = session.createSQLQuery(
"SELECT p.id as id, p.title as title, c.review as review " +
"FROM post_comment ¢ " +
"JOIN post p ON c.post_id = p.id " +
"ORDER BY p.id")

.setFirstResult(pageStart)

.setMaxResults(pageSize)

.setResultTransformer (
new AliasToBeanResultTransformer (PostCommentSummary.class))

Jlist();

Although JPA 2.1 supports Constructor Expressions for JPQL queries as previously
illustrated, there is no such alternative for native SQL queries.

Fortunately, Hibernate has long been offering this feature through the
ResultTransformer mechanism which not only provides a way to return DTO projections,
but it allows to customize the result set transformation, like when needing to build
an hierarchical DTO structure.

To fully grasp why sometimes native queries become a necessity, the next example uses a
hierarchical model that needs to be ranked across the whole tree structure. For this reason,
in the following example, a post comment score ranking system is going to be implemented.

The goal of such a system is to provide the user a way to view only the most relevant
comments, therefore, allowing him to ignore comments that have a low score.

Fetching 277

The post comment score system is going to use the following database table:

A9
:I post_comment ¥
id BIGINT(20)
—| post v created_on DATETIME
id BIGINT(20) review VARCHAR(255)
‘ title VARCHAR(255) score INT(11)
> parent_id BIGINT(20)
post_id BIGINT(20)
>

——— i

Figure 14.1:Post comment score ranking system tables

There is a one-to-many table relationship between post and post_comment. However, because
users can also reply to comments, the post_comment table has also a one-to-one self-join table
relationship.

The self-join association is commonly used for representing tree-like structures in a relational
database. Additionally, each post_comment has a score which indicates its relevance.

The application in question needs to display the top-ranked comment hierarchies associated
with a given post. The ranking can be calculated either in the data access layer or in the
database, so it is worth comparing the performance impact of each of these two solutions.

The first approach uses application-level comment ranking, and, to minimize the fetching
impact, a DTO projection is used to retrieve all records that need to be aggregated hierarchi-
cally.

List<PostCommentScore> postCommentScores = entityManager.createQuery(
"select new " +
" com.vladmihalcea.book.hpjp.hibernate.query.recursive.PostCommentScore(" +
pc.id, pc.parent.id, pc.review, pc.createdOn, pc.score) " +

"from PostComment pc " +

n

"where pc.post.id = :postld ")
.setParameter("postId", postId)
.getResultlList();

The associated SQL query looks as follows:

SELECT
pc.id AS col_0_0_, pc.parent_id AS col_1_0_, pc.review AS col_2_0_,
pc.created_on AS col_3_0_, pc.score AS col_4_0_

FROM post_comment pc

WHERE pc.post_id =1

Fetching

The postCommentscore DTO looks like this:

public class PostCommentScore {

private
private
private
private
private

private

Long id;

Long parentlId;
String review;
Date createdOn;
long score;

List<PostCommentScore> children = new ArraylList<>();

public PostCommentScore(Number id, Number parentld, String review,
Date createdOn, Number score) {
this.id = id.longValue();

this.parentlId = parentld != null ? parentId.longValue() : null;

this.review = review;

this.createdOn = createdOn;

this.score = score.longValue();

public PostCommentScore() {}

//Getters and setters omitted for brevity

public long getTotalScore() {
long total = getScore();
for(PostCommentScore child : children) {

}

total += child.getTotalScore();

return total;

public List<PostCommentScore> getChildren() {
List<PostCommentScore> copy = new ArraylList<>(children);

copy . sort(Comparator . comparing(PostCommentScore: :getCreatedOn));

return copy;

public void addChild(PostCommentScore child) {
children.add(child);

278

© 00 N O U b W N =

NN N N N F S s s s s s
B WO N 2O O 0N O O b WO N =~ O

Fetching 279

Once the postcommentscore list is fetched from the database, the data access layer must extract
the top-ranking comment hierarchies. For this, the sorting must be done in-memory.

List<PostCommentScore> roots = new ArraylList<>();

Map<Long, PostCommentScore> postCommentScoreMap = new HashMap<>();
for (PostCommentScore postCommentScore : postCommentScores) {
Long id = postCommentScore.getlId();
if (!postCommentScoreMap.containsKey(id)) {
postCommentScoreMap.put(id, postCommentScore);

}

for (PostCommentScore postCommentScore : postCommentScores) {
Long parentId = postCommentScore.getParentId();
if(parentId == null) {
roots.add(postCommentScore) ;
} else {
PostCommentScore parent = postCommentScoreMap.get(parentId);
parent.addChild(postCommentScore);

}

roots.sort(

Comparator . comparing(PostCommentScore: :getTotalScore) .reversed()
)
if(roots.size() > rank) {

roots = roots.sublList(0, rank);

The in-memory ranking process can be summarized as follows:

* Lines 4-10: Because the query does not use an orRDER BY clause, there is no ordering
guarantee. Grouping PostCommentScore entries by their identifier must be done prior to
reconstructing the hierarchy.

* Lines 12-20: The hierarchy is built out of the flat PostCommentscore list. The PostCommentscore
map is used to locate each PostCommentScore parent entry.

* Lines 22-24: The PostCommentScore roots are sorted by their total score.

* Lines 26-28: Only the top-ranking entries are kept and handed to the business logic.

For many developers, this approach might be the first option to consider when implementing
such a task. Unfortunately, this method does not scale for large resultSet(s) because fetching
too much data and sending it over the network is going to have a significant impact on
application performance. If a post becomes very popular, the number of post_comment rows
can easily skyrocket, and the system might start experiencing performance issues.

By moving the score ranking processing in the database, the ResultSet can be limited to
a maximum size before being returned to the data access layer. Summing scores for all

O 00 3 O O & W N =~

W W W W WNNDNDNDDNDNDNDDNDNDDN A B R s b s s
B ON =S OO0 O W0 0 & WNAROO O W10 U w4~ o

Fetching 280

comments belonging to the same post_comment root requires Recursive CTE queries and
Window Functions, therefore, the following example uses PostgreSQL, and the database
ranking logic looks like this:

List<PostCommentScore> postCommentScores = entityManager.createNativeQuery/(
"SELECT id, parent_id, root_id, review, created_on, score " +
"FROM (" +
" SELECT " +
" id, parent_id, root_id, review, created_on, score, " +
" dense_rank() OVER (ORDER BY total_score DESC) rank " +
" FROM (" +
" SELECT " +
id, parent_id, root_id, review, created_on, score, " +
" SUM(score) OVER (PARTITION BY root_id) total_score " +
" FROM (" +
" WITH RECURSIVE post_comment_score(id, root_id, post_id, " +
parent_id, review, created_on, score) AS (" +
" SELECT " +
" id, id, post_id, parent_id, review, created_on, score" +
FROM post_comment " +
" WHERE post_id = :postId AND parent_id IS NULL " +
" UNION ALL " +
SELECT pc.id, pcs.root_id, pc.post_id, pc.parent_id, " +
pc.review, pc.created_on, pc.score " +
FROM post_comment pc " +
INNER JOIN post_comment_score pcs ON pc.parent_id = pcs.id " +
") "o+
SELECT id, parent_id, root_id, review, created_on, score " +
FROM post_comment_score " +
") score_by_comment " +
) score_total " +
" ORDER BY total_score DESC, id ASC " +
") total_score_group " +
"WHERE rank <= :rank", "PostCommentScore")
.unwrap(SQLQuery.class)
.setParameter ("postId", postld).setParameter("rank", rank)

.setResultTransformer (new PostCommentScoreResultTransformer())
Jlist();

Fetching 281

As usual, a SQL query can be better understood if starting from the inner-most query:

* Lines 14-17: This query is the first one to be executed, and it selects the post_comment roots
associated with the given post identifier.

* Line 18: The union ALL directive combines the previously generated result set with the
current Recursive CTE projection.

 Lines 19-22: These lines represent the recursive step which, in this case, it joins the
current post_comment rows with the previously scanned parents.

* Lines 12-13 and 24-25: The Recursive CTE is only a construct that needs to be explicitly
called by a query. For this example, the post_comment hierarchy has a root_id which
identifies all records belonging to the same comment root.

 Lines 8-11 and 26: This outer query is used to sum all scores for a given post_comment
hierarchy. Unlike a regular croup BY clause, the Window Function allows aggregating the
score without affecting the selected result set.

 Lines 4-7 and 27-28: This outer query is used to order the post_comment hierarchies by
their overall score, and each hierarchy is given a top rank (e.g. 1, 2, 3).

* Lines 2-3 and 29-30: The outer-most query is only selecting the post_comment hierarchies
that have a top rank higher than a given threshold.

* Line 31: The JPA query is dereferenced to the underlying Hibernate-specific sqQLQuery
object.

* Line 33: Because the query was cast to an sQLQuery instance, the result can be transformed
using the ResultTransformer utility.

Without using a ResultTransformer, Hibernate would return a List of PostCommentScore objects
that need to be manually transformed into a tree structure, exactly like it was the case with
the first DTO projection that was fetching all PostCommentScore records.

In the Recursive CTE use case, the result set is already ordered by the database so that the
hierarchical structure can be constructed in a single iteration. This can also be done for the
first example, but adding an oroer BY directive is going to slow down the query execution
significantly. When orber BY was added, the SQL query was 20 times slower even if the
ordering was done by the entity identifier which was indexed by default.

For this reason, the first example did not feature a SQL oroer BY clause, and the result set was,
therefore, iterated twice. Compared to a SQL query, in-memory processing is blazing fast. For
instance, processing around 35 000 PostCommentScore records takes around 2.5 milliseconds. On
the other hand, fetching just 100 PostCommentScore(s) takes more than 3 milliseconds.

In PostgreSQL, CTE is treated as an optimization fence®, so caution is advised.

Ahttp:/ /blog.2ndquadrant.com /postgresql-ctes-are-optimization-fences/

http://blog.2ndquadrant.com/postgresql-ctes-are-optimization-fences/
http://blog.2ndquadrant.com/postgresql-ctes-are-optimization-fences/

Fetching 282

The PostCommentScoreResultTransformer l00ks as follows:

public class PostCommentScoreResultTransformer implements ResultTransformer {
private Map<Long, PostCommentScore> postCommentScoreMap = new HashMap<>();
private List<PostCommentScore> roots = new ArraylList<>();

@Override
public Object transformTuple(Object[] tuple, String[] aliases) {
PostCommentScore commentScore = (PostCommentScore) tuple[0];
Long parentId = commentScore.getParentId();
if (parentId == null) {
roots.add(commentScore) ;
} else {
PostCommentScore parent = postCommentScoreMap.get(parentId);
if (parent != null) {
parent.addChild(commentScore);

}

postCommentScoreMap . putlfAbsent(commentScore.getId(), commentScore);
return commentScore;

@Override
public List transformList(List collection) {
return roots;

Having two options for the same data access logic requires a test to prove which one performs
better. Considering that n is the number of root-level post_comment records, the following test
creates comments on three levels, each upper level having twice as much entries as the
immediate lower level, and the total number of post_comment entries is given by the following
formula:

N=n+nx g-+7zx g X %
To understand how each of these two options scales, the number of root-level post_comment
entries varies from 4 to 8, 16, 24, 32, 48, and 64 records. By applying the mathematical formula
above, the total number of post_comment records contained within one hierarchy can vary from
20 to 104, 656, 2040, 4640, 15024, and 34880 rows. Increasing the resultset size, the impact of
fetching too much data becomes more and more apparent. On the other hand, even if it still
needs to scan a lot of records, the database-level processing can avoid the fetching penalty.

Fetching 283

The following graph captures the results when running these two score ranking data pro-
cessing alternatives:

100
90

80
70
60
50
40
30
20
10
0 —— —— I _ ‘

20 104 656 2040 4640 15024 34880

Data set size

Time (ms)

M Fetch all m Recursive CTE
Figure 14.2: Fetching all records vs Recursive CTE

If the number of post_comment entries is low, the application-level processing will perform very
well, even better than the Recursive CTE query. However, the larger the Resultset, the more
advantageous the database-processing alternative becomes. This graph is a good reminder
that moving processing logic closer to the data setis a performance optimization that is worth
considering.

Stored procedures

While SQL queries are ideal for fetching data projections, stored procedures and database
functions can be very useful for processing data. Some complex database processing tasks
can only be expressed through a procedure language (e.g. PL/SQL, T-SQL, PL/pgSQL) if the
task requires mixing loops, conditional statements, arrays, or temporary tables.

Unlike SQL queries which are executed in the scope of the currently running transaction,
stored procedure can also manipulate transaction boundaries. This can be very handy when
trying to break an otherwise long-running transaction into smaller batches which can better
fit the undo log memory buffers.

Fetching 284

14.2 Query fetch size

When using JPA, the JDBC resultset is fully traversed and materialized into the expected query
result. For this reason, the fetch size can only influence the number of database roundtrips
required for fetching the entire ResultSet.

As explained in the JDBC Fetching Size section, when using PostgreSQL or MySQL, the
ResultsSet is fetched in a single database roundtrip. For these two relational database systems,
as well as for SQL Server, which uses adaptive buffering, the default fetch size setting is often
the right choice when executing a JPA query.

On the other hand, Oracle uses a default fetch size of only 10 records. Considering the
previous pagination query, the page size being also 10, the default fetch size does not
influence the number of database roundtrips. However, if the page size is 50, then Hibernate
will require 5 roundtrips to fetch the entire Resultset.

Luckily, Hibernate can control the fetch size either on a query basis or at the EntityManager-
FactoryleveL

At the query level, the fetch size can be configured using the org.hibernate. fetchSize hint:

List<PostCommentSummary> summaries = entityManager.createQuery(
"select new " +

n

com.vladmihalcea.book.hpjp.hibernate. fetching.PostCommentSummary(" +
" p.id, p.title, c.review) " +
"from PostComment c " +
"join c.post p")
.setFirstResult(pageStart)
.setMaxResults(pageSize)
.setHint(QueryHints . HINT_FETCH_SIZE, pageSize)

.getResultlList();
The default fetch size can also be configured as a configuration property:

<property name="hibernate. jdbc.fetch_size" value="50"/>

However, setting the default fetch size requires diligence because it affects every
executing SQL query. Like with any other performance tuning setting, measuring the
gain is the only way to determine if a settings makes sense or not.

Fetching 285

14.3 Fetching entities

DTO projections are suitable for loading read-only data sets because they minimize the
number of columns being fetched, and native queries can take advantage of the underlying
database advanced querying capabilities. However, most enterprise applications need also
modify data, and that is where DTO projections are no longer suitable for this task.

As explained at the beginning of this chapter, object-oriented queries predate entity state
modifications. Hibernate supports the standard Java Persistence Query Language (JPQL)
and the type-safe Criteria API. More, the Hibernate Query Language (HQL) extends JPQL,
therefore offering more features that are not supported by the standard specification.

When an entity is loaded, it becomes managed by the currently running Persistence Context,
and Hibernate can automatically detect changes and propagate them as SQL statements.

14.3.1 Direct fetching

The easiest way to load an entity is to call the find method of the Java Persistence entityManager
interface.

Post post = entityManager.find(Post.class, 1L);
The same can be achieved with the Hibernate native API:

Session session = entityManager.unwrap(Session.class);
Post post = session.get(Post.class, 1L);

When running either the find or the get method, Hibernate fires a LoadEvent. Without cus-
tomizing event listeners, the LoadEvent is handled by the pDefaultLoadeventListener class which
tries to locate the entity as follows:

* First, Hibernate tries to find the entity in the currently running Persistence Context (the
first-level cache). Once an entity is loaded, Hibernate always returns the same object
instance on any successive fetching requests, no matter if it is a query or a direct fetching
call. This mechanism guarantees application-level repeatable reads.

« If the entity is not found in the first-level cache and the second-level cache is enabled,
Hibernate will try to fetch the entity from the second-level cache.

* If the second-level cache is disabled or the entity is not found in the cache, Hibernate
will execute a SQL query to fetch the requested entity.

Fetching 286

offers strong data consistency guarantees. Backed by the application-level repeatable
reads offered by the first-level cache, the built-in optimistic concurrency control
mechanism can prevent lost updates, even across successive web requests.

P Not only the data access layer is much easier to implement this way, but Hibernate also

While a SQL projection requires a database roundtrip to fetch the required data, en-
tities can also be loaded from the second-level caching storage. By avoiding database
calls, the entity caching mechanism can improve response time, while the database
load can decrease as well.

14.3.1.1 Fetching a Proxy reference

Alternatively, direct fetching can also be done lazily. For this purpose, the EntityManager must
return a Proxy which delays the SQL query execution until the entity is accessed for the first
time.

This can be demonstrated with the following example:

Post post = entityManager.getReference(Post.class, 1L);
LOGGER. info("Loaded post entity");
LOGGER. info("The post title is '{}'", post.getTitle());

Hibernate generates the following logging sequence:

INFO - Loaded post entity

SELECT p.id AS id1_0_0_, p.title AS title2_0_0_
FROM post p
WHERE p.id =1

INFO - The post title is 'Post nr. 1'

The getReference method call does not execute the SQL statement right away, so the Loaded
post entity message is the first to be logged. When the post entity is accessed by calling the
getTitle method, Hibernate executes the select query and, therefore, loads the entity prior to
returning the title attribute.

Fetching 287

The same effect can be achieved with the Hibernate native API which offers two alternatives
for fetching an entity Proxy:

Session session = entityManager.unwrap(Session.class);
Post post = session.byld(Post.class).getReference(1L);

Session session = entityManager.unwrap(Session.class);
Post post = session.load(Post.class, 1L);

Populating a child-side parent association

The child table row must set the foreign key column according to the parent record primary
key value. However, the child entity mapping contains a reference to a parent object, and,
if the parent entity is fetched with the find method, Hibernate is going to issue a select
statement just for the sake of populating the underlying foreign key column value.

If the current Persistence Context does not require to load the parent entity, the afore-
mentioned select statement will be a waste of resources. For this purpose, the getReference
method allows populating the parent attribute with a Proxy which Hibernate can use to set
the underlying foreign key value even if the Proxy is uninitialized.

In the following example, a PostComment entity must be persisted with a reference to its parent
Post entity.

Post post = entityManager.getReference(Post.class, 1L);

PostComment postComment = new PostComment("Excellent reading!");
postComment .setPost(post) ;

entityManager .persist(postComment);

Executing the above test case, Hibernate generates a single insert statement without fetching
the post entity:

INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'Excellent reading!', 2)

14.3.1.2 Natural identifier fetching

Hibernate offers the possibility of loading an entity by its natural identifier (business key). The
natural id can be either a single column or a combination of multiple columns that uniquely
identifies a given database table row.

Fetching

288

In the following example, the post entity defines a siug attribute which serves as a natural

identifier.

@Entity
@Table(name = "post")
public class Post

@Id

@GeneratedValue

private Long id;

private String title;

@Naturalld

@Column(nullable = false, unique = true)

private String slug;

//Getters and setters omitted for brevity

Fetching an entity by its natural key is done as follows:

Session session = entityManager.unwrap(Session.class);
Post post = session.bySimpleNaturalld(Post.class).load(slug);

Behind the scenes, Hibernate executes the following SQL statements:

SELECT p.id AS id1_0_
FROM post p
WHERE p.slug = 'high-performance-java-persistence'’

SELECT p.id AS id1_0_0_, p.slug AS slug2_ 0 _0_, p.title AS title3_0_0_

FROM post p
WHERE p.id =1

The natural identifier direct fetching mechanism defines a getReference method which, just

like its JPA Proxy loading counterpart, returns an entity Proxy.

Post post = session.bySimpleNaturalld(Post.class).getReference(slug);

Fetching 289

Caching

If the second-level cache is enabled, Hibernate can avoid executing the second query by
loading the entity directly from the cache. Hibernate can also cache the natural identifier
(e.g. enaturalldcache) associated with a given entity identifier, therefore preventing the first
query as well.

14.3.2 Query fetching

With a simple API and having support for bypassing the database entirely by loading entities
from the second-level cache, the direct fetching mechanism is a very convenient entity
loading mechanism.

On the downside, direct fetching is limited to loading a single entity and only by its identifier
or natural key. If the data access layer wants to load multiple entities satisfying a more
complex filtering criteria, an entity query will become mandatory.

In the following example, a JPQL query is used to load all post entities that have a non-nullable
slug attribute.

List<Post> posts = entityManager.createQuery(
"select p " +

"from Post p " +

"where p.slug is not null", Post.class)

.getResultList();
Executing the JPQL query above, Hibernate generates the following SQL query:

SELECT p.id AS id1_0_, p.slug AS slug2_@_, p.title AS title3_0_
FROM post p
WHERE p.slug IS NOT NULL

Loading by the entity natural key can be done through an entity query as well:

Post post = entityManager.createQuery(

"select p from Post p where p.slug = :slug", Post.class)
.setParameter("slug", slug)
.getSingleResult();

Fetching 290

And, as opposed to direct fetching API, the entity query alternative requires a single SQL
statement:

SELECT p.id AS id1_0_, p.slug AS slug2_@_, p.title AS title3_0_
FROM post p
WHERE p.slug = 'high-performance-java-persistence'’

Not only that it can take more filtering criteria, but the query can be constructed program-
matically and in a type-safe manner as well. For this purpose, the following example is going
to filter post entities by their title attribute using an incoming titlePattern argument.

If the titlePattern is null, the underlying SQL statement will contain an 1s nuLL directive.
Otherwise, the query must use a LIk filtering criteria.

CriteriaBuilder builder = entityManager.getCriteriaBuilder();
CriteriaQuery<Post> criteria = builder.createQuery(Post.class);
Root<Post> fromPost = criteria.from(Post.class);

Predicate titlePredicate = titlePattern == null ?
builder.isNull(fromPost.get(Post_.title))
builder.like(fromPost.get(Post_.title), titlePattern);

criteria.where(titlePredicate);
List<Post> posts = entityManager.createQuery(criteria).getResultlist();

Metamodel API

In the previous example, the title attribute is accessed through the post entity Metamodel
(e.g. Post_.title). The Post_ class is auto-generated during build-time by the

org.hibernate. jpamodelgen. JPAMetaModelEntityProcessor Hibernate utility, and it provides a type-
safe alternative to locating entity attributes.

Unlike using string attribute identifiers, the Metamodel API can generate a compilation error
if an attribute name is changed without updating all Criteria API queries as well. When
using an IDE, the Metamodel API allows entity attributes to be auto-discovered, therefore
simplifying Criteria API query development.

Although Hibernate features a native Criteria query implementation, it is better to use
the Java Persistence Criteria API which supports the Metamodel API as well.

Fetching 291

14.3.3 Fetching associations

All the previous entity queries were rather simple since only one entity type was resulting
from the query execution. However, Java Persistence allows fetching associations as well,
and this feature is a double-edged sword because it makes it very easy to select more data
than a business case might require.

In the database, relationships are represented using foreign keys. To fetch a child association,
the database could either join the parent and the child table in the same query, or the parent
and the child can be extracted with distinct select statements.

In the object-oriented Domain Model, associations are either object references (e.g. @Many-
ToOne, @0neToOne) Or collections (€.g. @neToMany, @ManyToMany). From a fetching perspective, an
association can either be loaded eagerly or lazily.

An eager association is bound to its declaring entity so, when the entity is fetched, the
association must be fetched prior to returning the result back to the data access layer.
The association can be loaded either through table joining or by issuing a secondary select
statement.

A lazy relationship is fetched only when being accessed for the first time, so the association
is initialized using a secondary select statement.

By default, emanyToone and eoneToone associations are fetched eagerly, while the eoneToMany and
eManyToMany relationships are loaded lazily. During entity mapping, it is possible to overrule
the implicit fetching strategies through the fetch association attribute, and, combining the
implicit fetching strategies with the explicitly declared ones, the default entity graph is
formed.

While executing a direct fetching call or an entity query, Hibernate inspects the default entity
graph to know what other entity associations must be fetched additionally.

JPA 2.1 added support for custom entity graphs which, according to the specification, can be
used to override the default entity graph on a per-query basis. However, lazy fetching is only
a hint, and the underlying persistence provider might choose to simply ignore it.

Entity graphs

These default fetching strategies are a consequence of conforming to the Java Persistence
specification. Prior to JPA, Hibernate would fetch every association lazily (eManyToone and the
@oneToone relationships used to be loaded lazily too).

Just because the JPA 1.0 specification says that eManyToone and the eoneToone must be fetched
eagerly, it does not mean that this is the right thing to do, especially in a high-performance
data access layer. Even if JPA 2.1 defines the javax.persistence.fetchgraph hint which can
override a FetchType.EAGER strategy at the query level, in reality, Hibernate ignores it and
fetches the eager association anyway.

Fetching 292

While a lazy association can be fetched eagerly during a query execution, eager
associations cannot be overruled on a query basis. For this reason, FetchType.LAZY
associations are much more flexible to deal with than FetchType.EAGER Ones.

14.3.3.1 FetchType.EAGER

Assuming that the postComment entity has a post attribute which is mapped as follows:

@ManyToOne
private Post post;

By omitting the fetch attribute, the eManyToone association is going to inherit the default
FetchType.EAGER strategy so the post association is going to be initialized whenever a PostComment
entity is being loaded in the currently running Persistence Context. This way, when fetching
a PostComment entity:

PostComment comment = entityManager.find(PostComment.class, 1L);

Hibernate generates a select statement that joins the post_comment and post tables so that the
PostComment entity has its post attribute fully initialized.

— Y

pc.review AS review2_1_0_, p.id AS id1_©_1_, p.title AS title2_0_1_
FROM post_comment pc
LEFT OUTER JOIN post p ON pc.post_id = p.id
WHERE pc.id =1

SELECT pc.id AS id1_1_0_, pc.post_id AS post_id3_1_0

When fetching the postcomment entity using the following JPQL query:

PostComment comment = entityManager.createQuery(

"select pc " +

"from PostComment pc " +

"where pc.id = :id", PostComment.class)
.setParameter("id", commentlId)
.getSingleResult();

Fetching 293

Hibernate generates two queries: one for loading the postComment entity and another one for
initializing the post association.

SELECT pc.id AS id1_1_, pc.post_id AS post_id3_1_, pc.review AS review2_1_
FROM post_comment pc
WHERE pc.id =1

SELECT p.id AS id1_0_0_, p.title AS title2_0_0_
FROM post p
WHERE p.id =1

While the postcomment entity is fetched explicitly as specified in the select clause, the post
attribute is fetched implicitly according to the default entity graph.

explicitly fetching all the FetcnhType . EAGER associations, Hibernate generates additional

p Every time an entity is fetched via an entity query (JPQL or Criteria API) without
SQL queries to initialize those relationships as well.

To execute a single SQL query that joins the post_comment and the post table, the JPQL query
must use the fetch directive on the post attribute join clause:

PostComment comment = entityManager.createQuery(

"select pc " +

"from PostComment pc " +

"left join fetch pc.post p " +

"where pc.id = :id", PostComment.class)
.setParameter("id", commentId)
.getSingleResult();

The SQL query is similar to the one generated by the direct fetching mechanism:

SELECT pc.id AS id1_1_0_, p.id AS id1_©_1_, pc.post_id AS post_id3_1_0_,
pc.review AS review2_1_0_, p.title AS title2_0_1_

FROM post_comment pc

LEFT OUTER JOIN post p ON pc.post_id = p.id

WHERE pc.id = 1

Fetching 294

Although collections can also be fetched eagerly, most often, this is a very bad idea. Because
the eager fetching strategy cannot be overridden, every parent entity direct fetching call or
entity query is going to load the FetchType.EAGER collection as well.

However, if these collections are not needed by every business case, the eagerly fetched
associations will be just a waste of resources and a major cause of performance issues.

To prove it, the following example features a post entity with two FetchType.EAGER collections:

@OneToMany (mappedBy = "post", fetch = FetchType.EAGER)
private Set<PostComment> comments = new HashSet<>();

@ManyToMany (fetch = FetchType.EAGER)

@JoinTable(name = "post_tag",
joinColumns = @JoinColumn(name = "post_id"),
inverseJoinColumns = @JoinColumn(name = "tag_id")

)
private Set<Tag> tags = new HashSet<>();

When loading multiple post entities while eager fetching the comments and tags collections:

List<Post> posts = entityManager.createQuery(
"select p " +
"from Post p " +
"left join fetch p.comments " +
"left join fetch p.tags", Post.class)
.getResultList();

Hibernate generates a Cartesian Product between the post_comment and the post_tag tables.

SELECT p.id AS id1_0_0_, p.title AS title2_0_0_,
pc.post_id AS post_id3_1_1_, pc.id AS id1_1_1_, pc.id AS id1_1_2_,
pc.post_id AS post_id3_1_2_, pc.review AS review2_1_2_,
pt.post_id AS post_id1_2_3_,
t.id AS tag_id2_2_3_, t.id AS id1_3_4_, t.name AS name2_3_4_
FROM post p
LEFT OUTER JOIN post_comment pc ON p.id = pc.post_id
LEFT OUTER JOIN post_tag pt ON p.id = pt.post_id

LEFT OUTER JOIN tag t ON pt.tag_id = t.id

Even if there is a single post entity with 20 postComment(s) and 10 Tag(s), this SQL query will
fetch 200 entries. For 100 post(s), the associated ResultSet will contain 20 000 entries. That’s
why the Cartesian Product is undesirable from a performance perspective.

Fetching 295

The aforementioned example uses set(s) because fetching multiple List(s) ends up
with a MultipleBagFetchException. On the other hand, set(s) and ordered List(s) are
allowed to be fetched concomitantly with other collections.

If the previous entity query omits the JPQL fetch directive, then, instead of a Cartesian
Product, two additional queries are going to be executed. so that the tags and comments
collections are initialized, as required by the FetchType .EAGER strategy.

SELECT p.id AS id1_0_, p.title AS title2_0_
FROM post p
WHERE p.id =1

SELECT pt.post_id AS post_id1_2_0_, pt.tag_id AS tag_id2_2_0_,
t.id AS id1_3_1_, t.name AS name2_3_1_

FROM post_tag pt

INNER JOIN tag t ON pt.tag_id = t.id

WHERE pt.post_id = 1

SELECT pc.post_id AS post_id3_1_0_, pc.id AS id1_1_0_, pc.id AS id1_1_1_,
pc.post_id AS post_id3_1_1_, pc.review AS review2_1_1_

FROM post_comment pc

WHERE pc.post_id = 1

because it either involves many table joins or a large number of secondary queries. If
there are 1000 posts, each post with 50 comments and 5 tags, the Cartesian Product
query is going to fetch 1000 x 50 x x5 = 2500000 rows. On the other hand, if the
collections are not fetched during the query execution, there are going to be 2000
additional queries (1000 for fetching comments and another 1000 queries to fetch the
tags of every individual Post entity).

P The more associations are fetched eagerly, the slower the entity fetching will get

For this purpose, it is better to avoid the FetchType.EAGER strategy, especially for
@0neToMany and @ManyToMany associations.

Fetching 296

14.3.3.2 FetchType.LAZY

By now, it is obvious that marking associations as FetchType.LAZY is @a much better alternative
for a high-performance application. The fetching strategy is driven by the business use case
data access requirements, so the entity graph should be constructed on a per-query basis.
Just because a relationship was annotated as FetchType.LAZY, it does not mean it cannot be
fetched eagerly as well.

Considering that the postcomment entity has a post attribute that is annotated with the
FetchType.LAZY attribute:

@ManyToOne(fetch = FetchType.LAZY)
private Post post;

When the postcomment entity is fetched either through direct fetching or a JPQL query,
Hibernate is going to generate a single post_comment select statement. The post attribute is
referencing a Proxy which is only initialized when the attribute is being accessed for the first
time.

To visualize the lazy fetching strategy, the following example is going to select a PostComment
entity, and then log the title of it its associated post parent entity:

PostComment comment = entityManager.find(PostComment.class, 1L);

LOGGER. info("Loaded comment entity");
LOGGER.info("The post title is '{}'", comment.getPost().getTitle());

When the post attribute is being navigated, Hibernate executes a select statement to fetch
the uninitialised post entity Proxy:

SELECT pc.id AS id1_1_0_, pc.post_id AS post_id3_1_0_, pc.review AS review2_1_0_
FROM post_comment pc
WHERE pc.id =1

INFO - Loaded comment entity
SELECT p.id AS id1_0_0_, p.title AS title2_0_0_
FROM post p

WHERE p.id = 1

INFO - The post title is 'Post nr. 1

Fetching 297

For eoneToMany and eManyToMany associations, Hibernate uses its own collection Proxy
implementations (e.g. PersistentBag, PersistentList, PersistentSet, PersistentMap) which
can execute the lazy loading SQL statement on demand.

Navigating the lazy association is just one way to initialize the underlying Proxy or collection.
The lazy association can also be fetched eagerly using a custom entity graph.

EntityGraph<PostComment> postEntityGraph = entityManager.createbEntityGraph(
PostComment.class);
postEntityGraph.addAttributeNodes(PostComment_.post);

PostComment comment = entityManager.find(PostComment.class, 1L,
Collections.singletonMap("javax.persistence. fetchgraph", postEntityGraph)
);

When running the example above, Hibernate generates the following SQL statement:

SELECT pc.id AS id1_1_0_, pc.post_id AS post_id3_1_0_,

pc.review AS review2_1_0_, p.id AS id1_0_1_, p.title AS title2_0_1_
FROM post_comment pc
LEFT OUTER JOIN post p ON pc.post_id = p.id

WHERE pc.id = 1

In the example above, the entityGraph specifies that it needs to fetch the post attribute which
is identified by the type-safe Metamodel Attribute (€.g. PostComment _.post). This way, the default
entity graph is substituted for the duration of the currently executing query.

The same effect can be obtained with an entity query using a fetch directive on the join clause.

PostComment comment = entityManager.createQuery(
"select pc " +
"from PostComment pc " +
"join fetch pc.post p " +
"where pc.id = :id", PostComment.class)
.setParameter("id", 1L)

.getSingleResult();

Fetching 298

14.3.3.2.1 The N+1 query problem

Unfortunately, the lazy associations are not without problems, and the most common issue
is called the N+1 query problem. This situation can be observed in the following example:

List<PostComment> comments = entityManager.createQuery(
"select pc " +
"from PostComment pc " +
"where pc.review = :review", PostComment.class)
.setParameter("review", review)
.getResultlList();

LOGGER. info("Loaded {} comments", comments.size());

for(PostComment comment : comments) {
LOGGER.info("The post title is '{}'", comment.getPost().getTitle());

Which generates the following SQL statements:

SELECT pc.id AS id1_1_, pc.post_id AS post_id3_1_, pc.review AS review2_1_
FROM post_comment pc
WHERE pc.review = 'Excellent!'’

INFO - Loaded 3 comments

SELECT pc.id AS id1_0_0_, pc.title AS title2_0_0_
FROM post pc

WHERE pc.id =1

INFO - The post title is 'Post nr. 1'

SELECT pc.id AS id1_0_0_, pc.title AS title2_0_0_
FROM post pc

WHERE pc.id = 2

INFO - The post title is 'Post nr. 2'

SELECT pc.id AS id1_0_0_, pc.title AS title2_0_0_
FROM post pc

WHERE pc.id = 3

INFO - The post title is 'Post nr. 3'

Fetching 299

First, Hibernate executes the JPQL query, and a list of postcomment entities is fetched. Then, for
each postcomment, the associated post attribute is used to generate a log message containing
the rost title. Because the post association is not initialized, Hibernate must fetch the post
entity with a secondary query, and for N postComment entities, N more queries are going to be
executed (hence the N+1 query problem).

Although it is commonly associated with the FetchType . LAZY associations, the N+1 query
problem can manifest even when using FetchType.EAGER. When executing a JPQL query,
if the eager associations are not explicitly fetched as well, Hibernate is going to
initialize every eager association with a secondary select query, therefore causing a
N+1 query problem.

P The more queries are executed, the bigger the impact of the N+l query problem.

To fix the N+1 query problem, the post(s) must be fetched along their postcomment child entities:

List<PostComment> comments = entityManager.createQuery(
"select pc " +
"from PostComment pc " +
"join fetch pc.post p " +
"where pc.review = :review", PostComment.class)
.setParameter("review", review)
.getResultList();

This time, Hibernate generates a single SQL statement and the N+1 query problem is gone:

SELECT pc.id AS id1_1_0_, p.id AS id1_0_1_, pc.post_id AS post_id3_1_0_,
pc.review AS review2_1_0_, p.title AS title2_0_1_

FROM post_comment pc

INNER JOIN post p ON pc.post_id = p.id

WHERE pc.review = 'Excellent!'

INFO - Loaded 3 comments
INFO - The post title is 'Post nr. 1'

INFO - The post title is 'Post nr. 2°'
INFO The post title is 'Post nr. 3'

Fetching 300

14.3.3.2.2 How to catch N+1 query problems during testing

When an application feature is implemented, the development team must assert the number
of statements generated, therefore making sure that the number of statements is the
expected one. However, a change in the entity fetch strategy can ripple in the data access
layer causing N+1 query problems. For this reason, it is better to automate the statement
count validation, and this responsibility should be carried by integration tests.

The datasource-proxy statement logging framework provides various listeners to customize
the statement interception mechanism. Additionally, the framework ships with a built-in
DataSourceQueryCountListener, Which counts all statements executed by a given pataSource.

ChainListener listener = new ChainListener();
listener.addl istener(new SLF4JQuerylogginglListener());
listener.addlListener (new DataSourceQueryCountlListener());

DataSource dataSourceProxy = ProxyDataSourceBuilder.create(dataSource)
.name (dataSourceProxyName())
.listener(listener)

.build();

First, an sqQLStatementCountMismatchException can be defined to capture the expected and the
recorded count values. Because the query counters are stored in the QueryCountHolder utility,
it is desirable to isolate integration tests from the underlying datasource-proxy specific API,
therefore the sQLStatementCountvalidator iS an adapter for the datasource-proxy utilities.

public class SQLStatementCountMismatchException extends RuntimeException {

private final int expected;
private final int recorded;

public SQLStatementCountMismatchException(int expected, int recorded) {
super(String. format("Expected %d statement(s) but recorded %d instead!",
expected, recorded)
);

this.expected = expected;

this.recorded = recorded;

public int getExpected() { return expected; }

public int getRecorded() { return recorded; }

Fetching 301

public final class SQLStatementCountValidator {

public static void reset() {
QueryCountHolder.clear();

public static void assertSelectCount(int expectedSelectCount) {
QueryCount queryCount = QueryCountHolder.getGrandTotal();
int recordedSelectCount = queryCount.getSelect();
if (expectedSelectCount != recordedSelectCount) {
throw new SQLStatementCountMismatchException(expectedSelectCount,
recordedSelectCount) ;

public static void assertlnsertCount(int expectedInsertCount) {
QueryCount queryCount = QueryCountHolder.getGrandTotal();
int recordedInsertCount = queryCount.getInsert();
if (expectedlnsertCount != recordedInsertCount) {
throw new SQLStatementCountMismatchException(expectedInsertCount,
recordedSelectCount) ;

public static void assertUpdateCount(int expectedUpdateCount) {
QueryCount queryCount = QueryCountHolder.getGrandTotal();
int recordedUpdateCount = queryCount.getUpdate();
if (expectedUpdateCount != recordedUpdateCount) {
throw new SQLStatementCountMismatchException(expectedUpdateCount,
recordedUpdateCount);

public static void assertDeleteCount(int expectedDeleteCount) {
QueryCount queryCount = QueryCountHolder.getGrandTotal();
int recordedDeleteCount = queryCount.getDelete();
if (expectedDeleteCount != recordedDeleteCount) {
throw new SQLStatementCountMismatchException(expectedDeleteCount,
recordedDeleteCount) ;

Fetching 302

The N+1 query detection integration test looks like this:

SQLStatementCountValidator.reset();
List<PostComment> comments = entityManager .createQuery(
"select pc " +
"from PostComment pc " +
"where pc.review = :review", PostComment.class)
.setParameter("review", review)
.getResultList();
SQLStatementCountValidator.assertSelectCount(1);

If the Postcomment entity post attribute is changed to FetchType . EAGER, this test is going to throw a
SQLStatementCountMismatchException because Hibernate executes an additional query statement
to initialize the post attribute.

In case there were N postComment entities being selected, Hibernate would generate N+1 queries
according to the FetchType .EAGER contract.

SELECT pc.id AS id1_1_, pc.post_id AS post_id3_1_, pc.review AS review2_1_
FROM post_comment pc
WHERE pc.review = 'Excellent!’

SELECT p.id AS id1_0_0_, p.title AS title2_0_0_
FROM post p
WHERE p.id = 1

com.vladmihalcea.book.hpjp.hibernate.logging.SQLStatementCountMismatchException:
Expected 1 statement(s) but recorded 2 instead!

number using an integration test assertion mechanism, and Hibernate makes no
exception. Having such tests ensures the number of generated statements does not
change, as the tests would fail otherwise.

’ Whenever statements are generated automatically, it is mandatory to validate their

The datasource-proxy statement count validator supports other DML statements too,
and it can be used to validate that insert, update, and delete statements are batched

properly.

Fetching 303

14.3.3.2.3 LazylnitializationException

Another common issue associated with lazy fetching is the infamous LazyInitializationExcep-
tion. As previously explained, eManyToone and eoneToone associations are replaced with Proxies,
while collections are substituted with Hibernate internal Proxy collection implementations.
As long as the Persistence Context is open, Hibernate can initialize such Proxies lazily. When
the underlying session is closed, attempting to navigate an uninitialized Proxy is going to end
Vvith.a.LazyInitializationException.

Assuming that the postComment entity has a FetchType.LAZY post attribute, when executing the
following example:

PostComment comment = null;

EntityManager entityManager = null;

EntityTransaction transaction = null;

try {
entityManager = entityManagerFactory().createbEntityManager();
transaction = entityManager.getTransaction();
transaction.begin();
comment = entityManager.find(PostComment.class, 1L);
transaction.commit();

} catch (Throwable e) {

if (transaction != null && transaction.isActive())
transaction.rollback();
throw e;
} finally ({

if (entityManager != null) {
entityManager.close();

}
LOGGER. info("The post title is '{}'", comment.getPost().getTitle());

Hibernate throws a LazyInitializationException because the comment.getPost() PI”OXy is discon-
nected from the original session:

org.hibernate.LazylnitializationException: could not initialize proxy -
no Session

at org.hibernate.proxy.AbstractlLazylnitializer.initialize

at org.hibernate.proxy.AbstractlLazylInitializer.getImplementation

at org.hibernate.proxy.pojo. javassist.JavassistlLazylnitializer. invoke

at com.vladmihalcea.book.hpjp.hibernate. forum.Post_$$_jvst15e_0.getTitle

The best way yo deal with the LazyInitializationException is to fetch all the required as-
sociations as long as the Persistence Context is open. Using the fetch JPQL directive, a
custom entity graph, or the initialize method of the org.hibernate.Hibernate utility, the lazy

Fetching 304

associations that are needed further up the stack (in the service or the view layer) must be
loaded before the Hibernate Session is closed.

Unfortunately, there are bad ways to deal with the LazyInitializationException too. One quick
fix would be to change the association in question to FetchType.EAGER. While this would work
for the current business use case, the FetchType . EAGER is going to affect all other queries where
the root entity of this association is fetched.

The fetching strategy is a query time responsibility, and each query should only fetch
just as much data that is needed by the current business use case. On the other hand,
FetchType .EAGER iS a mapping time decision that is taken outside the business logic
context where the association is meant to be used.

There is also the Open Session in View anti-pattern that is sometimes proposed as a solution
for the LazyInitializationException.

14.3.3.2.4 The Open Session in View Anti-Pattern

Open Session in View is an architectural pattern that proposes to hold the Persistence
Context open throughout the whole web request. This way, if the service layer fetched an
entity without fully initializing all its associations further needed by the UI, then the view
layer could silently trigger a Proxy initialization on demand.

Spring framework comes with a javax.serviet.Filter' implementation of the Open Session
in View pattern. The openSessionInviewFilter gets a Session from the underlying sessionFactory
and registers it in a ThreadLocal storage where the HibernateTransactionManager can also locate
it. This service layer is still responsible for managing the actual JDBC or JTA transaction, but
the Session is no 10nger closed by the HibernateTransactionManager?.

Ihttps://docs.spring.io /spring /docs /current /javadoc-api /org /springframework /orm /hibernate5 /support /
OpenSessionInViewFilter.html

Zhttps:/ /docs.spring.io/ spring/docs/current/javadoc-api/org/springframework /orm/hibernate5 /
HibernateTransactionManager.html

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/hibernate5/support/OpenSessionInViewFilter.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/hibernate5/HibernateTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/hibernate5/support/OpenSessionInViewFilter.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/hibernate5/support/OpenSessionInViewFilter.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/hibernate5/HibernateTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/hibernate5/HibernateTransactionManager.html

Fetching 305

To visualize the whole process, consider the following sequence diagram:

. . Dispatcher Post Post Post
Qi el Servlet Controller Service DAO
i i i i i i
I | | | I I
] | | | I I
| | | I | |
| sessionFactory | I I | |
! .openSession() | i i | i
i i i i i i
new—»rh i i 1 |
service()—>| goDisptach()
—getPosts —»|
filterChain —getPosts()> R
doFilter() >
/‘\render() R RDBMS
—close()—> \)

Figure 14.3: Open Session in View lifecycle

The openSessionInviewFilter calls the openSession method of the underlying SessionFactory
and obtains a new Session.

The Session is bound to the TransactionSynchronizationManager3.

The opensessioninviewrilter calls the doFilter of the javax.serviet.FilterChain object ref-
erence and the request is further processed

The Dispatcherserviet? is called, and it routes the HTTP request to the underlying
PostController.

The postController calls the postService to get a list of post entities.

The pPostService opens a new transaction, and the HibernateTransactionManager reuses the
same Session that was opened by the openSessionInviewFilter.

The postbao fetches the list of post entities without initializing any lazy association.

The PostService commits the underlying transaction, but the session is not closed because
it was opened externally.

The pispatcherserviet starts rendering the UI, which, in turn, navigates the lazy associa-
tions and triggers their initialization.

The opensessionInviewFilter can close the session, and the underlying database connection
is released as well.

At a first glance, this might not look like a terrible thing to do, but, once you view it from a
database perspective, a series of flaws start to become more obvious.

3http:/ /docs.spring.io/spring/docs /current /javadoc-api,/org /springframework /transaction /support /
TransactionSynchronizationManager.html
4http:/ /docs.spring.io /spring/docs /current /javadoc-api/org /springframework /web /servlet /DispatcherServlet.html

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/support/TransactionSynchronizationManager.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/DispatcherServlet.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/support/TransactionSynchronizationManager.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/support/TransactionSynchronizationManager.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/DispatcherServlet.html

Fetching 306

The service layer opens and closes a database transaction, but afterward, there is no explicit
transaction going on. For this reason, every additional statement issued from the Ul rendering
phase is executed in auto-commit mode. Auto-commit puts pressure on the database server
because each statement must flush the transaction log to disk, therefore causing a lot of 1/0
traffic on the database side. One optimization would be to mark the connection as read-only
which would allow the database server to avoid writing to the transaction log.

There is no separation of concerns anymore because statements are generated both by the
service layer and by the Ul rendering process. Writing integration tests that assert the number
of statements being generated requires going through all layers (web, service, DAO), while
having the application deployed on a web container. Even when using an in-memory database
(e.g. HSQLDB) and a lightweight web server (e.g. Jetty), these integration tests are going to be
slower to execute than if layers were separated and the back-end integration tests used the
database, while the front-end integration tests were mocking the service layer altogether.

The Ul layer is limited to navigating associations which can, in turn, trigger N+1 query prob-
lems, as previously explained. Although Hibernate offers eBatchsize® for fetching associations
in batches, and FetchMode . SUBSELECT® to cope with this scenario, the annotations are affecting
the default fetch plan, so they get applied to every business use case. For this reason, a data
access layer query is much more suitable because it can be tailored for the current use case
data fetch requirements.

Last but not least, the database connection is held throughout the UI rendering phase
which increases connection lease time and limits the overall transaction throughput due to
congestion on the database connection pool. The more the connection is held, the more other
concurrent requests are going to wait to get a connection from the pool.

The Open Session in View is a solution to a problem that should not exist in the first
place, and the most likely root cause is relying exclusively on entity fetching.

If the Ul layer only needs a view of the underlying data, then the data access layer is
going to perform much better with a DTO projection. A DTO projection forces the
application developer to fetch just the required data set and is not susceptible to
LazyInitializationException(s).

This way, the separation of concerns is no longer compromised, and performance
optimizations can be applied at the data access layer since all statements are confined
to the boundaries of the currently executing transaction.

Shttps:// docs.jboss.org/hibernate /orm/current/javadocs /org/hibernate /annotations /BatchSize.html
Bhttps:/ /docs.jboss.org/hibernate /orm /current /javadocs /org /hibernate /annotations /FetchMode.html#SUBSELECT

https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/annotations/BatchSize.html
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/annotations/FetchMode.html#SUBSELECT
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/annotations/BatchSize.html
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/annotations/FetchMode.html#SUBSELECT

Fetching 307

14.3.3.2.5 Temporary Session Lazy Loading Anti-Pattern

Analogous to the Open Session in View, Hibernate offers the hibernate.enable_lazy_load_-
no_trans configuration property which allows an uninitialized lazy association to be loaded
outside of the context of its original Persistence Context.

<property name="hibernate.enable_lazy_load_no_trans" value="true"/>

With this configuration property in place, the following code snippets can be executed
without throwing any LazyInitializationException:

List<PostComment> comments = null;

EntityManager entityManager = null;

EntityTransaction transaction = null;

try {
entityManager = entityManagerFactory().createEntityManager();
transaction = entityManager.getTransaction();
transaction.begin();

comments = entityManager.createQuery(

"select pc " +

"from PostComment pc " +

"where pc.review = :review", PostComment.class)
.setParameter("review", review)
.getResultlList();

transaction.commit();
} catch (Throwable e) {

if (transaction != null && transaction.isActive())
transaction.rollback();
throw e;
} finally {

if (entityManager != null) {
entityManager.close();

}

for(PostComment comment : comments) {
LOGGER. info("The post title is '{}'", comment.getPost().getTitle());

Behind the scenes, a temporary session is opened just for initializing every post association.
Every temporary session implies acquiring a new database connection, as well as a new
database transaction.

Fetching 308

The more associations being loaded lazily, the more additional connections are going to be
requested which puts pressure on the underlying connection pool. Each association being
loaded in a new transaction, the transaction log is forced to flush after each association
initialization.

property is an anti-pattern as well because it only treats the symptoms and does not

’ Just like Open Session in View, the hibernate.enable_lazy_load_no_trans configuration
solve the actual cause of the LazyInitializationException.

By properly initializing all lazy associations prior to closing the initial Persistence
Context, and switching to DTO projections where entities are not even necessary,
the LazyInitializationException is prevented in a much more efficient way.

14.3.3.3 Associations and pagination

As previously explained, paginating result sets has many benefits, from lowering the response
time to ensuring that the application works with the ever increasing data sets. Also, fetching
a collection with the join fetch JPQL directive can prevent N+1 query problems and LazyIni-
tializationException(s) as well. Unfortunately, mixing collection fetching and pagination does
not work very well together.

Collections must always be fetched fully because otherwise the collection size might not be
consistent with the number of child entries associated with a given parent. On the other
hand, SQL pagination can truncate the collection before returning all child records, therefore
breaking the aforementioned consistency guarantee.

To visualize this process, the following entity query is going to load a list of post entities,
filtered by their title, and also, fetch all comments associated with a given post record.

When specifying a maxResults restriction:

List<Post> posts = entityManager.createQuery(
"select p " +
"from Post p " +
"left join fetch p.comments " +
"where p.title like :title " +
"order by p.id", Post.class)
.setParameter("title", titlePattern)
.setMaxResults(50)

.getResultList();

Fetching 309

Hibernate issues a warning message saying that pagination is done in memory, and the SQL
query shows no sign of limiting the result set:

WARN - firstResult/maxResults specified with collection fetch;
applying in memory!

SELECT p.id AS id1_0_0_, pc.id AS id1_1_1_, p.title AS title2_0_0_,
pc.post_id AS post_id3_1_1_, pc.review AS review2_1_1_,
pc.post_id AS post_id3_1_0_ , pc.id AS id1_1_0__

FROM post p

LEFT OUTER JOIN post_comment pc ON p.id = pc.post_id

WHERE p.title LIKE 'high-performance%'

ORDER BY p.id

So, Hibernate fetches the whole result set, and then it limits the number of root entities
according to the maxrResults query attribute value.

Compared to SQL-level pagination, entity query result set size restriction is not very
efficient, causing the database to fetch the whole result set.

Entity queries vs DTO projections

By now, it is obvious that entity queries, although useful in certain scenarios, are not a
universal solution to fetching data from a relational database. It can be detrimental to
application performance to rely on entity queries exclusively. As a rule of thumb, entity
queries should be used when there is a need to modify the currently selected entities.

For read-only views, DTO projections can be more efficient because there are fewer columns
being selected, and the queries can be paginated at the SQL-level. While the entity query
language (JPQL and HQL) offers a wide range of filtering criteria, a native SQL query can take
advantage of the underlying relational database querying capabilities.

JPQL/HQL and SQL queries are complementary solutions, both having a place in an
enterprise system developer’s toolkit.

Fetching 310

14.3.4 Attribute lazy fetching

When fetching an entity, all attributes are going to be loaded as well. This is because every
entity attribute is implicitly marked with the eBasic’ annotation whose default fetch policy is
FetchType.EAGER.

However, the attribute fetch strategy can be set to FetchType.LAZY, in which case the entity
attribute is loaded with a secondary select statement upon being accessed for the first time.

@Basic(fetch = FetchType.LAZY)

This configuration alone is not sufficient because Hibernate requires bytecode instrumen-
tation to intercept the attribute access request and issue the secondary select statement on
demand.

When using the Maven bytecode enhancement plugin, the enableLazyInitialization configu-
ration property must be set to true as illustrated in the following example:

<plugin>
<grouplId>org.hibernate.orm.tooling</groupId>
<artifactId>hibernate-enhance-maven-plugin</artifactId>
<version>${hibernate.version}</version>

<executions>
<execution>
<configuration>
<failOnError>true</failOnError>
<enablelLazylInitialization>true</enableLazylInitialization>
</configuration>
<goals>
<goal>enhance</goal>
</goals>
</execution>
</executions>
</plugin>

With this configuration in place, all JPA entity classes are going to be instrumented with
lazy attribute fetching. This process takes place at build time, right after entity classes are
compiled from their associated source files.

The attribute lazy fetching mechanism is very useful when dealing with column types
that store large amounts of data (e.g. BLOB, CLOB, VARBINARY). This way, the entity can be
fetched without automatically loading data from the underlying large column types, therefore
improving performance.

To demonstrate how attribute lazy fetching works, the following example is going to use an
Attachment entity which can store any media type (e.g. PNG, PDF, MPEQG).

"http:/ /docs.oracle.com /javaee /7 /api /javax /persistence /Basic.html#fetch--

http://docs.oracle.com/javaee/7/api/javax/persistence/Basic.html#fetch--
http://docs.oracle.com/javaee/7/api/javax/persistence/Basic.html#fetch--

Fetching 31

@Entity @Table(name = "attachment")
public class Attachment {

@Id
@GeneratedValue
private Long id;

private String name;

@Enumerated
@Column(name = "media_type")
private MediaType mediaType;

@Lob
@Basic(fetch = FetchType.LAZY)
private byte[]| content;

//Getters and setters omitted for brevity

Attributes such as the entity identifier, the name or the media type are to be fetched eagerly
on every entity load. On the other hand, the media file content should be fetched lazily, only
when being accessed by the application code.

After the Attachment entity is instrumented, the class bytecode is changed as follows:

@Transient
private transient PersistentAttributelnterceptor
$$_hibernate_attributelInterceptor;

public byte[] getContent() {
return $$_hibernate_read_content();

public byte[] $$_hibernate_read_content() {
if ($$_hibernate_attributelnterceptor != null) {
this.content = ((byte[]) $$_hibernate_attributelnterceptor
.readObject(this, "content", this.content));
}

return this.content;

The content attribute fetching is done by the persistentAttributelInterceptor object reference,
therefore providing a way to load the underlying sLos column only when the getter is called
for the first time.

Fetching

:I attachment V
id BIGINT(20)
content LONGBLOB
media_type INT(11)

name VARCHAR(255)
>

Figure 14.4: The attachment database table

When executing the following test case:

Attachment book = entityManager.find(Attachment.class, bookId);
LOGGER . debug("Fetched book: {}", book.getName());

assertArrayEquals(Files.readAl1Bytes(bookFilePath), book.getContent());
Hibernate generates the following SQL queries:

SELECT a.id AS id1_0_0

<Y

a.media_type AS media_ty3_0_0_,
a.name AS name4_0_0_
FROM attachment a

WHERE a.id =1
-- Fetched book: High-Performance Java Persistence
SELECT a.content AS content2_0_

FROM attachment a
WHERE a.id =1

312

Because it is marked with the FetchType.LAZY annotation and lazy fetching bytecode enhance-
ment is enabled, the content column is not fetched along with all the other columns that
initialize the Attachment entity. Only when the data access layer tries to access the content

attribute, Hibernate issues a secondary select to load this attribute as well.

Just like FetchType . LAZY associations, this technique is prone to N+1 query problems, so caution
is advised. One slight disadvantage of the bytecode enhancement mechanism is that all
entity attributes, not just the ones marked with the FetchType.LAZY annotation, are going to

be transformed, as previously illustrated.

Fetching 313

14.3.5 Fetching subentities

Another approach to avoid loading table columns that are rather large is to map multiple
subentities to the same database table.

& BaseAttachment

P name Strin
' Ile— & AttachmentSummary

P id Long
+P mediaType MediaType

& Attachment

+P content byte[]

Figure 14.5: Attachment and AttachmentSummary entities

Both the Attachment entity and the AttachmentSummary subentity inherit all common attributes
from a BaseAttachment superclass.

@MappedSuperclass
public class BaseAttachment {

@Id

@GeneratedValue

private Long id;

private String name;
@Enumerated

@Column(name = "media_type")

private MediaType mediaType;

//Getters and setters omitted for brevity

While AttachmentSummary extends BaseAttachment without declaring any new attribute:

@Entity @Table(name = "attachment")
public class AttachmentSummary extends BaseAttachment {}

The attachment entity inherits all the base attributes from the Baseattachment superclass and
maps the content column as well.

Fetching 314

@Entity @Table(name = "attachment")
public class Attachment extends BaseAttachment {

@Lob
private byte[] content;

//Getters and setters omitted for brevity

When fetching the AttachmentSummary subentity:

AttachmentSummary bookSummary = entityManager. find(
AttachmentSummary.class, bookId);

The generated SQL statement is not going to fetch the content column:

SELECT a.id as id1_0_0_, a.media_type as media_ty2_0_0_, a.name as name3_0_0_

FROM attachment a
WHERE a.id =1

However, when fetching the Attachment entity:
Attachment book = entityManager.find(Attachment.class, bookId);
Hibernate is going to fetch all columns from the underlying database table:

SELECT a.id as id1_0_©_, a.media_type as media_ty2_0_0_,
a.name as name3_0_0_, a.content as content4_0_0_

FROM attachment a

WHERE a.id =1

When it comes to reading data, subentities are very similar to DTO projections.
However, unlike DTO projections, subentities can track state changes and propagate
them to the database.

Fetching 315

14.4 Entity reference deduplication

Considering that the post has a bidirectional eoneToMany association with a postComment entity,
and the database contains the following entities:

Post post = new Post();

post.setId(1L);

post.setTitle("High-Performance Java Persistence");
post.addComment(new PostComment("Excellent!"));
post.addComment (new PostComment("Great!"));

entityManager .persist(post);
When fetching a post entity along with all its Postcomment child entries:

List<Post> posts = entityManager.createQuery(

"select p " +

"from Post p " +

"left join fetch p.comments " +

"where p.title = :title", Post.class)
.setParameter("title", "High-Performance Java Persistence")
.getResultlList();

LOGGER. info("Fetched {} post entities: {}", posts.size(), posts);
Hibernate generates the following output:

SELECT p.id AS id1_© @©_ , pc.id AS id1_1_1_ , p.title AS title2 0 0_ ,
pc.post_id AS post_id3_1_1_, pc.review AS review2_1_1_

FROM post p

LEFT OUTER JOIN post_comment pc ON p.id = pc.post_id

WHERE p.title = 'High-Performance Java Persistence'’

-- Fetched 2 post entities: [
Post{id=1, title='High-Performance Java Persistence'},
Post{id=1, title='High-Performance Java Persistence'}]

Because the underlying SQL query result set size is given by the number of post_comment rows,
and the post data is duplicated for each associated post_comment entry, Hibernate is going to
return 2 post entity references.

Fetching 316

Because the Persistence Context guarantees application-level repeatable reads, the posts
list contains two references to the same post entity object. To enable entity reference
deduplication, JPA and Hibernate provide the distinct keyword.

Therefore, when adding distinct to the previous entity query:

List<Post> posts = entityManager.createQuery(
"select distinct p " +
"from Post p " +
"left join fetch p.comments " +
"where p.title = :title", Post.class)

.setParameter("title", "High-Performance Java Persistence")

.getResultlList();
Hibernate generates the following output:

SELECT DISTINCT
p.id AS id1_©_0_ , pc.id AS id1_1_1_ , p.title AS title2_0_0_ ,
pc.post_id AS post_id3_1_1_, pc.review AS review2_1_1_

FROM post p

LEFT OUTER JOIN post_comment pc ON p.id = pc.post_id

WHERE p.title = 'High-Performance Java Persistence’

-- Fetched 1 post entities: [
Post{id=1, title='High-Performance Java Persistence'}]

So, the duplicated entries have been removed from the result set, but the pistinct keyword
was passed to the underlying SQL query. While this would be beneficial for scalar queries, for
entity queries, this can affect the query execution plan.

When executing the above query with the pistinct keyword on PostgreSQL, the following
execution plan is obtained:

HashAggregate
Group Key: p.id, pc.id, p.title, pc.post_id, pc.review
-> Hash Right Join
Hash Cond: (pc.post_id = p.id)
-> Seq Scan on post_comment pc
-> Hash
-> Seq Scan on post p
Filter: (title = 'High-Performance Java Persistence')

Fetching 317

The HashAggregate is going to sort the result set so that duplicate entries can be removed much
faster. In this particular use case, this extra sorting phase is completely redundant because
there are no duplicate entries to be removed. Therefore, the overall response time is going
to be increased unnecessarily.

For this reason, Hibernate 5.2.2 adds an optimization via the DISTINCT_PASS_THROUGH query hint.
When providing this query hint, and rerunning the previous entity query:

List<Post> posts = entityManager.createQuery(

"select distinct p " +

"from Post p " +

"left join fetch p.comments " +

"where p.title = :title", Post.class)
.setParameter("title", "High-Performance Java Persistence")
.setHint(QueryHints .HINT_PASS_DISTINCT_THROUGH, false)
.getResultlList();

Hibernate is going to generate the following output:

SELECT p.id AS id1_©0_0_ , pc.id AS id1_1_1_ , p.title AS title2_0_0_ ,
pc.post_id AS post_id3_1_1_, pc.review AS review2_1_1_

FROM post p

LEFT OUTER JOIN post_comment pc ON p.id = pc.post_id

WHERE p.title = 'High-Performance Java Persistence’

-- Fetched 1 post entities: [
Post{id=1, title='High-Performance Java Persistence'}]

So, the entity references have been deduplicated while the distinct JPA keyword was not
passed through the underlying SQL statement. This time, the PostgreSQL execution plan
looks as follows:

Hash Right Join
Hash Cond: (pc.post_id = p.id)
-> Seq Scan on post_comment pc
-> Hash
-> Seq Scan on post p
Filter: (title = 'High-Performance Java Persistence')

As illustrated by the execution plan above, there is no HashAggregate step this time. Therefore,
the unnecessary sorting phase is skipped, and the query execution is going to be faster.

Fetching 318

14.5 Query plan cache

There are two types of entity queries: dynamic and named queries. For dynamic queries,
the EntityManager offers the createquery method, while for named queries, there is the creat-
eNamedQuery alternative. There is no obvious performance gain for using named queries over
dynamic ones because, behind the scenes, a named query is able to cache only its definition
(e.g. NamedQueryDefinition), and the actual query plan cache is available for both dynamic and
named queries.

Every query must be compiled prior to being executed, and, because this process might be
resource intensive, Hibernate provides a QueryPlanCache for this purpose. For entity queries,
the query string representation is parsed into an Abstract Syntax Tree. For native queries, the
phase extracts information about the named parameters and query return type.

The query plan cache is shared by entity and native queries, and its size is controlled by the
following configuration property:

<property name="hibernate.query.plan_cache_max_size" value="2048"/>

By default, the Querypiancache stores 2048 plans which is sufficient for many small and
medium-sized enterprise applications.

For native queries, the QueryPlanCache stores also the ParameterMetadata which holds info about
parameter name, position, and associated Hibernate type. The parameterMetadata cache is
controlled via the following configuration property:

<property name="hibernate.query.plan_parameter_metadata_max_size" value="128"/>

If the application executes more queries than the QueryP1ancache can hold, there is going to be
a performance penalty due to query compilation.

Next, we are going to run a test which executes only two queries while varying the Queryp1an-
Cache and the ParameterMetadata cache size from 1 to 100.

for (int i = @; i < 2500; i++) {
long startNanos = System.nanoTime();
queryl.apply(entityManager);
timer.update(System.nanoTime() - startNanos, TimeUnit.NANOSECONDS);

startNanos = System.nanoTime();
query2.apply(entityManager);
timer.update(System.nanoTime() - startNanos, TimeUnit.NANOSECONDS);

Fetching 319

When executing our test case using two JPQL queries, we get the following results based on
the underlying plan cache size:

350

315.5

300

250

200

150

Time (microseconds)

100

50
5.2

0

Query Plan Cache Size
m1l m100

Figure 14.6: Entity query plan cache performance gain

When the plan cache size is 100, both entity queries will be compiled just once since any
successive query execution will fetch the previously compiled plan from the cache, therefore
speeding up the Query object creation.

On the other hand, when the query plan cache size is 1, the entity queries are compiled on
every execution, hence the Query* object creation will take way longer this time.

Only for entity queries, the plan cache can really make a difference in terms of
performance. For native queries, the gain is less significant.

For entity queries (JPQL and Criteria API), it is important to set the
hibernate.query.plan_cache_max_size property so that it can accommodate all queries
being executed. Otherwise, some entity queries might have to be recompiled,
therefore increasing the transaction response time.

Fetching 320

For native SQL queries, the parameterMetadata cache can also provide a performance improve-
ment, although not as significant as for entity queries:

40

36.29

35

w
o

N
u

16.09

Time (microseconds)
= N
n O

[ERY
o

Query Plan Cache Size
m1l m100

Figure 14.7: Native SQL query plan cache performance gain

15. Caching

15.1 Caching flavors

Caching is everywhere. For instance, the CPU has several caching layers to decrease the
latency associated with accessing data from the main memory. Being close to the processing
unit, the CPU cache is very fast. However, compared to the main memory, the CPU cache is
very small and can only store frequently-accessed data.

To speed up reading and writing to the underlying disk drive, the operating system uses
caching as well. Data is read in pages that are cached into main memory, so frequently-
accessed data is served from OS buffers rather than the disk drive. Disk cache improves the
write operations as well because modifications can be buffered and flushed at once, therefore
improving write throughput.

Since indexes and data blocks are better off served from memory, most relational database
systems employ an internal caching layer.

So even without explicitly setting up a caching solution, an enterprise application already
uses several caching layers. Nevertheless, enterprise caching is most often a necessity, and
there are several solutions that can be used for this purpose.

RDBMS

. v
Service Layer ——>| Data Access Layer %w

Y i Shared

Application-level Hibernate 2nd-level Buffers
Cache Cache ~_

0S
Cache
Performance < > Consistency

Figure 15.1: Enterprise caching layers

As illustrated in the diagram above, caching entails a trade-off. On one hand, bypassing the
underlying data access layer can speed up reads and writes. However, the farther the caching
solution is situated, the more difficult it is for it to maintain consistency with the underlying
database system.

Caching 322

For it guarantees ACID transactions, the database cache is highly consistent, so, from a data
integrity perspective, it entails no risk of reading stale data. However, the database engine
can only spare disk access, and so it cannot alleviate the networking overhead. More, if the
data access layer needs to fetch an aggregate that spans over multiple database tables, the
result set would either contain many joins, or it will require multiple secondary queries. The
more complex the data access pattern, the more work a database server has to do, and, for
this reason, it is common to use an application-level cache as well.

Most often, application-level caches are key-value stores. Once an aggregate is fetched from
the database, it can be stored in the application cache so that any successive request can
bypass the database entirely. The application-level cache can outperform the database engine
because it can bypass the networking overhead associated with fetching result sets.

that it can provide a safety hook for when the database has to be taken down for

P Another very important reason for using an application-level caching solution is
maintenance.

If the front-end cache stores a sufficient amount of data, it can serve as a temporary
replacement for the database system, allowing read-only operations to be served
from the cache. Even if write operations are prevented while the database system
is unavailable, the read-only mode increases the overall system availability.

However, application-level caches come at a price, and ensuring consistent reads is no longer
a trivial thing to do. Because of its tight integration with Hibernate, the second-level cache
can avoid many consistency-related issues associated with application-level caches.

The Hibernate second-level cache is a data access caching solution that aims to reduce
database load when it comes to fetching entities. Along with its collection cache component,
the second-level cache allows retrieving an entire entity graph without a single access to the
database.

As explained in the previous chapter, fetching entities is usually associated with propagating
entity state transitions. Therefore, the second-level cache can improve response time for
read-write transactions without compromising data consistency.

Application-level caches are useful for read scenarios, while the second-level cache
consistency guarantee is better suited for offloading write traffic.

Caching 323

15.2 Cache synchronization strategies

In database nomenclature, the system of record represents the source of truth when
information is scattered among various data providers. Duplicating data, so that it resides
closer to application layers, can improve response time at the price of making it more difficult
to synchronize the two data copies. To avoid inconsistent reads and data integrity issues,
whenever a change occurs in the system, it is very important to synchronize both the database
and the cache.

There are various ways to keep the cache and the underlying database in sync, and this section
is going to present some of the most common cache synchronization strategies.

15.2.1 Cache-aside

The application code manually manages both the database system and the caching layer.

Application Cache| Database
Cache Miss

Y

get(key)
return null

A

Y

get(key)

return entity

A

. ———put(key, entity)—————> !

Cache Hit

r
|
i get(key) >
i [€ return entity

I

[

Cache Update

||

[
QO
<
[

—
[¢]
>
=
—

<

~
Y

Figure 15.2: Cache-aside synchronization strategy

Before hitting the database, the application logic inspects the cache to see if the requested
entity was previously loaded. Whenever an entity changes, the application must update both
the database and the cache store.

Mixing application logic with caching management semantics breaks the Single Responsibility
Principle. For this reason, it is good practice to move the caching logic into an AOP (aspect-
oriented programming) interceptor, therefore decoupling the cache management logic from
the business logic code.

Caching 324

15.2.2 Read-through

Instead of managing both the database and the cache, the application layer interacts only
with the cache system; the database management logic being hidden behind the caching API.
Compared to the cache-aside use case, the data access logic is simplified since there is only
one data source to communicate with.

Application Cache Cache Store Database
Cache Miss

get(key)————>]

get(key) ——>
get(key)————>]

[<«<——return entity

. put(key, entity)
€—return entity————
[€—return entity————

Cache Hit

get(key)—————>
get(key) ————>

<«<—return entity
[<€—return entity

Figure 15.3: Read-through synchronization strategy

When fetching an entity, the cache checks if the requested entity is already contained in the
cache store, and, upon a cache miss, the entity is loaded from the database.

15.2.3 Write-invalidate

If the entity is modified, the cache propagates the change to the underlying database and
removes the associated entry from the cache. The next time this entity is requested, the cache
system is going to load the latest version from the database.

Application Cache| Cache Store Database

,

(0]
3
Q
<
D

—
=
(v}

<

=

Figure 15.4: Write-invalidate synchronization strategy

Caching 325

15.2.4 Write-through

If the entity is modified, the changed is propagated to the underlying database and the cache
as well.

Application Cache Cache Store Database

el
c
=
=
@
<
o)
3
=
=
<
I

Figure 15.5: Write-through synchronization strategy

If the caching layer supports JTA transactions, the cache and the database can be committed
at once. Although XA transactions can simplify development, the two-phase commit protocol
incurs a significant performance overhead.

An alternative is to use soft locks on the cache side to hide the cache entry modification until
the database transaction is committed, so that, until the lock is released, other concurrent
transactions must load the entity from the database.

15.2.5 Write-behind

If strong consistency is not mandated, the change requests can be enqueued and flushed at
once to the database.

Application Cache Cache Store Database

__

__

|
|
|
save(entity1) ————> |
|
|
|

save(entity2) ——>

Figure 15.6: Write-behind synchronization strategy

This strategy is employed by the JPA Persistence Context, all entity state transitions being
flushed towards the end of the currently running transaction or prior to executing a query.

Caching 326

15.3 Database caching

As explained at the beginning of this chapter, most database engines make use of internal
caching mechanisms to speed up read and write operations. The most common database
cache component is the in-memory buffers, but there might be other components as well
such as the execution plan cache or query result buffer. Even without a database cache, the
underlying operating system may offer caching for data pages.

Unlike application-level caches, the database cache does not compromise data consistency.
Being both read-through and write-through, the database cache is transparent to the data
access layer. Even with the advent of SSD (solid-state drive), disks still have a much higher
latency than RAM. For this purpose, it makes much sense to load frequently-accessed data
from memory, rather than going to disk.

Oracle

Oracle has multiple mechanisms for caching, such as:

* Buffer pool - storing blocks of data that are loaded from the underlying disk drive.
» Shared pool - storing parsed SQL statements, schema object metadata, sequence

numbers.
» Large pool - stores results for parallel queries, large 1/0 buffers that are used for

recovery management and backup or restore procedures.
* Result cache - stores results for SQL queries (when using the RESULT_CACHE query hint)

and PL/SQL functions (when using the RESULT_CAcHE directive).

On Unix systems, all I /O goes through the OS page cache. However, the same data is going to
be cached in the Buffer pool, therefore data blocks are cached twice. For this reason, direct
I/0% is desirable because it can bypass the file system cache, and the OS page cache can be
used for other system processes.

There are also use cases when Oracle does not use the Buffer pool for caching data blocks
(e.g. TeMP tablespace operations, Los columns using the nocAcHE storing option), in which case
the operating system cache may be suitable for speeding up read and write operations.

Although each caching structure can be configured manually, it is often a good idea to leave
this responsibility to the automatic memory management” mechanism, which is enabled by
default.

Ahttp://docs.oracle.com/database /121/TGDBA /pfgrf_os.htm#TGDBA94410
bhttps:/ /docs.oracle.com /database /121/TGDBA /memory. htm#TGDBA505

http://docs.oracle.com/database/121/TGDBA/pfgrf_os.htm#TGDBA94410
http://docs.oracle.com/database/121/TGDBA/pfgrf_os.htm#TGDBA94410
https://docs.oracle.com/database/121/TGDBA/memory.htm#TGDBA505
http://docs.oracle.com/database/121/TGDBA/pfgrf_os.htm#TGDBA94410
https://docs.oracle.com/database/121/TGDBA/memory.htm#TGDBA505

Caching 327

SQL Server

To provide very low transaction response times, SQL Server strives for reducing I/O op-
erations (which are a source of performance-related issues in many database systems). For
this reason, the database engine tries to use as much system memory as possible so that
frequently-accessed data and index disk pages are served from RAM rather than the disk
drive.

Upon startup, SQL Server allocates a portion of the system memory and uses it as a buffer
pool. The buffer pool is divided into multiple pages of 8KB. Both data and index pages are read
from disk into buffer pages, and, when the in-memory pages are modified, they are written
back to disk.

SQL Server 2014 supports buffer pool extensions®, which allow it to use SSD drives to increase
the buffer cache size beyond the capabilities of the current system available memory.

Ahttps:/ /msdn.microsoft.com/en-us/library /dn133176.aspx

PostgreSQL

For improving read and write operation performance, PostgreSQL relies heavily on the
underlying operating system caching capabilities. However, most operating systems use a
LRU (least recently used) page replacement policy which is unaware of the data access
patterns or other database-related considerations.

For this reason, PostgreSQL defines a shared buffers structure which stores disk pages into
8KB in-memory page cache entries. The shared buffer size is controlled via the shared_buffers
configuration property. Unlike the OS cache, the shared buffers use a LFU (least frequently
used) algorithm called clock sweep which counts the number of times a disk page is used.
The more often a disk page is being used, the longer it is going to linger in the shared buffer
database internal cache.

That being said, the shared buffer structure is more useful for storing frequently-accessed
data blocks, while the operating system cache can be used for everything else. The shared
buffer cache should not be set too high because the database engine requires memory for
other operations as well (sorting, hashing, building indexes, vacuuming).

Although the shared buffers structure is very important for speeding up reads and writes, it is
good practice to limit the shared buffer size® to the size of the current working set, therefore
leaving enough memory for other database-related tasks.

Ahttp:/ /www.postgresql.org/docs /current/static /runtime- config-resource.html

https://msdn.microsoft.com/en-us/library/dn133176.aspx
https://msdn.microsoft.com/en-us/library/dn133176.aspx
http://www.postgresql.org/docs/current/static/runtime-config-resource.html
http://www.postgresql.org/docs/current/static/runtime-config-resource.html

Caching 328

MySQL

MySQL uses its internal buffer pool to cache data and indexes. The buffer pool is implemented
as a linked list of memory pages. If the buffer pool size is smaller than the overall InnoDB
tablespace size, a LRU-based algorithm is going to be used to deallocate older page entries.

The pool size is given by the innodb_buffer_pool_size configuration property which, ideally,
should be adjusted so that it can hold all data and indexes in memory. Care must be taken
to allow enough memory for the OS, as well for other MySQL structures and processes (e.g.
threads allocated for each individual connection, sort buffers, query cache).

On Linux, to avoid double buffering caused by the operating system caching mechanism, the
innodb_flush_method® configuration property should be set to o_pIRecT.

Nevertheless, the OS cache is useful for storing the InnoDB transaction log (used for ensuring
ACID transactions), the binary log (used for database replication), and other MySQL structures
that are not covered by the InnoDB buffer pool.

Ahttp:/ /dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_ flush_method

Essential, but not sufficient

Database caching is very important for a high-performance enterprise application. However,
database caching only applies to a single node, and, if the database size is bigger than the
capacity of a single node, then this solution alone is no longer sufficient. One workaround is
to use database sharding, but that is not without challenges.

Even if database caching improves performance considerably, the networking overhead still
plays a significant role in the overall transaction response time. If the application operates
on graphs of entities, fetching an entire graph might require lots of joins or many secondary
select statements. For this reason, it makes sense to cache the whole entity aggregate and
have it closer to the application layer.

If the enterprise system relies only on the database system alone to serve read requests, the
database becomes a single point of failure. This availability can be increased by using database
replication. However, if all database nodes are collocated (to reduce the synchronization
overhead caused by networking latency), the database system can still become unavailable
if the data center is facing a sudden power outage.

For all these reasons, it is good practice to use an application-layer caching solution to
address database caching limitations.

http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_method
http://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_flush_method

Caching 329

15.4 Application-level caching

Application caches are a necessity for high-performance enterprise applications, and this
section is going to explore this topic in greater detail. No matter how well tuned a database
engine is, the statement response time is highly dependent on the incoming database load. A
traffic spike incurs a high contention of database system resources, which can lead to higher
response times.

For instance, most internet applications expose a sitemap which is used by Search Engine
bots to index the content of the site in question and make it available for searches. From a
business perspective, having a high page rank is highly desirable because it can translate to
more revenue. However, the Search Engine bot can generate a sudden traffic spike, which,
in turn, can lead to a spike in transaction response time. Unfortunately, high response times
can affect the site page rank. That being said, the translation response time must be relatively
low even during high traffic loads.

The application-level cache can, therefore, level up traffic spikes because the cache fetching
complexity is O(1). More, if the application-level cache holds a significant portion of the entire
data set, the application can still work (even if in a read-only mode) when the database is shut
down for maintenance or due to a catastrophic event.

15.4.1 Entity aggregates

In a relational database, data is normalized, and, for a complex enterprise application, it is
usually spread across multiple tables. On the other hand, the business logic might operate on
entity graphs which assemble information from various database tables.

To better visualize the entity aggregate, consider the following diagram depicting all entities
associated with a single post in a particular forum.

|
SocialMedi I I 23
ocialMedia 12 22
Counters Board UserVote 11 UserVote 21
A
PageViews [< Post » Comment 1 .
[3
/ I \
| il
[4 P I 34
[3 3 [23
2 2 2 22
UserVote 1 Tag 1 UserVote 21

Figure 15.7: Entity aggregates

Caching 330

The post entity is the root since all other entities relate to it, either directly or indirectly. A
Post belongs to a Board entity, and it can have several Tag(s). The pageviews entity summarizes
statistics about how popular a given post might be. There is also a socialMediaCounters entity to
hold the number of shares for social media platforms. Users can add comment(s) to a Post, and
they can also cast a vote on both the post or the comment entity.

The sitemap contains the list of all post(s) so that Search Engines can index all questions
and answers. When a post is requested, the whole entity aggregate is required to render the
display. Without application-level caching, the data access layer would have to either join all
the associated entities or use secondary select statements.

To avoid a Cartesian Product, the post entity should be joined to its Tag(s), as well as with
other many-to-one relationships (eg Board, PageViews, SocialMediaCounters). A secondary query is
used to fetch the uservote(s) associated with the current post. The comment(s) can be fetched
with a secondary select, and this is desirable since there might be many comment(s), and the
secondary query can better use pagination. The comment query could also join the uservote(s)
so that these two entities are fetched with a single query as well.

15.4.2 Distributed key-value stores

While the underlying data resides in the relational database, the entity aggregate can also be
saved in a distributed cache, such as Redis or Memcached. Key-value stores are optimized
for storing data structures in memory, and the lookup complexity is O(1). This is ideal for
high-performance enterprise applications since response time can stay low even during

unforeseen traffic spikes.
g Cache Slave

Batch Process

Web Node

3

‘;g DB Master

-

Figure 15.8: Application-level cache integration

The relational database is still the system of record, while the key-value caching solution is
used as an alternate data provider.

Caching 331

15.4.3 Cache synchronization patterns

Unfortunately, duplicating data among two data sources is not without issues. Ideally, both
the relational database and the application-level cache should be in sync, every update being
applied synchronously to both data stores. In reality, not all business use cases have strict
consistency requirements.

For instance, the pageviews and the SocialMediaCounters can be updated periodically by a batch
processor which can aggregate the database counters and update the cache entry with the
latest aggregated values. On the other hand, some actions need a more strict consistency
guarantees. For comment entries, read-your-writes consistency is needed because otherwise
users might miss their own changes.

Caching is always about trade-offs, and not all business use cases are equal in terms
of consistency guarantees. For strict consistency, some transactions might need to
bypass the cache entirely and read from the database.

Once a user or a batch process makes a change to the underlying database records, the cache
needs to be updated as well. As explained in the cache concurrency strategies section, there
are several ways to implement the synchronization logic.

15.4.4 Synchronous updates

If cache-aside is being used, the business logic must update both the database and all
associated cache entries in the same transaction. Because most key-value stores do not use
XA transactions, the cache entries can be either invalidated (in which case there is no risk of
reading stale data), or they can be updated after the database transaction has been committed
(in which case there is a slight time interval when a concurrent transaction can read a stale
entry from the cache).

For the previous Domain Model, comment entities should be processed synchronously. Adding
or modifying a uservote entry can also be done synchronously, or at least for the comments
that are associated with the currently logged user.

15.4.5 Asynchronous updates

If eventual consistency is tolerated, then asynchronous updates are also a viable solution, and
the application logic can be simplified since the caching logic is decoupled from business
logic. This is also necessary when there are multiple data stores that need to be updated
according to the latest changes that happened in the database. For instance, the enterprise

Caching 332

application might need to propagate changes to a cache, an in-memory data processing
framework (e.g. Spark) which might monitor the forum for spam messages, or to a data
warehouse. In this case, the changes must be captured from the database and propagated
to all other subsystems that are interested in being notified about these updates.

15.4.5.1 Change data capture

In database terminology, change data capture (CDC) is an assembly of patterns that are
responsible for recording database changes.

One solution is to record the timestamp version of every row that is either inserted, updated,
or deleted. This pattern only works if records are not actually physically removed, but instead,
they are simply marked as deleted (soft deleting), and hidden away from any database query.

Another implementation would be to capture changes using database triggers so that an
event is recorded whenever a row is inserted, updated, or deleted. Unfortunately, triggers
might slow down write operations which is undesirable especially if there is only one database
Master node because the longer the write transactions take, the less throughput the Master
node will accommodate.

A more efficient approach is to use a framework that can parse the database transaction log.
Unlike database triggers, this approach does not incur any additional performance penalty for
write operations since the transaction log is being parsed asynchronously. The only drawback
is that not all database support this natively, and the transaction log entries can change from
one database version to the other.

Oracle

Oracle GoldenGate® is a change data capture tool that can be used either for database repli-
cation or as an ETL (extract, transform, and load) process in order to feed a data warehouse.
Another approach is to use Databus’, which is an open-source framework developed by
Linkedin for log mining.

Ahttp:/ /www.oracle.com/us/products /middleware /data-integration /goldengate /overview /index.html
b https://github.com/linkedin /databus

SQL Server

Since version 2008, SQL Server offers a Change Data Capture® solution that can be configured
at the database, table, or even column level.

Ahttps://msdn.microsoft.com/en-us/library/cc627369.aspx

http://www.oracle.com/us/products/middleware/data-integration/goldengate/overview/index.html
https://github.com/linkedin/databus
http://www.oracle.com/us/products/middleware/data-integration/goldengate/overview/index.html
https://github.com/linkedin/databus
https://msdn.microsoft.com/en-us/library/cc627369.aspx
https://msdn.microsoft.com/en-us/library/cc627369.aspx

Caching 333

PostgreSQL

Even if there is no native CDC solution, PostgreSQL 9.4 has introduced logical decoding®
which can be used for extracting row-level modifications.

Ahttp:/ /www.postgresql.org/docs/current/static /logicaldecoding.html

MySQL

There are multiple solutions that are able to parse the MySQL binary log, and the most notable
is Databus which supports both Oracle and MySQL.

Denormalization ripple effect

In the previous Domain Model, storing the Board and the list of Tag(s) associated with
every particular post entity graph is appropriate only if the Board and the Tag are practically
immutable. Otherwise, changing the Board entity could ripple throughout the cache, causing
a large number of entries to be updated as well. This problem is even more acute if cache
entry invalidation is being used. For Tag(s), the post aggregate should store only a list of Tag
identifiers, the actual Tag names being resolved upon fetching the post entity aggregate from
the cache.

On the other hand, comment(s) and uservote(s) are more related to a single post entry, so they
are more suitable for being stored in the post entity aggregate. To avoid the ripple effect,
the uservote entity should only contain virtually immutable user-related columns (e.g. user
identifier).

The higher the data denormalization degree associated with entity aggregates, the
bigger the data change ripple. Therefore, it is good practice to avoid storing associa-
tions that might be shared among many entity graphs cache entries.

http://www.postgresql.org/docs/current/static/logicaldecoding.html
http://www.postgresql.org/docs/current/static/logicaldecoding.html

Caching 334

15.5 Second-level caching

While the Persistence Context has long been referred to as the first-level cache, in reality, it
is meant to provide application-level repeatable reads rather than lowering fetch execution
time. The first-level cache is not thread-safe, and, once the Hibernate session is closed, the
cached entities are no longer accessible.

On the other hand, the second-level cache is bound to a sessionFactory, it is thread-safe, and it
provides a solution for optimizing entity aggregate loading time. Hibernate only defines the
contract for the second-level cache API and does not provide a reference implementation
for this specification. The second-level cache API is implemented by third-party caching
providers, such as Infinispan!, Ehcache?, or Hazelcast®.

Being tightly integrated with Hibernate, the second-level cache does not require any data
access layer code change. While application-level caches operate in a cache-aside synchro-
nization mode, the second-level cache offers read-through and write-through cache update
strategies.

Unlike an application-level caching solution, the second-level does not store entity aggre-
gates. Instead, entities are saved in a row-level data format which is closer to the associated
database row values. Although it features a collection-level cache component, behind the
scenes, it only saves the entity identifiers contained in a particular collection instance. The
same is true for the entity query caching, whose cache entries contain only the entity
identifiers that satisfy a given query filtering criteria.

For all the aforementioned reasons, the second-level cache is not a replacement or a
substitute for application-level caches. The biggest gain for using the Hibernate second-
level cache is that, in a Master-Slave database replication scheme, it can optimize read-
write transactions. While read-only queries can be executed on many Slave nodes, read-write
transactions can only be executed by the Master node.

Being capable of working in read-through and write-through mode, the second-level
cache can help reduce read-write transactions response time by reducing the amount
of work the Master node is required to do.

Thttp: / /infinispan.org/
2http://www.ehcache.org/
3http:/ /hazelcast.org/

http://infinispan.org/
http://www.ehcache.org/
http://hazelcast.org/
http://infinispan.org/
http://www.ehcache.org/
http://hazelcast.org/

Caching 335

15.5.1 Enabling the second-level cache

By default, the nhibernate.cache.use_second_level_cache configuration is set to true. However,
this is not sufficient because Hibernate requires a CachingRegionFactory implementation as
well, and, without specifying any third-party implementation, Hibernate defaults to using
the NoCachingRegionFactory implementation, meaning that nothing is actually being cached.

For this reason, it is mandatory to supply the hibernate.cache.region. factory_class configura-
tion property, which takes the fully-qualified class name of the cacheRegionFactory third-party
implementation.

<property name="hibernate.cache.region. factory_class"
value="org.hibernate.cache.ehcache.EhCacheRegionFactory"/>

After enabling the second-level cache, the application developer must instruct Hibernate
which entities should be cached. Although JPA 2.0 defined the ecacheable annotation, Hiber-
nate also requires a cache concurrency strategy.

For this reason, the org.hibernate.annotations.Cache annotation should be provided as well.

@Entity
@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class Post

//Fields, getters, and setters omitted for brevity

property which applies the same synchronization strategy to all cacheable entities.
When this configuration property is set, the ecache annotation is no longer mandatory,
and the ecacheable annotation can be used instead. By supplying a ecache annotation,
the default cache concurrency strategy can be overridden on a per-entity basis.

P Hibernate defines the hibernate.cache.default_cache_concurrency_strategy configuration

Caching 336

15.5.2 Entity cache loading flow

Once the second-level cache is activated for a particular entity, it participates automatically
in the entity loading mechanism.

loadFromDatasource()
No

loadFromSessionCache()

@—

DefaultLoad
EventListener

loadFromSecondLevelCache()

Y

(Return)

When loading an entity, Hibernate always checks the Persistence Context first. This behavior
guarantees application-level repeatable reads. Once an entity becomes managed, Hibernate
will use the same entity instance when loading it directly or including it in an entity query.

Figure 15.9: Entity loading control flow

If the entity is not found in the currently running Persistence Context and the second-level
cache is configured properly, Hibernate checks the second-level cache. Only if the second-
level cache does not contain the entity in question, Hibernate will fetch the entity from the
underlying database.

15.5.3 Entity cache entry

Internally, every entity is stored as a CacheEntry. As previously explained, Hibernate does
not store aggregates, and the second-level cache entry is close to the underlying table row
representation.

Hydrated and disassembled state

In Hibernate nomenclature, hydration represents the process of transforming a JDBC Resultset
into an array of raw values.

The hydrated state is saved in the currently running Persistence Context as an EntityEntry
object which encapsulated the loading time entity snapshot. The hydrated state is then used
by the default dirty checking mechanism which compares the current entity data against the
loading time snapshot.

The second-level cache entry values contain the hydrated state of a particular entity.
However, for the second-level cache the hydrated state is called disassembled state.

Caching

To visualize the disassembled entity state, consider the following entity model:

@Entity @Cache(usage = CacheConcurrencyStrategy.READ WRITE)
public class Post {

@Id

private Long id;

private String title;

@Version
private int version;

//Getters and setters omitted for brevity
@Entity @Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class PostDetails {

@Id

private Long id;

private Date createdOn;

private String createdBy;

@0neToOne

@MapsId

private Post post;

//Getters and setters omitted for brevity
@Entity @Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class PostComment {

@Id

private Long id;

@ManyToOne
private Post post;

private String review;

//Getters and setters omitted for brevity

337

Caching 338

Upon saving and fetching the following post entity:

Post post = new Post();

post.setId(1L);

post.setTitle("High-Performance Java Persistence");
entityManager.persist(post);

Hibernate stores the following second-level cache entry:

item = {org.hibernate.cache.ehcache.internal.strategy.AbstractReadWriteEhcacheAccess\
Strategy$Item}
value = {org.hibernate.cache.spi.entry.StandardCacheEntryImpl}
disassembledState = {java.io.Serializable[1]}
© = "High-Performance Java Persistence"
subclass = "com.vladmihalcea.book.hpjp.hibernate.cache.Post"
version = 0
timestamp = 5990528746983424

The disassembledState is an object[] array which, in this case, contains a single entry that rep-
resents the post title. The version attribute is stored separately, outside of the disassembledstate
array. The entity identifier is stored in the cache entry key which looks as follows:

key = {org.hibernate.cache.internal.0ldCacheKeyImplementation}
id = {java.lang.Long} "1"
type = {org.hibernate.type.LongType}
entityOrRoleName = "com.vladmihalcea.book.hpjp.hibernate.cache.Post"
tenantId = null
hashCode = 31

The cache entry key contains the entity type (e.g. entityorRoleName), the identifier (e.g. id),
and the identifier type (e.g. type). When multitenancy is being used, the tenant identifier (e.g.
tenant1d) is stored as well.

When storing a PostDetails entity:

PostDetails details = new PostDetails();
details.setCreatedBy("Vlad Mihalcea");
details.setCreatedOn(new Date());
details.setPost(post);
entityManager.persist(details);

Caching 339

The second-level cache entry looks like this:

item = {org.hibernate.cache.ehcache.internal.strategy.AbstractReadWriteEhcacheAccess\
Strategy$Item}
value = {org.hibernate.cache.spi.entry.StandardCacheEntryImpl}
disassembledState = {java.io.Serializable[3]}
@ = "Vlad Mihalcea"
1 = {java.util.Date} "Fri May 06 15:45:10 EEST 2016"
subclass = "com.vladmihalcea.book.hpjp.hibernate.cache.PostDetails"
version = null
timestamp = 5990558557458432

The version attribute is null because the postDetails entity does not feature a eversion attribute.
The aisassembledstate array has a length of 3, although just the createdsy and the createdon
attributes are visible. The @oneToone association information is stored as null in the disassem-
bledState array because Hibernate knows that the entity identifier is sufficient to locate the
associated parent relationship.

When persisting a postComment entity:

PostComment commenti = new PostComment();
commentd .setId(1L);

commentd .setReview("JDBC part review");
commenti .setPost(post);

entityManager .persist(commenti);

The disassembled state will contain the review attribute and the foreign key value that is used
for identifying the eManyToone association:

item = {org.hibernate.cache.ehcache.internal.strategy.AbstractReadWriteEhcacheAccess\
Strategy$Iitem}
value = {org.hibernate.cache.spi.entry.StandardCacheEntryImpl}
disassembledState = {java.io.Serializable[2]}
0 = {java.lang.Long} "1"
1 = "JDBC part review"
subclass = "com.vladmihalcea.book.hpjp.hibernate.cache.PostComment"
version = null
timestamp = 5990563491569665

Caching 340

15.5.3.1 Entity reference cache store

Hibernate can also store entity references directly in the second-level cache, therefore
avoiding the performance penalty of reconstructing an entity from its disassembled state.
However, not all entity types are allowed to benefit from this optimization.

For an entity to be cached as a reference, it must obey the following rules:

* The entity must be immutable, meaning that it must be marked with the
@org.hibernate.annotations. Immutable annotation.

* It might not feature any entity association (eManyToOne, @0neToOne, @0neToMany, @ManyToMany,
OT @ElementCollection).

* The hibernate.cache.use_reference_entries configuration property must be enabled.

Among the previously Domain Model entities, only the post entity could be stored as an
entity reference because postDetails has a @neToOne Post association, while postComment has
a @ManyToOne Post relationship. Therefore, the post entity only needs to be marked with the
@Immutable annotation:

@Entity @Immutable
@Cache(usage = CacheConcurrencyStrategy.READ_ONLY)
public class Post implements Serializable {

@Id
private Long id;

private String title;

@Version
private int version;

//Getters and setters omitted for brevity

It is good practice to make the entity serializable because the cache provider might
need to persist the entity reference on disk. Because entities are immutable, the READ_-
ONLY is the most obvious CacheConcurrencyStrategy to use in this case.

Caching 341

When storing the same post entity instance that was used for the disassembled state use case,
the cache entry value is going to look as follows:

value = {org.hibernate.cache.spi.entry.ReferenceCacheEntryImpl}
reference = {com.vladmihalcea.book.hpjp.hibernate.cache.Post}
= {java.lang.Long} "@"
title = "High-Performance Java Persistence"
version = 0
subclassPersister = {org.hibernate.persister.entity.SingleTableEntityPersister}

To understand the performance gain for storing and retrieving entity references, the follow-
ing test case is going to measure how much time it takes to fetch 100, 500, 1000, 5000, and
10 000 entities from the second-level cache when using the default entity disassembled state
mechanism or the entity reference cache store.

l.l.l-Ll

1000 5000 10000
Entity count

30

25

Time (ms)
[N
(6] o

=
o

B Hydrated state M Entity references

Figure 15.10: Disassembled state vs Entity references

Fetching entity references is much more efficient since new objects are not required to be
instantiated and populated with the entity disassembled state. The more entities are fetched
from the cache, the more apparent the time gap between the default entity cache store and
its entity reference alternative.

Although the hibernate.cache.use_reference_entries configuration allows reducing the cache
fetching time, it's not a general purpose second-level cache optimization technique because
it's only applicable to entities that do not have any association mapping.

Caching 342

15.5.4 Collection cache entry

The collection cache allows storing the entity identifiers that are contained within a given
collection instance. Because it only stores identifiers, it is mandatory that the contained
entities are cached as well.

The collection cache is activated by the hibernate.cache.use_second_level_cache configuration
property, just like the regular entity caching mechanism.

The post entity has a bidirectional one-to-many pPostComment association that is mapped as
follows:

@OneToMany(cascade = CascadeType.ALL, mappedBy = "post", orphanRemoval = true)
@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
private List<PostComment> comments = new ArraylList<>();

For the next example, two PostComment child entities are going to be associated with a managed
Post entity:

Post post = entityManager.find(Post.class, 1L);

PostComment comment1 = new PostComment();
commentd .setId(1L);

commenti .setReview("JDBC part review");
post .addComment (commentd) ;

PostComment comment2 = new PostComment();
comment2.setId(2L);
comment2.setReview("Hibernate part review");
post.addComment (comment2) ;

Because the collection is marked with the ecache annotation, upon accessing the collection
for the first time, Hibernate is going to cache its content using the following cache entry key:

key = {org.hibernate.cache.internal.0ldCacheKeyImplementation}
id = {java.lang.Long} "1"
type = {org.hibernate.type.lLongType}
entityOrRoleName = "com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments"
tenantId = null
hashCode = 31

The collection cache entry key is almost identical with the entity cache one, the only
difference being the cache region name, which is constructed by appending the collection
attribute name to the fully-qualified entity class name.

As previously explained, the associated cache entry value contains postComment entity identi-
fiers that are contained within the currently used post entity comment collection:

Caching 343

item = {org.hibernate.cache.spi.entry.CollectionCacheEntry}
state = {java.io.Serializable[2]}
0 = {java.lang.Long} "1"
1 {java.lang.Long} "2"

Along with the entity cache, the collection cache allows retrieving an entity aggregate
without having to hit the database even once. Although fetching an entire entity graph
requires multiple cache calls, the major advantage of storing entities and collections
separately is that invalidation or updates affect a single cache entry.

15.5.5 Query cache entry

Just like the collection cache, the query cache is strictly related to entities, and it draws an
association between a search criteria and the entities satisfying the given filtering condition.
The query cache is disabled by default, and, to activate it, the following configuration property
needs to be supplied:

<property name="hibernate.cache.use_query_cache" value="true"/>

Even if the query cache is enabled, queries must be explicitly marked as cacheable. When
using the Hibernate native API, the setCacheable method must be used:

List<Post> posts = (List<Post>) session.createQuery(
"select p from Post p " +
"where p.title like :token")
.setParameter("token", "High-Per formance%")
.setCacheable(true)
Jlist();

Caching 344

For the Java Persistence API, the org.hibernate.cacheable query hint must be provided, so when
executing the following query:

List<Post> posts = entityManager.createQuery(
"select p from Post p " +
"where p.title like :token", Post.class)
.setParameter("token", "High-Performance¥%")
.setHint("org.hibernate.cacheable", true)
.getResultlList();

Hibernate stores it using the following cache entry key:

key = {QueryKey}

sqlQueryString = "select p@_.id as id1_0@_, p@_.title as title2_0_, p@_.version as \
version3_0_ from Post p@_ where p@_.title like ?"

positionalParameterTypes = {org.hibernate.type.Type[0]}

positionalParameterValues = {java.lang.Object[Q]}

namedParameters = {java.util.HashMap} size =1

0 = {java.util.HashMap$Node} "token" -> "High-Performance%"

firstRow = null

maxRows = null

tenantIdentifier = null

filterKeys = null

customTransformer = {org.hibernate.transform.CacheableResultTransformer }

hashCode = -221304300

The cache entry value associated with the query above looks like this:

element = {net.sf.ehcache.Element}
key = {org.hibernate.cache.spi.QueryKey}
value = {java.util .Arraylist} size = 2

0 = {java.lang.Long} "5990928755007489"

1 = {java.lang.Long} "1"

2 = {java.lang.Long} "2"

version = 1

hitCount = 1
timeTolLive = 120
timeToldle = 120

creationTime = 1462629167305
lastAccessTime = 1462629171227
lastUpdateTime = 1462629167305
cacheDefaultLifespan = true

id = 0

Caching 345

The first entry represents the timestamp of the session that stored the given query cache
result. When the query cache entry is read, Hibernate checks if the query timestamp is greater
than the associated tablespace update timestamps, and it only returns the cached element if
there was no update since the cached result was stored.

The second and the third value entries represent the entity identifiers that satisfied these
query filtering criteria.

Just like the collection cache, because the query cache only stores entity identifiers,
it is mandatory that the associated entities are cached as well.

15.5.6 Cache concurrency strategies

The usage property of the ecache annotation specifies the cacheConcurrencystrategy in use for a
particular entity or collection. There are four distinct strategies to choose from (READ_ONLY,
NONSTRICT_READ_WRITE, READ_WRITE, TRANSACTIONAL), each one defining a distinct behavior when it
comes to inserting, updating, or deleting entities:

Before starting to explain each particular cache concurrency strategy, it is better to provide
some guidelines related to visualizing the cache content. Hibernate can gather statistics
about the second-level cache usage, and, as explained in the Hibernate statistics section,
the

hibernate.generate_statistics configuration property must be set to true.

Once statistics are enabled, it is very easy to inspect the second-level cache regions using
the following utility method:

protected void printCacheRegionStatistics(String region) {
SecondLevelCacheStatistics statistics =
sessionFactory().getStatistics().getSecondLevelCacheStatistics(region);
LOGGER.debug("\nRegion: {},\nStatistics: {},\nEntries: {}",
region, statistics, statistics.getEntries());

As previously explained, enterprise caching requires diligence because data is duplicated
between the database, which is also the system of record, and the caching layer. To make
sure that the two separate sources of data do not drift apart, Hibernate must synchronize
the second-level cache entry whenever the associated entity state is changed. Because it has
a great impact on data integrity, as well as on application performance, the following sections
will discuss in greater detail each of those cache concurrency strategies.

Caching 346

15.5.6.1 READ_ONLY

If the cached data is immutable, there is no risk of data inconsistencies, so read-only data is
always a good candidate for caching.

15.5.6.1.1 Inserting READ_ONLY cache entries

Considering that the previous post entity is using the rReab_oNLY cache concurrency strategy,
when persisting a new entity instance:

doInJPA(entityManager -> {
Post post = new Post();
post.setId(1L);
post.setTitle("High-Performance Java Persistence");
entityManager .persist(post);

1)
printCacheRegionStatistics(Post.class.getName());

Hibernate generates the following output:

INSERT INTO post (title, version, id)
VALUES ('High-Performance Java Persistence', 0, 1)

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,?]}

The putcount value is 1, so the entity is cached on insert, meaning that Reap_oONLY is a write-
through strategy. Afterward, when issuing a direct load operation, Hibernate generates the
following cache statistics:

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
printCacheRegionStatistics(post.getClass().getName());

});

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondLevelCacheStatistics[hitCount=1,missCount=0,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,?]}

The hitcount value is 1 because the entity was loaded from the cache, therefore bypassing the
database.

Caching 347

For generated identifiers, the write-through entity caching works only for sequences and
table generator, so when inserting a post entity that uses the GenerationType.SEQUENCE Strategy:

doInJPA(entityManager -> {
Post post = new Post();
post.setTitle("High-Performance Java Persistence");
entityManager .persist(post);

1)
printCacheRegionStatistics(Post.class.getName());

Hibernate is going to generate the following output:

INSERT INTO post (title, version, id)
VALUES ('High-Performance Java Persistence', 0, 1)

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=0,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,?]}

Unfortunately, for identity columns, READ_ONLY uses a read-through cache strategy instead. If
the post entity uses the GenerationType.IDENTITY Strategy, upon inserting the same post entity
instance, the second-level cache is not going to store the newly persisted entity:

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=0],
Entries: {}

On the other hand, when the entity is fetched for the first time:

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
printCacheRegionStatistics(post.getClass().getName());

});
Hibernate is going to store the entity into the second-level cache:

SELECT p.id AS id1_0_0_, p.title AS title2_0©0_0_, p.version AS version3_0_0_
FROM post p
WHERE p.id =1

Caching 348

Region: com.vladmihalcea.book.hpjp.hibernate.cache.readonly.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CacheEntry(Post)[High-Performance Java Persistence,0]}

Considering that the post entity has a bidirectional @oneToMany PostComment association, and the
collection is cached using the ReAD_oNLY strategy, when adding two comments:

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);

PostComment commenti = new PostComment();
commentd .setId(1L);

commenti .setReview("JDBC part review");
post .addComment (commentd) ;

PostComment comment2 = new PostComment();
comment2.setId(2L);
comment2.setReview("Hibernate part review");
post.addComment (comment2) ;

});

printCacheRegionStatistics(Post.class.getName() +

.comments");

Hibernate inserts the two comments in the database, while the collection cache region is not
updated:

INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'JDBC part review', 1)

INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'Hibernate part review', 2)

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=0],
Entries: {}

However, upon requesting the collection for the first time:

Post post = entityManager.find(Post.class, 1L);
assertEquals(2, post.getComments().size());
printCacheRegionStatistics(Post.class.getName() +

.comments");

Caching 349

Hibernate executes the SQL query and updates the cache as well:

SELECT pc.post_id AS post_id3_1_0_, pc.id AS id1_1_0_, pc.review AS review2_1_1_

FROM post_comment pc
WHERE pc.post_id = 1

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CollectionCacheEntry[1,2]}

Once the collection is cached, any further collection fetch request is going to be served from
the cache, therefore bypassing the database.

As opposed to the READ_ONLY entity cache, the rReap_onLY collection cache is not write-through.
Instead, it uses a read-through caching strategy.

15.5.6.1.2 Updating READ_ONLY cache entries

The reap_oNLY strategy disallows updates, so when trying to modify a post entity, Hibernate
throws the following exception:

java.lang.UnsupportedOperationException: Can't write to a readonly object

As of writing (Hibernate 5.1.0), Hibernate allows removing elements from a rReap_onLY cached
collection. However, it does not invalidate the collection cache entry.

This way, when removing a postComment from the post entity comments collection:

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
PostComment comment = post.getComments().remove(0Q);
comment . setPost(null);

});

printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(PostComment.class.getName());

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);

});

Caching 350

Hibernate generates the following output:

DELETE FROM post_comment WHERE id = 1

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CollectionCacheEntry[1,2]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,

Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=0,putCount=2],
Entries: {2=CacheEntry(PostComment)[1,Hibernate part review]}

javax.persistence.EntityNotFoundException: Unable to find
com.vladmihalcea.book.hpjp.hibernate.cache.PostComment with id 1

In reality, every ReAD_ONLY entity and collection should be marked with the eImmutable annota-
tion:

@Entity @Immutable @Cache(usage = CacheConcurrencyStrategy.READ_ONLY)
public class Post {

@0OneToMany(cascade = CascadeType.PERSIST, mappedBy = "post")
@Immutable @Cache(usage = CacheConcurrencyStrategy.READ_ONLY)

private List<PostComment> comments = new ArraylList<>();

//Code omitted for brevity

This way, when trying to update a postComment collection, Hibernate is going to throw the
following exception:

org.hibernate.HibernateException: changed an immutable collection instance:
[com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments#1]

15.5.6.1.3 Deleting READ_ONLY cache entries

While updates should never occur for rReap_oNLY entities (which signals a data access logic
issue), deletes are permitted.

Caching 351

When deleting a post entity that happens to be stored in the second-level cache:

printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(PostComment.class.getName());

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
entityManager .remove(post);

});

printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(PostComment.class.getName());

Hibernate generates the following output:

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondLevelCacheStatistics[hitCount=2,missCount=0,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,?]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,

Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=2],

Entries: {1=CacheEntry(PostComment)[1,JDBC part review],
2=CacheEntry(PostComment)[1,Hibernate part review]}

DELETE FROM post_comment WHERE id 1
DELETE FROM post_comment WHERE id = 2
DELETE FROM post WHERE id = 1 AND version = 0

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=3,missCount=0,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],
Entries: {}

The post and Postcomment entities are successfully removed from the database and the second-
level cache as well.

Caching 352

15.5.6.2 NONSTRICT_READ_WRITE

The NONSTRICT_READ_WRITE concurrency strategy is designed for entities that are updated
infrequently, and when strict consistency is not a mandatory requirement. The following
examples are going to reuse the same entities that were previously employed, the only thing
being different is that the post and Postcomment entities, as well as the comments collections, are
USng11N3@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE) annotation.

15.5.6.2.1 Inserting NONSTRICT_READ_WRITE cache entries

First of all, unlike other strategies, NONSTRICT_READ_WRITE is not write-through. Therefore, when
persisting a post entity, the second-level cache is not going to store the newly inserted object.
Instead, NONSTRICT_READ_WRITE is a read-through cache concurrency strategy.

doInJPA(entityManager -> {
Post post = new Post();
post.setId(1L);
post.setTitle("High-Per formance Java Persistence");

PostComment commenti = new PostComment();
commentd .setId(1L);

commenti .setReview("JDBC part review");
post .addComment (commentd) ;

PostComment comment2 = new PostComment();
comment2.setId(2L);
comment2.setReview("Hibernate part review");
post.addComment (comment2) ;

entityManager .persist(post);
1)
printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() +

.comments");

LOGGER. info("Load Post entity and comments collection");
doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
assertEquals(2, post.getComments().size());
printCacheRegionStatistics(post.getClass().getName());
printCacheRegionStatistics(Post.class.getName() + ".comments");

});

Caching 353

When executing the test case above, the post entity and postComment collections are going to
be cached upon being fetched for the first time.

INSERT INTO post (title, version, id)
VALUES ('High-Performance Java Persistence', 0, 1)

INSERT INTO post_comment (post_id, review, id) VALUES (1, 'JDBC part review', 1)
INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'Hibernate part review', 2)

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=0],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=0],
Entries: {}

--Load Post entity and comments collection

SELECT p.id AS id1_©0_0_, p.title AS title2_0_0_, p.version AS version3_0_0_
FROM post p

WHERE p.id =1

SELECT pc.post_id AS post_id3_1_0_, pc.id AS id1_1_0@_, pc.review AS review2_1_1_
FROM post_comment pc
WHERE pc.post_id = 1

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,?]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CollectionCacheEntry[1,2]}

For it removes cache entries, NONSTRICT_READ_WRITE iS only appropriate when entities
are rarely changed. Otherwise, if the cache miss rate is too high, the cache renders
inefficient.

Caching 354

15.5.6.2.2 Updating NONSTRICT_READ_WRITE cache entries

Unlike the rReap_ONLY cache concurrency strategy, NONSTRICT_READ_WRITE supports entity and
collection modifications.

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
post.setTitle("High-Performance Hibernate");
PostComment comment = post.getComments().remove(Q);
comment . setPost(null);
1)
printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() +
printCacheRegionStatistics(PostComment.class.getName());

.comments");

When executing the test case above, Hibernate generates the following output:

UPDATE post
SET title = 'High-Performance Hibernate', version = 1
WHERE id = 1 AND version = 0

DELETE FROM post_comment WHERE id = 1

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],
Entries: {2=CacheEntry(PostComment)[1,Hibernate part review]}

15.5.6.2.3 Risk of inconsistencies

NONSTRICT_READ_WRITE does not offer strict consistency because it takes no locks on the cache
entries that get modified. For this reason, on very tiny time interval, it is possible that the
database and the cache might render different results.

Caching 355

During an entity update, the flow of operations goes like this:

1. The current Hibernate transaction (e.g. JdbcTransaction Or JtaTransaction) is flushed.

2. The pefaultFlushEventListener executes all pending actions contained in the current
ActionQueue.

The EntityUpdateAction calls the update method of the EntityRegionAccessStrategy.

The NonStrictReadWriteEhcacheCol lectionRegionAccessStrategy removes the cache entry from
the underlying ‘EhcacheEntityRegion.

s w

After the database transaction is committed, the cache entry is removed once again:

The after transaction completion callback is called.

The current session propagates this event to its internal ActionQueue.

The EntityUpdateAction calls the afterupdate method on the EntityRegionAccessStrategy.
The NonStrictReadwriteEhcacheCollectionRegionAccessStrategy calls the remove method on the
underlying EhcacheEntityRegion.

W =

NonStrictReadWriteEhcache

EntityRegionAccessStrategy izl e Bl e

EntityUpdateAction

—_———————]

JDBC Transaction flush

L - =l

remove
«—

remove ————>

JDBC Transaction commit

afterUpdate ——>
unlockltem

remove—————>

Figure 15.11: NONSTRICT _READ _ WRITE update flow

Caching

356

database might drift apart.

The cache invalidation is not synchronized with the current database transaction.
Even if the associated cache region entry gets invalidated twice (before and after
transaction completion), there is still a tiny time window when the cache and the

15.5.6.2.4 Deleting NONSTRICT_READ_WRITE cache entries

When deleting a post entity that cascades the remove event to the postComment collection:

printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() + ".comments");
printCacheRegionStatistics(PostComment.class.getName());

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
entityManager .remove(post);

});

printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() + ".comments");
printCacheRegionStatistics(PostComment.class.getName());

Hibernate is going to remove all associated cache regions:

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,?]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CollectionCacheEntry[1,2]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,

Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0, putCount=2],

Entries: {1=CacheEntry(PostComment)[1,JDBC part review],
2=CacheEntry(PostComment)[1,Hibernate part review]}

Caching 357

DELETE FROM post_comment WHERE id 1
DELETE FROM post_comment WHERE id = 2
DELETE FROM post WHERE id = 1 AND version = 0

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],
Entries: {}

Just like with update, the cache entry removal is called twice (the first time during flush and
the second time after the transaction is committed).

15.5.6.3 READ_WRITE

To avoid any inconsistency risk while still using a write-through second-level cache, Hiber-
nate offers the rReab_wrITE cache concurrency strategy. A write-through cache strategy is a
much better choice for write-intensive applications since cache entries can be updated rather
than being simply removed.

Because the database is the system of record and database operations are wrapped inside one
single physical transaction, the cache can either be updated synchronously which requires
JTA transactions or asynchronously, right after the database transaction gets committed.

READ_WRITE is an asynchronous cache concurrency strategy, and, to prevent data integrity
issues like stale cache entries, it employs a soft locking mechanism that provides the
guarantees of a logical transaction isolation.

The following examples are going to reuse the same entities that were previously employed,
and the only thing that differs is that the post and postComment entities, as well as the comments
collections, are using the @cache(usage = CacheConcurrencyStrategy.READ_WRITE) annotation.

15.5.6.3.1 Inserting READ_WRITE cache entries

Only the entity cache region can work in write-through mode, and, just like with any other
cache concurrency strategy, the collection cache is read-through.

Caching

358

When running the same example used for inserting NONSTRICT_READ_WRITE cache entries, Hiber-

nate generates the following output:

INSERT INTO post (title, version, id)
VALUES ('High-Performance Java Persistence', 0, 1)

INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'JDBC part review', 1)

INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'Hibernate part review', 2)

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,

Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=1],

Entries: {1=[value = CacheEntry(Post)[1,High-Performance Java Persistence, 0],
version=0, timestamp=5991931785445376]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=0],
Entries: {1=Lock Source-UUID:7d0@59ff0-0ec8-490f-b316-eTTefaddbi5f Lock-ID:0}

--Load Post entity and comments collection

SELECT pc.post_id AS post_id3_1_0_, pc.id AS id1_1_0_, pc.review AS review2_1_1_
FROM post_comment pc
WHERE pc.post_id = 1

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,

Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=0, putCount=1],

Entries: {1=[value = CacheEntry(Post)[1,High-Performance Java Persistence,0],
version=0, timestamp=5991931785445376]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=[value = CollectionCacheEntry[1,2],

version=null, timestamp=5991931785895936]}

Unfortunately, this write-through caching does not work for the identity columns, and if the

Post entity is using the IDENTITY generator:

@Id @GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

Caching 359

When inserting a post entity:

doInJPA(entityManager -> {
Post post = new Post();
post.setTitle("High-Performance Java Persistence");
entityManager .persist(post);

1)
printCacheRegionStatistics(Post.class.getName());

Hibernate is going to generate the following output:

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=0],
Entries: {}

Because it supports write-through ReaD_WRITE entity caching, the sequence generator is
preferred over identity columns. The behavior might change in future, so it is better to check
the HHH-7964" JIRA issue status.

Ahttps:/ /hibernate.atlassian.net /browse /HHH-7964

15.5.6.3.2 Updating READ_WRITE cache entries

As already mentioned, the rReaD_WRITE cache concurrency strategy employs a soft locking
mechanism to ensure data integrity.

1. The Hibernate transaction commit procedure triggers a session flush.

The EntityupdateAction replaces the current cache entry with a Lock object.

3. The update method is used for synchronous strategies. Therefore, it is a no-op in this
case.

4. The after transaction callbacks are called, and the EntityUpdateAction executes the af-
terUpdate method of the EntityRegionAccessStrategy.

5. The ReadwriteEncacheEntityRegionAccessStrategy replaces the Lock entry with an actual 1tem,
encapsulating the entity disassembled state.

N

https://hibernate.atlassian.net/browse/HHH-7964
https://hibernate.atlassian.net/browse/HHH-7964

Caching 360

. . ReadWriteEhcache
EntityUpdateAction EntityRegionAccessStrategy net.sf.ehcache.Cache

JDBC Transaction flush

. L L
lockltem——>

T T
| 1
| I
|]
| [}
| 1
| 1
| 1
[I

put(key, new Lock(timeout, uuid,
lockld, version))
update——>

JDBC Transaction commit

afterUpdate —>

put(key, new Item(value, currentVersion,

region().nextTimestamp())) 7

Figure 15.12: READ _WRITE update flow

Just like with database transactions, changes are applied directly, and locks are used
to prevent other concurrent transactions from reading uncommitted data. When
reading a Lock object from the cache, Hibernate knows that the associated entry is
being modified by an uncommitted transaction. Therefore, it reads the entity from
the database.

To visualize the whole process, when running the following test case:

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
post.setTitle("High-Performance Hibernate");
PostComment comment = post.getComments().remove(0Q);
comment . setPost(null);
entityManager. flush();

printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() + ".comments");
printCacheRegionStatistics(PostComment.class.getName());
LOGGER.debug("Commit after flush");
1)
printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() + ".comments");
printCacheRegionStatistics(PostComment.class.getName());

Caching 361

Hibernate generates the following output:

UPDATE post
SET title = 'High-Performance Hibernate', version = 1
WHERE id = 1 AND version = 0

DELETE FROM post_comment WHERE id = 1

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondLevelCacheStatistics[hitCount=1,missCount=0,putCount=1],
Entries: {1=Lock Source-UUID:69c2fd51-11a3-43c1-9db2-91f30624acT4 Lock-ID:0}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=Lock Source-UUID:e75094c1-6bc2-43f3-87e3-1dcdf6bee@83 Lock-ID:1}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=2],
Entries: {1=Lock Source-UUID:99aafdef-7816-43ee-909d-5f10ab759c60 Lock-ID:0Q,
2=[value = CacheEntry(PostComment)[1,Hibernate part review],
version=null, timestamp=5992022222598145]}

--Commit after flush

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,

Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=0,putCount=2],

Entries: {1=[value = CacheEntry(Post)[1,High-Performance Hibernate,1],
version=1, timestamp=5992019884548096]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=Lock Source-UUID:db769a@a-d65a-4911-952e-1d0bb851ed8d Lock-ID:1}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=2],
Entries: {1=Lock Source-UUID:f357daba-665e-40d1-84c0-T760e450df421 Lock-1ID:0,
2=[value = CacheEntry(PostComment)[1,Hibernate part review],
version=null, timestamp=5992019884109825]}

Right after the Persistence Context is flushed, Hibernate executes the associated SQL state-
ments and adds Lock objects into the cache entries associated with the currently modifying
Post entity and comments collection, as well as for the deleting PostComment entity.

Caching 362

After the transaction is committed, the post entity cache entry is replaced with an 1tem
object containing the updated disassembled state. Since Reab_wrRITE collections are not write-
through, the comments collection cache entry is still a Lock object even after commit. Since the
PostComment entity has been deleted, its cache entry is represented by a Lock entry.

15.5.6.3.3 Deleting READ_WRITE cache entries

Deleting entities is similar to the update process, as we can see from the following sequence
diagram:

. . ReadWriteEhcache
EntityDeleteAction EntityRegionAccessStrategy net.sf.ehcache.Cache

JDBC Transaction flush

=L . L
lockltem ———>
put(key, new Lock(timeout, uuid,
lockld, version))
remove————>
JDBC Transaction commit
unlockltem ——>
put(key, lock.unlock(
region().nextTimestamp()))

Figure 15.13: READ _WRITE delete flow

The Hibernate transaction commit procedure triggers a session flush.

. The EntityDeleteAction replaces the current cache entry with a Lock object

3. The remove method call doesn't do anything since ReAD_WRITE is an asynchronous cache
concurrency strategy.

4. The after transaction callbacks are called, and the EntitybeleteAction executes the unlock-
Item method of the EntityRegionAccessStrategy.

5. The ReadwriteEncacheEntityRegionAccessStrategy replaces the Lock entry with another Lock

object whose timeout period is further increased.

N =

After an entity is deleted, its associated second-level cache entry will be replaced by a Lock
object, so that any subsequent request is redirected to reading from the database instead of
using the second-level cache entry.

When running the same example used for deleting nonsTRICT_READ_WRITE cache entries, Hiber-
nate generates the following output:

Caching 363

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,

Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=0,putCount=1],

Entries: {1=[value = CacheEntry(Post)[1,High-Performance Java Persistence,0],
version=0, timestamp=5992355751620608]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=[value = CollectionCacheEntry[1,2],

version=null, timestamp=5992355752042496]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=2],
Entries: {1=[value = CacheEntry(PostComment)[1,JDBC part review],
version=null, timestamp=5992355751624704],
2=[value = CacheEntry(PostComment)[1,Hibernate part review],
version=null, timestamp=5992355751624705]}

DELETE FROM post_comment WHERE id 1
DELETE FROM post_comment WHERE id 2
DELETE FROM post WHERE id = 1 AND version = 0

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondLevelCacheStatistics[hitCount=2,missCount=0,putCount=1],
Entries: {1=Lock Source-UUID:b@42192a-9ac6-4877-8663-018f898f1cdb Lock-ID:0}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {1=Lock Source-UUID:e75f034a-0346-4696-88fd-1b5100658a6f Lock-1D:1}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,

Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],

Entries: {1=Lock Source-UUID:1d13b830-e96d-40f5-aa2b-6a402fa6135d Lock-ID:0Q,
2=Lock Source-UUID:1d13b830-e96d-40f5-aa2b-6a402fa6135d Lock-ID:1}

The delete operation does not remove entries from the second-level cache, but instead it
replaces the previous Item entries with Lock objects. The next time a deleted cache entry is
being read, Hibernate is going to redirect the request to the database, therefore guaranteeing
strong consistency.

15.5.6.3.4 Soft locking concurrency control

Because the database is the system of record, strong consistency implies that uncommitted
cache changes should not be read by other concurrent transactions. The READ_WRITE can store
either an Item Or a Lock.

Caching 364

The 1tem holds the entity disassembled state, as well as the entity version and a timestamp.
The version and the timestamp are used for concurrency control as follows:

* An1temisreadable only from asession that has been started after the cache entry creation
timestamp.

* An Item entry can be written only if the incoming version is greater than the current one
held in the cache entry.

When an entity or a collection is either updated or deleted, Hibernate replaces the cached
Item entry with a Lock, whose concurrency control mechanism works as follows:

* Since it overwrites an Item cache entry, the Lock object instructs a concurrent Session to
read the entity or the collection from the database.

* If at least one session has managed to lock this entry, any write operation is forbidden.

* A Lock entry is writable only if the incoming entity state has a version which is newer
than the one contained in the Lock object, or if the current session creation timestamp is
greater than the Lock timeout threshold.

If the database transaction is rolled back, the current cache entry holds a Lock instance which
cannot be undone to the previous Item state. For this reason, the Lock must time out to allow
the cache entry to be replaced by an actual 1tem cache entry.

For Ehcache, the default Lock timeout is 120 seconds, and it can be customized via the
net.sf.ehcache.hibernate.cache_lock_timeout configuration property.

The rReAD_WRITE concurrency strategy offers a write-through caching mechanism without
requiring JTA transactions.

However, for heavy write contention scenarios, when there is a chance of rolling back
transactions, the soft locking concurrency control can lead to having other concurrent
transactions hitting the database for the whole duration of the lock timeout period. For this
kind of situations, the TRANSACTIONAL concurrency strategy might be more suitable.

Caching 365

15.5.6.4 TRANSACTIONAL

While rReap_wRrITE is an asynchronous write-through cache concurrency strategy, TRANSACTIONAL
uses a synchronous caching mechanism.

To enlist two data sources (the database and the second-level cache) in the same global
transaction, a JTA transaction manager is needed. When using Java EE, the application
server provides JTA transactions by default. For stand-alone enterprise applications, there
are multiple transaction managers to choose from (e.g. Bitronix, Atomikos, Narayana).

For JTA transactions, Ehcache offers two failure recovery options: xa_strict and xa.
15.5.6.4.1 XA _Strict mode

In this mode, the second-level cache exposes a xAResource interface so that it can participate
in the two-phase commit (2PC) protocol.

EntitvDeleteAction Transactional net.sf.ehcache.
y EntityRegionAccessStrategy Cache

| | |

| I |

| i i

JDBC Transaction flush ! : !
“““““““““““““““““““““““““““““ [AR R

remove
remove(key) >
javax.transaction. Ehcache

Transaction XAResourcelmpl i EEHE T

afterCompletion
commit(softLock,
underlymgStore comparator

Figure 15.14: TRANSACTIONAL XA _ Strict flow

JDBC Transactlon commlt _

The entity state is modified both in the database and in the cache, but these changes are
isolated from other concurrent transactions, and they become visible once the current XA
transaction gets committed.

The database and the cache remain consistent even in the case of an application crash.

Caching 366

15.5.6.4.2 XA mode

If only one Datasource participates in a global transaction, the transaction manager can apply
the one-phase commit optimization. The second-level cache is managed through a
javax.transaction.Synchronization transaction callback. The synchronization does not actively
participate in deciding the transaction outcome, therefore following the current database
transaction outcome:

EntitvDeleteAction Transactional net.sf.ehcache.
Y EntityRegionAccessStrategy Cache
i | i
| | |
| | |
i | i
JDBC Transaction flush | I]
remove ‘
remove(key) ‘
javax.transaction. JtaLocalEhcache | | Transaction| |LocalTransaction
; - SoftLockHelper
Transaction Synchronization | | Controller Store

JDBC Transaction commit |

I
afterCompletion
commit commit—> commit(softLock,
—— underlyingStore,
comparator)

Figure 15.15: TRANSACTIONAL XA flow

This mode trades durability for a lower response time, and in the case of a server crash (hap-
pening in between the database transaction commit and the second-level cache transaction
callback), the two data sources will drift apart. This issue can be mitigated if entities employ
an optimistic concurrency control mechanism, so, even if the application reads stale data, it
will not lose updates upon writing it back.

The following examples are going to reuse the same entities that were previously employed,
and the only thing that differs is that the post and postcomment entities, as well as the comments
collections, are using the @Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL) annotation.
The transaction boundaries are managed by Spring framework, and the actual JTA transaction
logic is coordinated by Bitronix Transaction Manager.

Caching 367

15.5.6.4.3 Inserting TRANSACTIONAL cache entries

When running the same example used for inserting NONSTRICT_READ_WRITE cache entries, Hiber-
nate generates the following output:

INSERT INTO post (title, version, id)
VALUES ('High-Performance Java Persistence', 0, 1)

INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'JDBC part review', 1)

INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'Hibernate part review', 2)

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,?]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statisties: SecondLevelCacheStatistics[hitCount=0,missCount=0,putCount=00],
Entries: {}

--Load Post entity and comments collection

SELECT pc.post_id AS post_id3_1_0_, pc.id AS id1_1_0_, pc.review AS review2_1_1_
FROM post_comment pc
WHERE pc.post_id = 1

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=0, putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,0]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CollectionCacheEntry[1,2]}

Just like READ_WRITE, the TRANSACTIONAL cache concurrency strategy is write-through for entities
(unless using the identity generator in which case it is read-through), and read-though for
collections.

Caching 368

15.5.6.4.4 Updating TRANSACTIONAL cache entries

Because the TRANSACTIONAL cache is synchronous, all changes are applied directly to cache, as
illustrated by the following example:

doInJPA(entityManager -> {
printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() + ".comments");
printCacheRegionStatistics(PostComment.class.getName());

Post post = entityManager.find(Post.class, 1L);
post.setTitle("High-Performance Hibernate");
PostComment comment = post.getComments().remove(0Q);
comment .setPost(null);

entityManager. flush();

printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() + ".comments");
printCacheRegionStatistics(PostComment.class.getName());

LOGGER . debug("Commit after flush");
1)
printCacheRegionStatistics(Post.class.getName());
printCacheRegionStatistics(Post.class.getName() + ".comments");
printCacheRegionStatistics(PostComment.class.getName());

For which Hibernate generates the following output:

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=0,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,0]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CollectionCacheEntry[1,2]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,

Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=0,putCount=2],

Entries: {1=CacheEntry(PostComment)[1,JDBC part review],
2=CacheEntry(PostComment)[1,Hibernate part review]}

Caching 369

UPDATE post
SET title = 'High-Performance Hibernate', version = 1
WHERE id = 1 AND version = 0

DELETE FROM post_comment WHERE id = 1

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],
Entries: {1=CacheEntry(Post)[1,High-Performance Hibernate,1]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],
Entries: {2=CacheEntry(PostComment)[1,Hibernate part review]}

--Commit after flush

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],
Entries: {1=CacheEntry(Post)[1,High-Performance Hibernate,1]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],
Entries: {2=CacheEntry(PostComment)[1,Hibernate part review]}

Unlike the rReap_wrIiTE cache concurrency strategy, TRANSACTIONAL does not use Lock cache
entries, but instead it offers transaction isolation through the second-level cache provider
internal locking mechanisms. After the post entity and the comments collections are modified,
Hibernate applies all the changes synchronously.

The post entity modification is immediately visible in the cache, but only for the currently
running transaction. Other transactions will not see any pending modifications until the
current transaction is committed.

The pPostcomment entity that was deleted from the database is going to be removed from the
entity cache region as well.

The pPost.comments collection cache region is invalidated, and all its content is being removed.

From the current running transaction perspective, the TRansACTIONAL cache concurrency
strategy offers read-your-own-writes consistency guarantees. Once the transaction is com-

Caching 370

mitted, all pending database and cache changes are becoming visible to other concurrent
transactions as well.

15.5.6.4.5 Deleting TRANSACTIONAL cache entries

When running the same example used for deleting NoNsTRICT_READ_WRITE cache entries, Hiber-
nate generates the following output:

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=0,putCount=1],
Entries: {1=CacheEntry(Post)[1,High-Performance Java Persistence,?]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {1=CollectionCacheEntry[1,2]}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,

Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=0, putCount=2],

Entries: {1=CacheEntry(PostComment)[1,JDBC part review],
2=CacheEntry(PostComment)[1,Hibernate part review]}

DELETE FROM post_comment WHERE id 1
DELETE FROM post_comment WHERE id = 2
DELETE FROM post WHERE id = 1 AND version = 0

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post,
Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.Post.comments,
Statistics: SecondLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {}

Region: com.vladmihalcea.book.hpjp.hibernate.cache.PostComment,
Statistics: SecondlLevelCacheStatistics[hitCount=2,missCount=0,putCount=2],
Entries: {}

Unlike the reap_wrITE cache concurrency strategy which replaces the deleted 1tem cache entry
with a Lock object, TRansacTIONAL removes all the previously stored cache entries.

Choosing the right cache concurrency strategy

The concurrency strategy choice is based on the underlying data access patterns, as well as
on the current application consistency requirements. By analyzing the second-level cache
statistics, the application developer can tell how effective a cache concurrency strategy

Caching 3N

renders. A high nitcount number indicates that the data access layer benefits from using the
current cache concurrency strategy, while a high misscount value tells the opposite.

Although analyzing statistics is the best way to make sure that a strategy is a right choice,
there are still some general guidelines that can be used to narrow the choice list.

For immutable data, the rReap_ONLY strategy makes much sense because it even disallows
updating cache entries.

If entities are changed infrequently and reading a stale entry is not really an issue, then the
NONSTRICT_READ_WRITE concurrency might be a good candidate.

For strong consistency, the data access layer can either use READ_WRITE O TRANSACTIONAL.
READ_WRITE is a good choice when the volume of write operations, as well as the chance of
rolling back transaction, are rather low.

If the read and write ratio is balanced, TrRansAacTIONAL might be a good alternative because
updates are applied synchronously. If the roll back ratio is high (e.g. due to optimistic locking
exceptions), the TRANSACTIONAL strategy is a much better choice because it allows rolling back
cache entries, unlike ReAD_wrITE cache mode which maintains a Lock entry until it times out.
Depending on the caching provider, even the TRANSACTIONAL cache concurrency strategy might
offer different consistency modes (e.g. xa, xa_strict) so that the application developer can
balance strong consistency with throughput. To overcome the overhead of the two-phase
commit protocol, the Ehcache XA mode can leverage the one-phase commit optimization.

The concurrency strategy choice might be affected by the second-level cache topology as
well. If the volume of data is high, a single node might not be sufficient, so data needs to be
distributed across multiple nodes. A distributed cache increases cache availability because, if
one node crashes, the cached data still lives on other machines. However, most distributed
second-level cache providers do not support the TRANSACTIONAL cache concurrency strategy,
leaving the application developer to choose either NONSTRICT_READ_WRITE OT READ_WRITE.

15.5.7 Query cache strategy

The query cache does not take into consideration the cache concurrency strategy of the
associated cached entities, so it has its own rules when it comes to ensuring data consistency.
Just like the collection cache, the query cache uses a read-through approach, so queries are
cached upon being executed for the first time.

org.hibernate.cache.internal.StandardQueryCache is the second-level cache region where query
results are being stored.

Caching 372

To visualize how the read-through query cache works, consider the following query:

public List<PostComment> getlLatestPostComments(EntityManager entityManager) {
return entityManager.createQuery(
"select pc " +
"from PostComment pc " +
"order by pc.post.id desc", PostComment.class)
.setMaxResults(10)
.setHint(QueryHints .HINT_CACHEABLE, true)
.getResultlList();

The QueryHints.HINT_CACHEABLE constant can be used to supply the JPA query hint that
enables the second-level query cache.

If the current database contains the following entities:

Post post = new Post();
post.setId(1L);
post.setTitle("High-Performance Java Persistence");

PostComment comment = new PostComment();
comment .setId(1L);

comment .setReview("JDBC part review");
post.addComment (comment) ;

entityManager .persist(post);

When running the aforementioned query and printing the associated query cache region
statistics:

doInJPA(entityManager -> {
printCacheRegionStatistics(StandardQueryCache.class.getName());
assertEquals(1, getlLatestPostComments(entityManager).size());
printCacheRegionStatistics(StandardQueryCache.class.getName());

});

Caching 373

Hibernate generates the following output:

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=0,putCount=0],
Entries: {}

SELECT pc.id AS id1_1_, pc.post_id AS post_id3_1_, pc.review AS review2_1_
FROM post_comment pc ORDER BY pc.post_id DESC LIMIT 10

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {sql: ; named parameters: {}; max rows: 10; = [5992563495481345, 1]}

For brevity, the query cache entry was shortened. As expected, once the query is being
executed, the matching entity identifiers are stored in the query cache entry.

15.5.7.1 Tablespace query cache invalidation

To understand query cache invalidation, considering the following exercise:

doInJPA(entityManager -> {
assertEquals(1, getlLatestPostComments(entityManager).size());
printCacheRegionStatistics(StandardQueryCache.class.getName());

LOGGER.info("Insert a new PostComment");
PostComment newComment = new PostComment();
newComment .setId(2L);

newComment .setReview("JDBC part review");

Post post = entityManager.find(Post.class, 1L);
post .addComment (newComment) ;

entityManager. flush();

assertEquals(2, getlLatestPostComments(entityManager).size());
printCacheRegionStatistics(StandardQueryCache.class.getName());
1)
LOGGER. info("After transaction commit");
printCacheRegionStatistics(StandardQueryCache.class.getName());

doInJPA(entityManager -> {
LOGGER. info("Check query cache");
assertEquals(2, getlLatestPostComments(entityManager).size());

1)
printCacheRegionStatistics(StandardQueryCache.class.getName());

Caching

Hibernate generates the following output:

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {sql: ; named parameters: {}; max rows: 10;=[5992617470844929, 1]}

-- Insert a new PostComment

INSERT INTO post_comment (post_id, review, id)
VALUES (1, 'JDBC part review', 2)

UpdateTimestampsCache - Pre-invalidating space [post_comment],

timestamp: 5992617717362689

UpdateTimestampsCache - [post_comment] last update timestamp: 5992617717362689,
result set timestamp: 5992617470844929

StandardQueryCache - Cached query results were not up-to-date

SELECT pc.id AS id1_1_, pc.post_id AS post_id3_1_, pc.review AS review2_1_
FROM post_comment pc ORDER BY pc.post_id DESC LIMIT 10

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=2,putCount=2],
Entries: {sql: ; named parameters: {}; max rows: 10; =[5992617470844929, 2, 1]}

UpdateTimestampsCache - Invalidating space [post_comment],
timestamp: 5992617471619075

--After transaction commit

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=2,putCount=2],
Entries: {sql: ; named parameters: {}; max rows: 10; =[5992617470844929, 2, 1]}

--Check query cache

StandardQueryCache - Checking query spaces are up-to-date: [post_comment]
UpdateTimestampsCache - [post_comment] last update timestamp: 5992617471619075,
result set timestamp: 5992617470844929

StandardQueryCache - Cached query results were not up-to-date

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=3,putCount=3],
Entries: {sql: ; named parameters: {}; max rows: 10;=[5992617471627265, 2, 1]}

374

Hibernate second-level cache favors strong-consistency and the query cache is no different.

Caching 375

Whenever tablespaces are changing, the query cache invalidates all entries that are using the
aforementioned tablespaces. The flow goes like this:

Once the postcomment persist event is flushed, Hibernate pre-invalidates the post_comment
tablespace timestamp (5992617717362689).

When a tablespace is pre-invalidated, its timestamp is set to the cache region timeout
timestamp value, which, by default, is set to 60 seconds.

The query cache compares the cache entry timestamp with the tablespace pre-invali-
dation timeout timestamp value.

Because the post_comment tablespace timestamp (5992617717362689) is greater than query
result fetch timestamp (5992617470844929), the query cache ignores the cached entry
value, and Hibernate executes the database query.

The result set that is now fetched from the database goes to the cache without updating
the result set timestamp (5992617470844929).

When the current database transaction is committed, the post_comment tablespace is
invalidated. Therefore, the tablespace timestamp is set to the transaction commit
timestamp (5992617471619075).

Even after the current database transaction is committed, the query cache timestamp is
still seeing the old query result (5992617470844929).

A new session wants to execute the query, and because the query cache timestamp
(5992617471619075) is still older than the post_comment tablespace timestamp, Hibernate
executes the database query.

Because this session has not modified any tablespace, Hibernate updates the query cache
with the current result set and the cache entry timestamp is set to the current session
timestamp (5992617471627265).

This flow guarantees strict consistency, and the query cache timestamp acts like a soft locking
mechanism, preventing other concurrent transactions from reading stale entries.

15.5.7.2 Native SQL statement query cache invalidation

Hibernate can only parse JPQL and HQL statements, so it knows what tablespaces are
required by a particular entity statement. For native statements, Hibernate cannot know if
a tablespace is going to be affected directly or indirectly, and, by default, every native update
statement is going to invalidate all query cache entries.

Caching

When executing the following example:

assertEquals(1, getlLatestPostComments(entityManager).size());
printCacheRegionStatistics(StandardQueryCache.class.getName());

entityManager.createNativeQuery(
"UPDATE post SET title = '\"'[|titlel|"'\"" ")
.executeUpdate();

assertEquals(1, getlLatestPostComments(entityManager).size());
printCacheRegionStatistics(StandardQueryCache.class.getName());

Hibernate generates the following output:

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {sql: ; named parameters: {}; max rows: 10;=[5992657080082432, 1]}

UpdateTimestampsCache - Pre-invalidating space [post_comment],
timestamp: 5992657328578560

UpdateTimestampsCache - Pre-invalidating space [post],
timestamp: 5992657328578560

UPDATE post SET title = '"'|[[|title||"'""

StandardQueryCache - Checking query spaces are up-to-date: [post_comment]
UpdateTimestampsCache - [post_comment] last update timestamp: 5992657328578560,
result set timestamp: 5992657080082432

StandardQueryCache - Cached query results were not up-to-date

SELECT pc.id AS id1_1_, pc.post_id AS post_id3_1_, pc.review AS review2_1_
FROM post_comment pc

ORDER BY pc.post_id DESC

LIMIT 10

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondlLevelCacheStatistics[hitCount=0,missCount=2,putCount=2],
Entries: {sql: ; named parameters: {}; max rows: 10;=[5992657080082432, 1]}

UpdateTimestampsCache - Invalidating space [post], timestamp: 5992668528799744
UpdateTimestampsCache - Invalidating space [post_comment],
timestamp: 5992668528799744

376

Caching

The flow goes like this:

* Initially, the query result is stored in the cache.

377

* Upon executing the native DML statement, Hibernate pre-invalidates all tablespaces (e.g.

post anclpost_comment)

* When the data access layer executes the previously cached postcomment query, Hibernate

checks the cache entry timestamp validity.

* Because the post_comment timestamp was set to the timeout value, Hibernate is prevented

from using the cached result, so it executes the database query.

* When the transaction is committed, all tablespaces are invalidated, their associated

timestamps being set to the current transaction commit timestamp.

To prevent Hibernate from invalidating all entries in the StandardQuerycache region, the native

query must explicitly specify the tablespaces that are going to be affected:

entityManager .createNativeQuery(

"UPDATE post SET title = '"\"'||title|["'\"" ")
.unwrap(SQLQuery.class).addSynchronizedEntityClass(Post.class)
.executeUpdate();

This time, Hibernate generates the following output:

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondLevelCacheStatistics[hitCount=0,missCount=1,putCount=1],
Entries: {sql: ; named parameters: {}; max rows: 10;=[5992666396459009, 1]}

UpdateTimestampsCache - Pre-invalidating space [post],
timestamp: 5992666644185088

UPDATE post SET title = '"'[[titlel|"'""

StandardQueryCache - Checking query spaces are up-to-date: [post_comment]
UpdateTimestampsCache - [post_comment] last update timestamp: 5992666396422146,
result set timestamp: 5992666396459009

StandardQueryCache - Returning cached query results

Region: org.hibernate.cache.internal.StandardQueryCache,
Statistics: SecondlLevelCacheStatistics[hitCount=1,missCount=1,putCount=1],
Entries: {sql:; named parameters: {}; max rows: 10; f2=[5992666396459009, 1]}

UpdateTimestampsCache - Invalidating space [post], timestamp: 5992666398470144

Because this time only the post tablespace is invalidated, and since the entity query uses the
post_comment table, the previously cached query result can be reused to satisfy the current

entity query fetching requirements.

Caching 378

Query cache applicability

As explained in the Fetching chapter, DTO projections are suitable for executing read-only
queries. For this purpose, the query cache is not a general purpose solution since it can only
select entities.

However, fetching entities is appropriate for read-write transactions, and any entity mod-
ification can trigger a ripple effect in the StandardQuerycache second-level cache region. For
this purpose, the query cache works better for immutable entities, or for entities that rarely
change.

16. Concurrency Control

As explained in the JDBC Transactions chapter, every SQL statement executes within the
scope of a database transaction. To prevent conflicts, database engines employ row-level
locks. Database physical locks can either be acquired implicitly or explicitly. Whenever a row
is changed, the relational database acquires an implicit exclusive lock on the aforementioned
record to prevent write-write conflicts.

Locks can also be acquired explicitly, in which case the concurrency control mechanism
is called pessimistic locking. Exclusive locks can be acquired explicitly on most database
systems, whereas shared locks are not universally supported.

Pessimistic locking deals with concurrency conflicts through prevention, which can impact
application performance and scalability. For this reason, to increase transaction throughput
while still ensuring strong consistency, many data access frameworks provide optimistic
locking support as well.

16.1 Hibernate optimistic locking

Even if pessimistic locking has only been added in JPA 2.0, optimistic locking has been
supported since version 1.0. Just like pessimistic locking, the optimistic concurrency control
mechanism can be used implicitly or explicitly.

16.1.1 The implicit optimistic locking mechanism

To enable the implicit optimistic locking mechanism, the entity must provide a @version
attribute:

@Entity @Table(name = "post")
public class Post {

@Id
private Long id;

private String title;

@Version
private int version;

//Getters and setters omitted for brevity

Concurrency Control 380

Logical vs. Physical clocks

Using timestamps to order events is rarely a good idea. System time is not always monoton-
ically incremented, and it can even go backward due to network time synchronization (NTP
protocol).

More, time accuracy across different database systems varies from nanoseconds (Oracle®)
to 100 nanoseconds (SQL Server®), to microseconds (PostgreSQL® and MySQL 5.6.4% and even
seconds (previous versions of MySQL). In distributed systems, logical clocks (e.g. vector clocks
or Lamport timestamps) are always preferred to physical timestamps (wall clocks) when it
comes to ordering events.

For this reason, employing a numerical version is more appropriate than using a
timestamp.

Ahttp://docs.oracle.com/database /121 /LNPCB /pco04dat.htm#LNPCB269
bhttps: / /msdn.microsoft.com/en-us /library /bb677335.aspx

Chttp:/ /www.postgresql.org/docs/current/static /datatype-datetime.html
dhttp: / /dev.mysql.com/doc/refman /5.6 /en /fractional-seconds.html

To visualize the optimistic concurrency control, when executing the following test case:

doInJPA(entityManager -> {
Post post = new Post();
post.setId(1L);
post.setTitle("High-Per formance Java Persistence");
entityManager .persist(post);

entityManager. flush();
post.setTitle("High-Performance Hibernate");

});

Hibernate generates the following output:

INSERT INTO post (title, version, id)
VALUES ('High-Performance Java Persistence', 0, 1)

UPDATE post SET title = 'High-Performance Hibernate', version = 1
WHERE id = 1 AND version = 0

Whenever an update occurs, Hibernate is going to filter the database record according to the
expected entity version. If the version has changed, the update count is going to be 0, and a
OptimisticLockException iS going to be thrown.

http://docs.oracle.com/database/121/LNPCB/pco04dat.htm#LNPCB269
https://msdn.microsoft.com/en-us/library/bb677335.aspx
http://www.postgresql.org/docs/current/static/datatype-datetime.html
http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html
http://docs.oracle.com/database/121/LNPCB/pco04dat.htm#LNPCB269
https://msdn.microsoft.com/en-us/library/bb677335.aspx
http://www.postgresql.org/docs/current/static/datatype-datetime.html
http://dev.mysql.com/doc/refman/5.6/en/fractional-seconds.html

Concurrency Control 381

To visualize the conflict detection mechanism, consider the following exercise:

doInJPA(entityManager -> {
Post post = entityManager.find(Post.class, 1L);
executeSync(() -> {
doInJPA(_entityManager -> {
Post _post = _entityManager.find(Post.class, 1L);
_post.setTitle("High-Performance JDBC");
1)
1),

post.setTitle("High-Performance Hibernate");

});

When executing the aforementioned test case, Hibernate generates the following output:

-- Alice selects the Post entity

SELECT p.id AS id1_©0_0_, p.title AS title2_©0_0_, p.version AS version3_0_0_
FROM post p

WHERE p.id = 1

-- Bob also selects the same Post entity

SELECT p.id AS id1_©0_0_, p.title AS title2_0_0_, p.version AS version3_0_0_
FROM post p

WHERE p.id =1

-- Bob updates the Post entity
UPDATE post SET title = 'High-Performance JDBC', version = 1
WHERE id = 1 AND version = 0

-- Alice also wants to update the Post entity
UPDATE post SET title = 'High-Performance Hibernate', version = 1
WHERE id = 1 AND version = 0

--Exception thrown

javax.persistence.RollbackException: Error while committing the transaction
Caused by: javax.persistence.OptimisticlLockException:

Caused by: org.hibernate.StaleStateException:

Batch update returned unexpected row count from update [Q];

actual row count: 0; expected: 1

Because this example uses the Java Persistence API, the Hibernate internal stalestateException
is wrapped in the optimisticLockException defined by the JPA specification.

Concurrency Control 382

The flow of operations can be summarized as follows:

* Alice fetches a post entity and then her thread is suspended.

* Bob thread is resumed, he fetches the same post entity and changes the title to High-
Per formance JDBC. The entity version is set to 1.

* When Alice’s thread is resumed, she tries to update the post entity title to High-
Per formance Hibernate.

* An optimisticLockException iS thrown because the second update statement is expecting
to filter the entity version with a value of 0, while the version column value is now 1.

16.1.1.1 Resolving optimistic locking conflicts

While pessimistic locking prevents conflict occurrences, optimistic locking mechanisms, just
like MVCC, use conflict detection instead. So anomalies are detected and prevented from
being materialized by aborting the currently running transactions, and Hibernate optimistic
locking can prevent the lost update anomaly.

As explained in the application-level transactions section, when using a multi-request work-
flow, the database isolation level can no longer prevent lost updates. On the other hand,
the optimistic locking mechanism can prevent losing updates as long as the entity state is
preserved from one request to the other.

Optimistic locking discards all incoming changes that are relative to a stale entity version.
However, everything has its price and optimistic locking is no different.

If two concurrent transactions are updating distinct entity attribute subsets, then there
should be no risk of losing any update. However, the optimistic concurrency control mecha-
nism takes an all-or-nothing approach even for non-overlapping changes. For this reason,
two concurrent updates, both starting from the same entity version, are always going to
collide. It is only the first update that is going to succeed, the second one failing with an
optimistic locking exception.

This strict policy acts as if all changes are going to overlap, and, for highly concurrent write
scenarios, the single version strategy can lead to a large number of transactions being rolled
back.

To visualize the non-overlapping conflict, consider the following post entity class:

& Post

I id Long
I title String
I views long
f likes int
! version int

Figure 16.1: Post entity with a single global version

Concurrency Control 383

In the following example, Alice modifies the post entity title attribute, Bob increments the
likes counter, and Carol sets the views attribute to a value that was aggregated from an
external batch processor.

Alice |[Bob [|Carol Database|| POst
-- - --em.find(Post.class, 1L)-——-—- - - - - - ----»{| id:1
title:'JDBC'
N o T T T T T T T T T views:0
,,,,,,,,,, ~~'~~em.find(Post.cIass, 1|_)) |IkeS'fO
version:0
(...
- ---em.find(Post.class, 1L)--==-=-=======-=--=--------------------------- >
(__
post
- T UPDATE post SET title = 'JPA', version = 1 WHERE id = 1 AND version =0""""""""""7~ > .‘(;"1“““"“'
id:
title:'JPA'
""""" | UPDATE post SET likes = 1, version = 1 WHERE id = 1 AND version = Qe ?{Lewsozo
ikes:
(........ 1 Sta|eObJeCtStat9EX09pt|0n ... VerSi0n1
- - -UPDATE post SET views = 15, version = 1 WHERE id = 1 AND version=0---------- >
(€ StaleObjectStateException---------------------------- -+

Figure 16.2: Optimistic locking non-overlapping conflict

The flow of operations can be explained as follows:

* All three users are loading the same post entity version.

* Alice modifies the title. Therefore, the post entity version is incremented.

* Bob tries to increment the 1ikes counter but rolls back because it expects the version to
be 0, but now it has a value of 1.

* Carol’s transaction is also aborted because of the entity version mismatch.

The optimistic locking mechanism allows only monotonically increasing version updates. If
changes were dependent one to another, then getting an optimisticLockException is less of
an issue than losing an update. However, if from a business logic perspective, the changing
attributes are not overlapping, having a single global version is no longer sufficient.

For this reason, the single global version must be split into multiple subversions, and this can
be done in two ways:

* Instead of having a single optimistic locking counter, there can be a distinct version for
each individual attribute set.

* Each changing attribute can be compared against its previously known value, so lost
updates are relative only to the attribute in question.

Concurrency Control 384

16.1.1.2 Splitting entities

The pPost entity can be split into several sub-entities according to the three distinct set of
attributes:

1
1
. & Post ‘
&£ PostLikes &£ PostViews
D id) fid Long D i)
i on i on
. 911 1 I title String |1 1 ; 2
post Post €@ <@ post Post
i) I views PostViews 2 . |
IKes int views ong
}] I likes PostLikes) }
I version int :)] £ version int
version int

1T '

Figure 16.3: Post entity version split

While the title attribute remains in the post parent entity, the 1ikes, and the views attributes
are moved to distinct entities. The postLikes and Postviews entities are associated with the post
parent entity in a bidirectional one-to-one relationship. The postLikes and Postviews entity
identifiers are also foreign keys to the post table primary key.

Each entity has its own version attribute. Whenever the post title is changed, it is only the
Post entity version that is checked and incremented. When the views attribute is updated, only
the postviews entity is going to be affected. The same is true for incrementing 1ikes which are
stored in the PostLikes entity.

While breaking a larger entity into several sub-entities can help address optimistic locking
conflicts, this strategy has its price. This rather extreme data normalization strategy can have
an impact on read operation performance because data is scattered across several tables. If
the whole aggregate is needed to be fetched, the data access layer will require to join several
tables or execute additional secondary select statements.

ally, the root entity split can improve the second-level cache performance, especially
for read-through strategies (e.g. NONSTRICT_READ_WRITE). If the views attribute is modified,
only the postviews cache entry needs to be invalidated, whereas the post and the
PostLikes remain unaffected.

’ The second-level cache can mitigate the read operation performance penalty. Actu-

Concurrency Control 385

When running the previous exercise, there is no longer any conflict being generated:

Alice [|[Bob ||Carol Database|| post

B - --em.find(Post.class, 1L)-——--- --- - - -—- e > g1

title:'JDBC'
version:0

<& — _—— _—— _—— _—— _—— _—— _——
<

post_likes

<] e likes:0
version:0

post_views

D e R views:0
version:0

post

id:1
title:'JPA'
version:1

post_likes

id:1
likes:1
version:1

post_views
- -~ “UPDATE post_views SET views = 15, version = 1 WHERE id = 1 AND version = 0~~~ ">|| ceeeeeeeee-
id:1
views:15
version:1

Figure 16.4: Optimistic locking multiple versions

Lost updates are prevented at the entity-level only so the three distinct attributes can be
updated concurrently without generating any conflict. However, conflicts can still occur if
the same attribute is getting updated by two concurrent transactions.

Designing a Domain Model must take into consideration both read and write data
access patterns. Splitting entities by write responsibility can reduce optimistic locking
false positives when the write ratio is relatively high.

Concurrency Control 386

16.1.1.3 Versionless optimistic locking

Although having a numerical version attribute is the most common optimistic concurrency
control strategy, Hibernate offers a versionless optimistic locking mechanism which is not
supported by JPA 2.1 specification. To switch to the versionless optimistic locking mechanism,
the eoptimisticLocking annotation must be configured at the entity level.

The org.hibernate.annotations.OptimisticLocking annotation comes with a type attribute that can
take the following values:

* NONE - The implicit optimistic locking mechanism is disabled.

* VERSION - The implicit optimistic locking mechanism uses a numerical or a timestamp
version attribute.

* DIRTY - The implicit optimistic locking mechanism uses only the attributes that have
been modified in the currently running Persistence Context.

* ALL - The implicit optimistic locking mechanism uses all entity attributes.

notation because update statements must be rewritten so that either all attributes or
the ones that were modified are included in the where clause criteria. For these two
optimistic lock types, the entity versioning mechanism is based on the hydrated state
snapshot that was stored when the entity was first loaded in the currently running
Persistence Context.

ﬁ OptimisticlLockType.ALL and OptimisticlLockType.DIRTY also require the @DynamicUpdate an-

To see how the optimisticLockType.ALL option works, consider the following post entity map-
ping:

@Entity @Table(name = "post") @DynamicUpdate

@ptimisticlLocking(type = OptimisticLockType.ALL)

public class Post {

@Id
private Long id;

private String title;

//Getters and setters omitted for brevity

Concurrency Control 387

When using the aforementioned post entity to rerun the example defined at the beginning of
the Hibernate implicit optimistic locking section, Hibernate generates the following output:

INSERT INTO post (title, id)
VALUES ('High-Performance Java Persistence', 1)

UPDATE post SET title = 'High-Performance JDBC'
WHERE id = 1 AND title = 'High-Performance Java Persistence'

If the post entity had more attributes, all of them would be included in the SQL where clause.

altered in order to add a numerical version column. Because it takes into consideration
all entity attributes, the optimisticLockType.ALL Option behaves just like a single global
version attribute, and write conflicts can occur even if two concurrent transactions
are modifying non-overlapping attribute sets.

ﬁ The optimisticLockType.ALL is useful when the underlying database table cannot be

Even if the entity splitting method can address the non-overlapping attribute sets conflict,
too much data normalization can affect read operation performance. The oOptimisticLock-
Type.DIRTY option can deal with this issue, and so lost updates are prevented for the currently
modified attributes.

To demonstrate it, the following post entity mapping is going to be used while running the
same test case employed in the resolve optimistic locking conflicts section:

@Entity @Table(name = "post") @DynamicUpdate
@ptimisticlLocking(type = OptimisticlLockType.DIRTY)
public class Post {

@Id
private Long id;

private String title;
private long views;
private int likes;

//Getters and setters omitted for brevity

Concurrency Control

Bob ||Carol Database
- em.find(Post.class, 1L)======="======""""-T-TTomoooooooooooooooooo—ooooooeoo >
........... emflnd(POStdaSS, 1L)>
- ---em.find(Post.class, 1L) = ----==-==--=-=-==-=-------------------------- >
(__
--------------- UPDATE post SET title = 'JPA' WHERE id = 1 AND title = 'JDBC'-~============->
.............................. UPDATE post SET |IkeS = 1 WHERE |d = 1 AND ||keS = O)
-------- UPDATE post SET views = 15 WHERE id = 1 AND views =0 - ------------->

likes:0

likes:1

likes:1

Figure 16.5: Optimistic locking dirty attributes

388

id:1
title:'JDBC'
views:0

likes:0

post

id:1
title:'JPA'
views:0

id:1
title:'JPA'
views:0

post

id:1
title:'JPA'
views:15

The optimisticLockType.DIRTY option allows concurrent users to update distinct attributes
without causing any conflict. However, conflicts can still occur when two concurrent trans-
actions are updating the same attribute. Therefore, lost updates are prevented on a per-
attribute basis.

) o

OptimisticLockType.DIRTY mechanism is also a viable alternative.

Preventing lost updates is essential for data integrity, but the prospect of having
transactions aborted due to non-overlapping attribute changes is undesirable. To
cope with this issue, entities need to be carefully modeled based on both read and

write data access patterns.

For heavy-write data access layers, it is not uncommon to split an entity into
multiple parts, each individual subentity containing attributes that need to be up-
dated atomically. If, from a writing perspective, attributes are independent, then the

Concurrency Control 389

16.1.1.3.1 OptimisticLockType.DIRTY update caveat

In spite of being very useful for preventing optimistic locking conflicts, the optimisticLock-
Type.DIRTY mechanism has one limitation: it does not work with the Session.update() method.

Post detachedPost = doInJPA(entityManager -> {
LOGGER.info("Alice loads the Post entity");
return entityManager. find(Post.class, 1L);

});

executeSync(() -> {
doInJPA(entityManager -> {
LOGGER. info("Bob loads the Post entity and modifies it");
Post post = entityManager.find(Post.class, 1L);
post.setTitle("Hibernate");

});
});

doInJPA(entityManager -> {
LOGGER.info("Alice updates the Post entity");
detachedPost .setTitle("JPA");
entityManager .unwrap(Session.class).update(detachedPost);

});

When running the test case above, Hibernate generates the following statements:

-- Alice loads the Post entity

SELECT p.id AS id1_0_0_, p.likes AS likes2_0_0_, p.title AS title3_0_0_,
p.views AS views4_0_0_

FROM post p

WHERE p.id = 1

-- Bob loads the Post entity and modifies it

SELECT p.id AS id1_0_0_, p.likes AS likes2_0_0_, p.title AS title3_0_0_,
p.views AS views4_0_0_

FROM post p

WHERE p.id =1

UPDATE post SET title = 'Hibernate' WHERE id = 1 AND title = 'JDBC'

-- Alice updates the Post entity
UPDATE post SET likes=0, title='JPA', views=0 WHERE id=1

Concurrency Control 390

Bob’s update benefits from dirty attribute optimistic locking, just as expected. On the other
hand, Alice’s update is not using any optimistic locking at all.

That is because the reattached post entity misses the loaded state information, so the dirty
checking mechanism cannot be executed in this case. For this reason, Hibernate schedules
an update statement that simply copies the current entity state to the underlying database
record. Unfortunately, this can lead to lost updates since Alice is not aware of Bob’s latest
modification. If optimistic locking were working, Alice’s update would be prevented.

The eselectBeforeUpdate annotation allows Hibernate to fetch the entity snapshot prior to
executing the update query. This way, Hibernate can run the dirty checking mechanism and
make sure that the update is really necessary.

@Entity(name = "Post") @Table(name = "post")
@ptimisticLocking(type = OptimisticLockType.DIRTY)
@DynamicUpdate

@SelectBeforeUpdate

public class Post {

@Id
private Long id;

private String title;
private long views;
private int likes;

//Getters and setters omitted for brevity

Unfortunately, even when using eselectBeforeUpdate, the optimistic locking mechanism is still
circumvented, and Alice update transaction executes the following statements:

SELECT p.id AS id1_0_©_, p.likes AS likes2_0_0_, p.title AS title3_0_0_,
p.views AS views4_0_0_
FROM post p

WHERE p.id =1

UPDATE post SET title='JPA' WHERE id = 1

The dynamic update works since the update statement contains only the modified attribute,
but there is no optimistic locking filtering criteria.

Concurrency Control

If Alice uses the EntityManager .merge() operation:

doInJPA(entityManager -> {
detachedPost.setTitle("JPA");
entityManager .merge(detachedPost);

});

Hibernate executes the following SQL statements:

SELECT p.id AS id1_0_0_, p.likes AS likes2_0_0O_, p.title AS title3_0_0

FROM
WHERE

——

p.views AS views4_0_0_
post p
p.id = 1

UPDATE post SET title='JPA' WHERE id = 1 AND title = 'Hibernate'

391

The optimistic locking mechanism is used, but it is relative to the newly loaded entity state.
This time, lost updates can only be detected if, while merging the detached entity, Carol would
update the same Post entity title.

Statefulness to the rescue

Unfortunately, Bob’s update is still undetected by the versionless optimistic locking mech-
anism. The current entity state alone is no longer sufficient when merging a detached
entity version because the Persistence Context cannot determine which attributes have been
changed and which reference values are to be used in the where clause filtering criteria.

To fix it, the entity must store the loading-time attribute state so that the Persistence Context
can use it later for the optimistic locking where clause criteria, therefore, preventing any lost
update occurrence. However, this is impractical, and so the entity state must be stored either
in a stateful Persistence Context, or its loading-time version value be saved separately.

Using a numerical version is practical, but it can lead to optimistic locking conflicts because
all attributes are treated as a global all-or-nothing update attribute set. On the other hand,
the Persistence Context does not need to be closed. Only the database connection needs to
be released to allow other concurrent transactions to execute in the user think time. The
Persistence Context can be kept open so that entities never become detached. This way, the
entity loading-time state is never lost, and the versionless optimistic locking mechanism will
work even across multiple transactions. When using Java EE, a PersistenceContextType . EXTENDED
can be used inside a estateful EJB. Spring Webflow allows registering a Persistence Context
in the Httpsession so that the Entitymanager remains open throughout the whole lifecycle of the
current flow.

Concurrency Control 392

16.2 The explicit locking mechanism

While the implicit locking mechanism is suitable for many application concurrency control
requirements, there might be times when a finer-grained locking strategy is needed. JPA
offers a concurrency control API, on top of which the application developer can implement
really complex data integrity rules. The explicit locking mechanism works for both pessimistic
and optimistic locking.

For pessimistic concurrency control, JPA abstracts the database-specific locking semantics,
and, depending on the underlying database capabilities, the application developer can acquire
exclusive or shared locks.

If the implicit optimistic locking mechanism controls the entity version automatically, and
the application developer is not allowed to make changes to the underlying version attribute,
the explicit optimistic lock modes allow incrementing an entity version even if the entity was
not changed by the currently running transaction. This is useful when two distinct entities
need to be correlated so that a child entity modification can trigger a parent entity version
incrementation.

JPA offers various LockModeType(s) that can be acquired for the direct loading mechanism (e.g.
entityManager . find, entityManager.lock, entityManager.refresh) as well as for any JPQL or Criteria
API query (e.g. Query . setLockMode()).

The following table lists all LockModeType(s) that can be acquired by a particular entity:

Table 16.1: LockModeType(s)

Lock Mode Type Description
NONE In the absence of explicit locking, the application
uses the default implicit locking mechanism.

OPTIMISTIC or READ Issues a version check upon transaction commit.

OPTIMISTIC_FORCE_INCREMENT or WRITE Increases the entity version prior to committing
the current running transaction.

PESSIMISTIC_FORCE_INCREMENT An exclusive database lock is acquired, and the
entity version is incremented right away.

PESSIMISTIC_READ A shared database lock is acquired to prevent any
other transaction from acquiring an exclusive lock.

PESSIMISTIC_WRITE An exclusive lock is acquired to prevent any other
transaction from acquiring a shared /exclusive
lock.

The following sections will analyze each individual LockModeType in greater detail.

Concurrency Control 393

16.2.1 PESSIMISTIC_READ and PESSIMISTIC_WRITE

To acquire row-level locks, JPA defines two LockModeType: PESSIMISTIC_READ, for shared locks,
and pessimisTIC_WRITE, for exclusive locks. Unfortunately, there is no standard definition for
acquiring shared and exclusive locks, and each database system defines its own syntax.

Oracle

Only exclusive locks are supported for which Oracle defines the For upbaTeE® clause. Rows
that were selected with the For upDATE clause cannot be locked or modified until the current
transaction either commits or rolls back.

Ahttps://docs.oracle.com/database /121 /SQLRF /statements_10002.htm#SQLRF01702

SQL Server

SQL Server does not define a ForR UPDATE select statement clause, but instead it defines several
table hints®. The wITH (HoLDLOCK, RowLOCK) is equivalent to acquiring a shared lock until the
current running transaction is ended, whereas the wiTH (upbLock, HOLbLOCK, RowLock) hint can
be used to acquire an exclusive lock.

Ahttps://msdn.microsoft.com/en-us/library /ms187373.aspx

PostgreSQL

The select clause can take multiple locking clauses® among which For sHARE is used to acquire
a shared lock, whereas For UPDATE takes an exclusive lock on each selected row.

Ahttps:/ /www.postgresql.org/docs /current/static /sql-select.html#SQL-FOR-UPDATE-SHARE

MySQL

Just like PostgreSQL, the For uppATE clause can be used to acquire an exclusive lock, while
LOCK IN SHARE MODE? is used for shared locks.
Ahttp://dev.mysqgl.com/doc/refman /5.7 /en/innodb-locking-reads.html

https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF01702
https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF01702
https://msdn.microsoft.com/en-us/library/ms187373.aspx
https://msdn.microsoft.com/en-us/library/ms187373.aspx
https://www.postgresql.org/docs/current/static/sql-select.html#SQL-FOR-UPDATE-SHARE
https://www.postgresql.org/docs/current/static/sql-select.html#SQL-FOR-UPDATE-SHARE
http://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-locking-reads.html

Concurrency Control 394

When using Hibernate, the application developer needs not to worry about the locking syntax
employed by the underlying database system. To acquire an exclusive lock, the pPessIMISTIC_-
wrITE lock type must be used, and Hibernate will pick the underlying pialect lock clause.

For instance, when running the following entity lock acquisition request on PostgreSQL:
Post post = entityManager.find(Post.class, 1L, LockModeType.PESSIMISTIC_WRITE);
Hibernate is going to generate the following query:

SELECT p.id AS id1_0_©_, p.body AS body2 0_0_, p.title AS title3_0_0_,
p.version AS version4_0_0_

FROM post p

WHERE p.id = 1

FOR UPDATE

If the relational database offers support for acquiring shared locks explicitly, the PESSIMISTIC_-
ReAD lock type must be used instead. When fetching an entity directly using the PESSIMISTIC_READ
lock type on PostgreSQL:

Post post = entityManager.find(Post.class, 1L, LockModeType.PESSIMISTIC_READ);
Hibernate is going to use the For SHARE select clause:

SELECT p.id AS id1_0_©_, p.body AS body2 0_0_, p.title AS title3_0_0_,
p.version AS version4_0_0_

FROM post p

WHERE p.id = 1

FOR SHARE

If the underlying database does not support shared locks, when using the PEssIMISTIC_-
ReaD lock type, an exclusive lock is acquired instead. When running the previous
PEssIMISTIC_READ direct fetching example on Oracle, Hibernate will use a FOR UPDATE
select clause.

Although it is much more convenient to lock entities at the moment they are fetched from
the database, entities can also be locked even after they are loaded in the currently running
Persistence context.

Concurrency Control 395

For this purpose, the EntityManager interface defines the 1ock method which takes a managed
entity and a LockModeType:

Post post = entityManager.find(Post.class, 1L);
entityManager.lock(post, LockModeType.PESSIMISTIC_WRITE);

When running the aforementioned example, Hibernate is going to execute the following
statements:

SELECT p.id AS id1_©_0_, p.body AS body2_0_0_, p.title AS title3_0_0_,
p.version AS version4_0_0_
FROM post p

WHERE p.id =1

SELECT id

FROM post

WHERE id = 1 AND version = 0
FOR UPDATE

Only a managed entity can be passed to the 1ock method when using the Java Persistence
API. Otherwise, an IllegalArgumentException is being thrown indicating that the entity is not
contained within the currently running Persistence Context.

On the other hand, the Hibernate native API offers entity reattachment upon locking as
demonstrated by the following example:

Post post = doInJPA(entityManager -> {
return entityManager. find(Post.class, 1L);

});

doInJPA(entityManager -> {
LOGGER. info("Lock and reattach");
Session session = entityManager.unwrap(Session.class);
session.buildlLockRequest(
new LockOptions(LockMode.PESSIMISTIC_WRITE))
.lock(post);
post.setTitle("High-Performance Hibernate");

});

Concurrency Control 396

When running the test case above, Hibernate manages to acquire an exclusive lock on the
associated database record while also propagating the entity state change to the database:

SELECT p.id AS id1_0_0_, p.body AS body2_0_0_, p.title AS title3_0_0_,
p.version AS version4_0_0_
FROM post p

WHERE p.id = 1

-- Lock and reattach

SELECT id

FROM post

WHERE id = 1 AND version = 0
FOR UPDATE

UPDATE post
SET body
WHERE id

'Chapter 17 summary', title = High-Performance Hibernate'
1 AND version = 0

Because the detached entity becomes managed, the entity modification triggers an update
statement at flush time.

16.2.1.1 Lock scope

By default, the lock scope is bound to the entity that is being locked explicitly. However,
just like other entity state transitions, the lock acquisition request can be cascaded to child
associations like the postbetails and PostComment(s) entities in the next diagram.

l

£ Post
«& PostDetails
P comments List<PostComment> & = PostComment
P id Long
P title String P review String
:P post Post . .
* > P id Long ® .pid Long
:P createdOn Date
)) :P version int :P post Post
:P version int
:P body String :P version int
:P createdBy String :)
P details PostDetails

Figure 16.6: Post, PostDetails, and PostComment

The easiest way to lock a whole entity graph is to apply the LockModeType at the entity query
level.

Concurrency Control 397

When executing the following entity query:

Post post = entityManager.createQuery(
"select p " +
"from Post p " +
"join fetch p.details " +
"join fetch p.comments " +
"where p.id = :id", Post.class)
.setParameter("id", 1L)
.setlockMode (LockModeType. PESSIMISTIC_WRITE)
.getSingleResult();

Hibernate generates the following SQL query:

SELECT p.id AS id1_©0_0_, p.body AS body2_0_0_, p.title AS title3_0_0_,
p.version AS version4_0_0_, pd.id AS id1_2_1_,
pd.created_by AS created_2_2_1_, pd.created_on AS created_3_2_1_,
pd.version AS version4_2_1_, pc.id AS id1_1_2_,
pc.post_id AS post_id4_1_2_, pc.review AS review2_1_2_,
pc.version AS version3_1_2_, pc.post_id AS post_id4_1_0__,
pc.id AS id1_1_0__

FROM post p

INNER JOIN post_details pd ON p.id pd.id

INNER JOIN post_comment pc ON p.id = pc.post_id

WHERE p.id =1

FOR UPDATE

The For uppaTE clause is applied to all records that are being selected, therefore, the whole
result set is being locked. In this particular case, the lock scope depends on the query filtering
criteria.

Aside from entity queries, Hibernate can also propagate a lock acquisition request from
a parent entity to its children when using direct fetching. For this purpose, the child
associations must be annotated with the Hibernate specific cascadeType.Lock! attribute.

CascadeType.Lock can also be inherited implicitly when the child association is anno-
tated with the cascadeType.ALL attribute.

Ihttps://docs.jboss.org /hibernate /orm /current /javadocs /org /hibernate /annotations /CascadeType.html#LOCK

https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/annotations/CascadeType.html#LOCK
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/annotations/CascadeType.html#LOCK

Concurrency Control 398

To demonstrate how the lock can be cascaded, the post entity is changed so that the
CascadeType.ALL attribute is set on both comments and details child associations:

@OneToMany(cascade = CascadeType.ALL, mappedBy = "post", orphanRemoval = true)
private List<PostComment> comments = new ArraylList<>();

@0OneToOne(cascade = CascadeType.ALL, mappedBy = "post", orphanRemoval = true,
fetch = FetchType.LAZY, optional = false)
private PostDetails details;

The implicit or explicit cascadeType.Lock is not sufficient because the LockRequest? declares a
scope attribute which is disabled by default. For the lock to be cascaded, the scope attribute
must be set to true as in the following example:

Post post = entityManager.find(Post.class, 1L);
entityManager .unwrap(Session.class)
.buildLockRequest(

new LockOptions(LockMode.PESSIMISTIC_WRITE))
.setScope(true)
.lock(post);

However, when executing the test case above, Hibernate is going to lock only the post entity:

SELECT p.id AS id1_0_0_, p.body AS body2_0_0_, p.title AS title3_0_0_,
p.version AS version4_0_0_

FROM post p

WHERE p.id =1

SELECT id

FROM post

WHERE id = 1 AND version = 0
FOR UPDATE

For managed entities, Hibernate does not cascade the lock acquisition request even if the
scope attribute is provided, therefore, the entity query alternative is preferred.

When locking a detached entity graph, Hibernate is going to reattach every entity that
enabled cascade propagation while also propagating the lock request.

Zhttps://docs.jboss.org /hibernate /orm /current /javadocs /org /hibernate /Session.LockRequest.html

https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/Session.LockRequest.html
https://docs.jboss.org/hibernate/orm/current/javadocs/org/hibernate/Session.LockRequest.html

Concurrency Control 399

Post post = doInJPA(entityManager -> {
return entityManager.createQuery(
"select p " +
"from Post p " +
"join fetch p.details " +
"join fetch p.comments " +
"where p.id = :id", Post.class)
.setParameter("id", 1L)
.getSingleResult();
1)

doInJPA(entityManager -> {
entityManager .unwrap(Session.class)
.buildLockRequest(
new LockOptions(LockMode.PESSIMISTIC_WRITE))
.setScope(true)
.lock(post);
1)

When executing the test case above, Hibernate generates the following queries:

SELECT p.id AS id1_0_0_, pd.id AS id1_2_1_, pc.id AS id1_1_2_,
p.body AS body2 0 _0_, p.title AS title3_0_0_, p.version AS version4_0_0_,
pd.created_by AS created_2_2_1_, pd.created_on AS created_3_2_1

—4a L —4a L

pd.version AS version4_2_1_, pc.post_id AS post_id4_1_2

—a—l —A—

pc.review AS review2_1_2_ , pc.version AS version3_1_2_,
pc.post_id AS post_id4_1_0_ , pc.id AS id1_1_0__
FROM post p
INNER JOIN post_details pd ON p.id
INNER JOIN post_comment pc ON p.id

WHERE p.id =1

pd.id
pc.post_id

SELECT id FROM post_comment WHERE id = 2 AND version = © FOR UPDATE
SELECT id FROM post_comment WHERE id 3 AND version = @ FOR UPDATE

SELECT id FROM post_details WHERE id

1 AND version = © FOR UPDATE

SELECT id FROM post WHERE id =1 AND version =0 FOR UPDATE

Not only the post entity is being locked but also the postDetails and every PostComment child
entity.

Concurrency Control 400

However, if the post entity is loaded without initializing any child association:
Post post = doInJPA(entityManager -> (Post) entityManager.find(Post.class, 1L));
When running the previous test case, Hibernate is going to execute the following statements:

SELECT p.id AS id1_2_@_, p.created_by AS created_2_2_0_,
p.created_on AS created_3_2 0_, p.version AS version4_2_0_

FROM post_details p

WHERE p.id =1

SELECT id from post_details WHERE id =1 AND version = © FOR UPDATE

SELECT id from post WHERE id =1 AND version = O FOR UPDATE

Only the post and postDetails entities are locked this time. Because the postDetails entity had
not been fetched previously, the detached post entity was using a proxy which only held the
child association identifier and the child entity type. The one-to-one postDetails association
propagates all entity state transitions. Hence, the lock acquisition request is going to be
applied to the postbetails proxy as well. When being reassociated, the @oneToone and @ManyToone
associations are fetched right away, and the lock is, therefore, propagated.

On the other hand, the Postcomment child entries are not locked because Hibernate needs not to
fetch eoneToMany and emanyToMany associations upon reattaching the parent post entity. The lock
acquisition request is cascaded to child collections only if the collection is already initialized.

Locking too much data can hurt scalability because, once a row-level lock is acquired,
other concurrent transactions that need to modify this record are going to be blocked
until the first transaction either commits or rolls back. The lock cascading works only
with detached entities and only if the @oneToMany and eManyToMany associations have been
previously fetched.

Being applicable to both managed and detached entities and giving better control over
what entities are getting locked, the entity query locking mechanism is a much better
alternative than entity lock event cascading.

Concurrency Control 401

16.2.1.2 Lock timeout

When acquiring a row-level lock, it is good practice to set a timeout value for which the
current request is willing to wait before giving up. Depending on the current database bialect,
if the timeout value is greater than zero, Hibernate can use it to limit the lock acquisition
request interval.

For the Hibernate native API, the timeout value can be supplied like this:

entityManager .unwrap(Session.class)
.buildLockRequest(
new LockOptions(LockMode.PESSIMISTIC_WRITE)
.setTimeOut((int) TimeUnit.SECONDS.toMillis(3))

)
.lock(post);

With JPA, the timeout value is given through the following hint:

entityManager.lock(post, LockModeType.PESSIMISTIC_WRITE,
Collections.singletonMap(
"javax.persistence.lock.timeout",
TimeUnit.SECONDS.toMillis(3)

);

When running the aforementioned lock acquisition request on Oracle, Hibernate generates
the following SQL query:

SELECT id

FROM post

WHERE id = 1 AND version = 0
FOR UPDATE WAIT 3

Even if the timeout value is given in milliseconds, the Hibernate pialect converts it to
the underlying database supported format (e.g. seconds for Oracle).

Concurrency Control 402

To avoid any waiting, Hibernate comes with a no_waIT lock option which simply sets the
timeout value to 0.

entityManager .unwrap(Session.class)
.buildLockRequest(
new LockOptions(LockMode.PESSIMISTIC_WRITE)
.setTimeOut (LockOptions.NO_WAIT))
.lock(post);

The JPA alternative looks as follows:

entityManager.lock(post, LockModeType.PESSIMISTIC_WRITE,
Collections.singletonMap("javax.persistence.lock.timeout", @)

);

When running the lock acquisition request above on PostgreSQL, Hibernate is going to use
the No waIT PostgreSQL clause:

SELECT id

FROM post

WHERE id = 1 AND version = 0
FOR UPDATE NOWAIT

The Lockoptions.NO_WAIT option can only be used only if the underlying database
supports such a construct (e.g. Oracle and PostgreSQL). For other database systems,
this option is ignored and a regular pessimistic write lock clause is going to be used
instead.

When using no wAIT or some other timeout value greater than O, if the row is already locked,
the lock acquisition request is going to be aborted with the following exception:

ORA-00054: resource busy and acquire with NOWAIT specified or timeout expired

The exception is meant to notify the database client that the lock could not be acquired.
However, getting an exception is not always desirable, especially when implementing a job
queue mechanism.

For the following example, consider that post entries need to be moderated to avoid spam
messages or inappropriate content.

Concurrency Control 403

The post entity is going to use a status attribute which indicates if the post can be safely
displayed or it requires manual intervention from a site administrator.

& Post

fid Long E ' PostStatus
I title String 01 1 PENDING

I body String APPROVED

I status PostStatus SPAM

I version int

Figure 16.7: Post with PostStatus

The post entities can be moderated by multiple administrators, so, in order to prevent them
from approving the same entries, each administrator acquires a lock on the currently selected
Post entities.

List<Post> pendingPosts = entityManager.createQuery(

"select p " +

"from Post p " +

"where p.status = :status", Post.class)
.setParameter("status", PostStatus.PENDING)
.setFirstResult(5).setMaxResults(7)
.setlLockMode(LockModeType.PESSIMISTIC_WRITE)
.setHint("javax.persistence.lock.timeout", 0)
.getResultlList();

When Alice runs the aforementioned query on Oracle, Hibernate will generate the following
statements:

SELECT * FROM (
SELECT row_.*, rownum rownum_ FROM (
SELECT p.id AS id1_0_, p.body AS body2_@_, p.status AS status3_0_,
p.title AS title4_0@_, p.version AS version5_0_
FROM post p
WHERE p.status = 0
) row_
WHERE rownum <= 7
)
WHERE rownum_ > 5

5 AND version = O FOR UPDATE
6 AND version = O FOR UPDATE

SELECT id FROM post WHERE id
SELECT id FROM post WHERE id

Concurrency Control 404

Follow-on locking

The Oracle pialect cannot employ the For uPDATE clause when the underlying query uses
pagination because otherwise the database throws the following exception:

ORA-02014: cannot select FOR UPDATE from view with DISTINCT, GROUP BY, etc.

Because the original query cannot use the For UPDATE clause, each matching row must be
locked with a secondary select statement.

After Alice has locked some post records and started to moderate them, Bob decides to do the
same thing, but, when he tries to run the same query as Alice, he will get an exception because
the same rows are already locked. To address this usability issue, some database systems (e.g.
Oracle 10g, PostgreSQL 9.5) define a s«k1p Locked clause so a query can filter out row entries
that are already locked. The following example is going to demonstrate how sk1p LockeD works:

private List<Post> pendingPosts(EntityManager entityManager, int lockCount,

int maxResults, Integer maxCount) {

LOGGER . debug("Attempting to lock {} Post(s) entities", maxResults);

List<Post> posts= entityManager.createQuery(

"select p from Post p where p.status = :status", Post.class)

.setParameter("status", PostStatus.PENDING)

.setMaxResults(maxResults)

.unwrap(org.hibernate.Query.class)

.setlLockOptions(new LockOptions(LockMode.UPGRADE _SKIPLOCKED))

Jlist();

if(posts.isEmpty()) {
if(maxCount == null) {
maxCount = pendingPostCount(entityManager);

}
if(maxResults < maxCount || maxResults == lockCount) {

maxResults += lockCount;

return pendingPosts(entityManager, lockCount, maxResults, maxCount);
}

}
LOGGER.debug("{} Post(s) entities have been locked", posts.size());

return posts;

Concurrency Control 405

The pendingPostCount method calculates the maximum number of post entities that are eligible
for moderation.

private int pendingPostCount(EntityManager entityManager) {
int postCount = ((Number) entityManager.createQuery(
"select count(*) from Post where status = :status")
.setParameter("status", PostStatus.PENDING)
.getSingleResult()).intValue();

LOGGER . debug("There are {} PENDING Post(s)", postCount);
return postCount;

Because the aforementioned pendingPosts is private, the following simplified overloaded
method is going to be used by the service layer:

public List<Post> pendingPosts(EntityManager entityManager, int lockCount) {
return pendingPosts(entityManager, lockCount, lockCount, null);

With this new method in place, Alice and Bob can moderate distinct post entries without
risking any pessimistic locking conflict.

doInJPA(entityManager -> {
final int lockCount = 2;
LOGGER.debug("Alice wants to moderate {} Post(s)", lockCount);
List<Post> pendingPosts = pendingPosts(entityManager, lockCount);
List<Long> ids = pendingPosts
.stream() .map(Post::getld).collect(toList());
assertTrue(ids.size() == 2 && ids.contains(QL) &&
ids.contains(1L));

executeSync(() -> {
doInJPA(_entityManager -> {
LOGGER . debug("Bob wants to moderate {} Post(s)", lockCount);
List<Post> _pendingPosts = pendingPosts(_entityManager, lockCount);
List<Long> _ids = _pendingPosts
.stream().map(Post::getld).collect(toList());
assertTrue(_ids.size() == 2 &&
_ids.contains(2L) && _ids.contains(3L));

});
});
});

Concurrency Control 406

When running the aforementioned test case, Hibernate generates the following output:

-- Alice wants to moderate 2 Post(s)

-- Attempting to lock 2 Post(s) entities

SELECT * FROM (
SELECT p.id AS id1_0_, p.body AS body2_0_, p.status AS status3_0_,

p.title AS title4_0_, p.version AS version5_0_

FROM post p
WHERE p.status = 0

)

WHERE rownum <= 2

FOR UPDATE SKIP LOCKED

-- 2 Post(s) entities have been locked

-- Bob wants to moderate 2 Post(s)
-- Attempting to lock 2 Post(s) entities
SELECT * FROM (
SELECT p.id AS id1_0_, p.body AS body2_0_, p.status AS status3_0_,
p.title AS title4_©_, p.version AS version5_0_
FROM post p
WHERE p.status = 0
)
WHERE rownum <= 2
FOR UPDATE SKIP LOCKED

SELECT COUNT(*) AS col_0_0_
FROM post p

WHERE p.status = 0

-- There are 10 PENDING Post(s)

-- Attempting to lock 4 Post(s) entities
SELECT * FROM (
SELECT p.id AS id1_0_, p.body AS body2_©_, p.status AS status3_0_,
p.title AS title4_0_, p.version AS version5_0_
FROM post p
WHERE p.status = 0
)
WHERE rownum <= 4
FOR UPDATE SKIP LOCKED
-- 2 Post(s) entities have been locked

Concurrency Control 407

The flow can be explained as follows:

The 10ckcount variable dictates how many post entities a user should be locking at once.

Alice tries to lock 2 rost entities with a status of penping, and since no other user has
locked any such entity, she manages to lock the first 2 post records.

Bob also attempts to lock 2 post entities.

At first, Bob's tries to lock 2 PENDING Post (s), but the query returns no record. This happens
because the sk1p LockeD clause ignores the matching records that are already locked (by
Alice).

Bob counts the number of post entities to know many records are eligible for moderation.
Even if Alice locked two rows, because Oracle uses MVCC, the pendingPostCount query is
able to count both locked and unlocked database table records.

Knowing that there are still some records that might not be locked, he increments the
maxResults variable with the 1ockcount value.

The maxresults tells the maximum number of entities that can be scanned by the current
iteration.

Because the maxResults has a value of 4, there are 4 post records being scanned. However,
since Alice has locked the first two entries (identifiers 0 and 1), Bob can only lock the
next 2 records (identifiers 2 and 3).

Because Bob has managed to lock at least one post entity, he can continue with the
moderation process.

LockMode.UPGRADE_SKIPLOCKED

Long before JPA 1.0, Hibernate defined its own LockMode(s), which have been later used as
the base of the Java Persistence LockModeType(s). Although JPA 2.1 does not offer support for
skipping locks, when using Hibernate, by setting the timeout value to LockOptions.SKIP_LOCKED
(e.g. value of -2) the sk1p LockeD clause is applied to the pessimistic locking clause. However,
because of the follow-on locking behavior on Oracle, the skip LockeD cannot by applied to
the original query, so, not only the expected goal is not achieved, but this query will fail
due to a stale state false positive. If a given row is already locked, the secondary follow-on
locking query will not find any row, and Hibernate is going to assume that the row version
has changed, or the row was deleted in the meanwhile, causing an optimisticlLockingException.

Fortunately, with Hibernate 5.1, the LockMode . UPGRADE_SKIPLOCKED bypasses the follow-on locking
mechanism, as demonstrated by the previous example. Nevertheless, the locking query
cannot use any ORDER BY, GROUP BY, or offset pagination. Otherwise, Oracle is going to throw
an exception®.

Ahttps://docs.oracle.com/database /121 /SQLRF /statements_10002.htm#SQLRF55371

https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF55371
https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF55371
https://docs.oracle.com/database/121/SQLRF/statements_10002.htm#SQLRF55371

Concurrency Control 408

Hibernate 5.2.1 follow-on locking improvements

Since Hibernate 5.2.1, the Oracle Dialect does not resort to follow-on locking on every
situation. Therefore, the follow-on locking mechanism is activated if the underlying query
contains one of the subsequent directives:

® DISTINCT
* GROUP BY

® UNION OT UNION ALL

» Pagination with oroer BY or with OFFSET (e.g. setFirstResult)

For this reason, on Hibernate 5.2.1, the previous example which was using UPGRADE_SKIPLOCKED
LockMode to bypass the follow-on locking mechanism can be rewritten as follows:

List<Post> posts= entityManager.createQuery(

"select p from Post p where p.status = :status", Post.class)
.setParameter ("status", PostStatus.PENDING)
.setMaxResults(maxResults)

.unwrap(org.hibernate.Query.class)
.setlLockOptions(new LockOptions(LockMode.PESSIMISTIC_WRITE)

.setTimeOut (LockOptions.SKIP_LOCKED))

Jlist();

The aforementioned query works since it does not use any directive that would otherwise
require the follow-on locking mechanism.

More, if there is any situation where the follow-on locking mechanism is being chosen
although the underlying SQL query can successfully apply the row-level lock acquisition
request, the Lockoptions now offers the possibility of manually setting the follow-on locking
strategy:

List<Post> posts= entityManager.createQuery(

"select p from Post p where p.status = :status", Post.class)
.setParameter("status", PostStatus.PENDING)
.setMaxResults(maxResults)

.unwrap(org.hibernate.Query.class)

.setlLockOptions(new LockOptions(LockMode.PESSIMISTIC_WRITE)
.setTimeOut (LockOptions.SKIP_LOCKED)
.setFollowOnLocking(false))

Jlist();

Concurrency Control 409

16.2.2 LockModeType.OPTIMISTIC

To understand how LockModeType .OPTIMISTIC WOTkS, the following entities are going to be used
in the upcoming test cases:

&£ Post &£ PostComment

i Lon i Lon
id ong | , 1 id ong

f title String @ (i post Post

I body String I review String

I version int I version int

Figure 16.8: Post and PostComment entities

Once apost is published, users can add postcomment (s) to review and share their opinions about
the content of the aforementioned rost. Even if both entities have a version attribute, lost
updates can be prevented at the entity level only. However, the postComment entity is strictly
related to the state of the post entity that was used for reviewing. If a concurrent user modified
the post entity content, the postComment might no longer be relevant.

In the following example, Alice is going to select a post entity, and, while she is reviewing the
Post entity, Bob is changing its content so that it now references the 17th chapter of the book.
Alice, being unaware of the latest post change, she adds a postcomment for the 16th chapter of
the book.

doInJPA(entityManager -> {
LOGGER.info("Alice loads the Post entity");
Post post = entityManager.find(Post.class, 1L);

executeSync(() -> {
doInJPA(_entityManager -> {
LOGGER. info("Bob loads the Post entity and modifies it");
Post _post = _entityManager.find(Post.class, 1L);
_post.setBody("Chapter 17 summary");
1)
1)

LOGGER.info("Alice adds a PostComment to the previous Post entity version");
PostComment comment = new PostComment();

comment .setId(1L);

comment .setReview("Chapter 16 is about Caching.");

comment .setPost(post) ;

entityManager .persist(comment);

});

Concurrency Control 410

When executing the test case above, Hibernate generates the following output:

-- Alice loads the Post entity

SELECT p.id AS id1_0_©_, p.body AS body2_0_0©_, p.title AS title3_0_0_,
p.version AS version4_0_0_

FROM post p

WHERE p.id =1

-- Bob loads the Post entity and modifies it

SELECT p.id AS id1_0_©_, p.body AS body2_0_©_, p.title AS title3_0_0_,
p.version AS version4_0_0_

FROM post p

WHERE p.id =1

UPDATE post
SET body
title = 'High-Performance Java Persistence' ,

'Chapter 17 summary' ,

version = 1
WHERE id = 1 AND version = 0

-- Alice adds a PostComment review to the previous Post entity version
INSERT INTO post_comment (post_id, review, version, id)
VALUES (1, 'Chapter 16 is about Caching.', 0, 1)

This is still a lost update that would never happen if Alice were taking a shared lock on the post
entity. Unfortunately, a shared lock would compromise application scalability because Alice
reviews the post in the user-think time. For this reason, an optimistic lock should be acquired
on the post entity to ensure that the entity state hasn’t changed since it was first loaded.

entityManager.lock(post, LockModeType.OPTIMISTIC);

LOGGER. info("Alice adds a PostComment to the previous Post entity version");
PostComment comment = new PostComment();

comment.setId(1L);

comment .setReview("Chapter 16 is about Caching.");

comment . setPost(post);

entityManager .persist(comment);

LockModeType .OPTIMISTIC does not acquire an actual lock right way, but instead it schedules a
version check towards the end of the currently running transaction.

Concurrency Control 411

When executing the test case above while also acquiring the LockModeType.0OPTIMISTIC On the
Post entity, Hibernate generates the following output:

-- Alice adds a PostComment review to the previous Post entity version
INSERT INTO post_comment (post_id, review, version, id)
VALUES (1, 'Chapter 16 is about Caching.',6 0, 1)

SELECT version FROM post WHERE id = 1

javax.persistence.OptimisticLockException: Newer version [1] of entity
[[Post#1]] found in database

LockModeType . OPTIMISTIC instructs Hibernate to check the post entity version towards the end
of the transaction. If the version has changed, an optimisticLockException is thrown.

16.2.2.1 Inconsistency risk

Unfortunately, this kind of application-level check is always prone to inconsistencies due
to bad timing. For example, after Hibernate executes the version check select statement,
a concurrent transaction can simply update the post entity without the first transaction
noticing anything.

TransactionCoordinator EntityVerifyVersionProcess JdbcResourceTransaction

T T T

| | |

| | |
4 L -
— doBeforeTransactionCompletion >
Windows of opportunity

commit———>

Figure 16.9: LockModeType.OPTIMISTIC window of opportunity

During that window of opportunity, another concurrent transaction might change the post
entity record before the first transaction commits its changes. To prevent such an incident,
the

LockModeType .OPTIMISTIC Should be accompanied by a shared lock acquisition:

entityManager.lock(post, LockModeType.OPTIMISTIC);
entityManager.lock(post, LockModeType.PESSIMISTIC_READ);

This way, no other concurrent transaction can change the post entity until the current
transaction is ended.

Concurrency Control 412

16.2.3 LockModeType.OPTIMISTIC_FORCE_INCREMENT

LockModeType . OPTIMISTIC_FORCE_INCREMENT allows incrementing the locked entity version even if
the entity hasn’t changed at all in the currently running Persistence Context.

The eversion attribute should never have a setter method because this attribute is
managed automatically by Hibernate. To increment the version of a given entity, one
of the two Force_INCReMENT lock strategies must be used instead.

To understand how the LockModeType.OPTIMISTIC_FORCE_INCREMENT strategy works, consider the
following Version Control system:

4 Repository & Commit
& Change
fid Long fid Long)
. f path String
I name String |1 1_ (1 repository Repository | 1])
< e > @ diff String
I version int f changes List<Change>
\ A m Change()
m Repository() m Commit()
m Change(String, String)
m Repository(String) m Commit(Repository)

Figure 16.10: Repository, Commit, and Change

The repository is the root entity, and each change is represented by a commit entry which, in
turn, may contain one or more change embeddable types.

In this particular example, the Repository version must be incremented with each new commit
being added. The Rrepository entity version is used to ensure that commits are applied
sequentially, and a user is notified if a newer commit was added since she has updated her
working copy.

The following example depicts the user flow for this particular Version Control system:

Repository repository = entityManager.find(Repository.class, 1L,
LockModeType . OPTIMISTIC_FORCE_INCREMENT);

Commit commit = new Commit(repository);
commit.getChanges().add(new Change("FrontMatter.md", "@a1,5..."));
commit.getChanges().add(new Change("HibernateIntro.md", "17ci17..."));

entityManager .persist(commit);

When Alice executes the commit command, every file that she changes is going to be
represented by a change embeddable which also holds the diff between the original and the

Concurrency Control 413

current file content. The rRepository entity is loaded using the LockModeType . OPTIMISTIC_FORCE_IN-
crReMeNT lock strategy so that its version is going to be incremented at the end of the current
transaction.

Upon running the aforementioned test case, Hibernate generates the following statements:

SELECT r.id AS id1_2_@_, r.name AS name2_2_0_, r.version AS version3_2_0_
FROM repository r WHERE r.id = 1

INSERT INTO commit (repository_id, id) VALUES (1, 2)

INSERT INTO commit_change (commit_id, diff, path)

VALUES (2, '@a1,5...', 'FrontMatter.md')
INSERT INTO commit_change (commit_id, diff, path)
VALUES (2, '17c17...', 'Hibernatelntro.md")

UPDATE repository SET version = 1 WHERE id = 1 AND version = 0

The repository version is incremented before transaction completion, and, unlike LockMode-
Type.OPTIMISTIC, data integrity is guaranteed by the current transaction isolation level. If the
Repository version changed in between, the update will fail and an

OptimisticLockingException is going to trigger a transaction rollback.

In the following example, both Alice and Bob are going to issue two commits concurrently:

doInJPA(entityManager -> {
Repository repository = entityManager.find(Repository.class, 1L,
LockModeType .OPTIMISTIC_FORCE_INCREMENT);

executeSync(() -> {
doInJPA(_entityManager -> {
Repository _repository = _entityManager.find(Repository.class, 1L,
LockModeType .OPTIMISTIC_FORCE_INCREMENT);

Commit _commit = new Commit(_repository);
_commit.getChanges().add(new Change("Intro.md", "@a1,2..."));
_entityManager .persist(_commit);
1)
1)

Commit commit = new Commit(repository);

commit.getChanges().add(new Change("FrontMatter.md", "0a1,5..."));
commit.getChanges().add(new Change("HibernateIntro.md", "17ci17..."));
entityManager.persist(commit);

});

Concurrency Control 414

When running the aforementioned test case, Hibernate generates the following output:

-- Alice selects the Repository entity
SELECT r.id AS id1_2_0_, r.name AS name2_2_0_, r.version AS version3_2_0_

FROM repository r
WHERE r.id =1

-- Bob selects the Repository entity

SELECT r.id AS id1_2_©_, r.name AS name2_2_0_, r.version AS version3_2_0_
FROM repository r

WHERE r.id = 1

-- Bob adds a new Commit entity
INSERT INTO commit (repository_id, id) VALUES (1, 2)

INSERT INTO commit_change (commit_id, diff, path)
VALUES (2, '@a1,2...', 'Intro.md')

-- Bob increments the Repository version
UPDATE repository SET version = 1 WHERE id = 1 AND version = 0

-- Alice adds a new Commit entity
INSERT INTO commit (repository_id, id) VALUES (1, 3)

INSERT INTO commit_change (commit_id, diff, path)
VALUES (3, '©@a1,5...', 'FrontMatter.md')

INSERT INTO commit_change (commit_id, diff, path)
VALUES (3, '17c17...', 'Hibernatelntro.md")

-- Alice increments the Repository version
UPDATE repository SET version = 1 WHERE id = 1 AND version = 0

--Exception thrown

javax.persistence.RollbackException: Error while committing the transaction
Caused by: javax.persistence.OptimisticlLockException:

Caused by: org.hibernate.StaleObjectStateException:

Row was updated or deleted by another transaction

(or unsaved-value mapping was incorrect)

Concurrency Control

Bob Database
H--entityManager.find(Repository.class, 1L, LockModeType.OPTIMISTIC_FORCE_INCREMENT) —->|

............. INSERT INTO commit (repository_id, id) VALUES (1, 2) o
vvvvvvvvvvvv INSERT INTO commit_change (commit_id, diff, path) VALUES (2, '0a1,2...", 'Intro.md')-»
>>>>>>>>>>>>> UPDATE repository SET version =1 WHERE id = 1 AND version = 0 e

B INSERT INTO commit (repository_id, id) VALUES (1, 3)-- - - T >

INSERT INTO commit_change (commit_id, diff, path) VALUES (3, '0a1,5...", 'FrontMatter.md')
_____ I INSE?R_'; INTO ;(;r;mit_c_l'l_a_nge (c;_n"_lmit_id,_d_if?f, path;;/_ALUEé_(_B, '1701_7_.:', 'Hib;r;atelntr_o_._n;c;'_)_+
————— --UPDATE repository SET version = 1 WHERE id = 1 AND version = 0-——---——————=—————————————>|

0" -== -== ---OptimisticLockException --- -== -== Attty
Figure 16.11: LockModeType.OPTIMISTIC _FORCE _INCREMENT

The flow can be explained as follows:

415

repository

id:1

version:0

repository

id:1

version:1

* Alice fetches the repository entity and instructs Hibernate to acquire an oPTIMISTIC_FORCE_-

INCREMENT application-level lock.

* Alice’s thread is suspended by the JVM thread scheduler, so Bob gets the chance to fetch

the Repository entity using the oPTIMISTIC_FORCE_INCREMENT lock strategy.

* Bob manages to add a new commit entity, and his transaction is committed. Therefore, the

Repository entity version is also incremented.

* Alice thread is resumed, and she adds one commit entity and initiates a transaction

commit.

* The optimistic locking update fails because the rRepository version has changed.

) o

OPTIMISTIC_FORCE_INCREMENT is useful for propagating a child entity state change to the
parent entity optimistic locking version. By applying an optimistic lock on a common
parent entity, it is, therefore, possible to coordinate multiple child entities whose
changes need to be applied sequentially so that no update is being lost.

Concurrency Control 416

16.2.4 LockModeType.PESSIMISTIC_FORCE_INCREMENT

Just like OPTIMISTIC_FORCE_INCREMENT, PESSIMISTIC_FORCE_INCREMENT can be used to increment the
version of any given entity. However, if for opTIMIsTIC_FORCE_INCREMENT the entity version is
incremented towards the end of the currently running transaction, the PESSIMISTIC_FORCE_IN-
creMent forces the version incrementation right away, as demonstrated by the test case below.

Repository repository = entityManager.find(Repository.class, 1L,
LockModeType . PESSIMISTIC_FORCE_INCREMENT);

Commit commit = new Commit(repository);
commit.getChanges().add(new Change("FrontMatter.md", "@a1,5..."));
commit.getChanges().add(new Change("HibernateIntro.md", "17ci17..."));

entityManager .persist(commit);
Hibernate generates the following statements:

SELECT r.id AS id1_2_©_, r.name AS name2_2_0_, r.version AS version3_2_0_
FROM repository r
WHERE r.id =1

FOR UPDATE
UPDATE repository SET version = 1 WHERE id = 1 AND version = 0
INSERT INTO commit (repository_id, id) VALUES (1, 2)

INSERT INTO commit_change (commit_id, diff, path)
VALUES (2, '©a1,5...', 'FrontMatter.md')

INSERT INTO commit_change (commit_id, diff, path)
VALUES (2, '47c17...', 'Hibernatelntro.md")

The rRepository is locked using a For upDATE SQL clause in the select statement that fetches the
aforementioned entity. The Repository entity is also incremented before the entity is returned
to the data access layer.

In the following example, Alice is going to lock the repository only after she previously fetched
the very same entity. However, in the meanwhile, Bob is going to increment the Repository
entity version using a PESSIMISTIC_FORCE_INCREMENT lock.

Concurrency Control 417

Repository repository = entityManager.find(Repository.class, 1L);

executeSync(() -> {
doInJPA(_entityManager -> {
Repository _repository = _entityManager.find(Repository.class, 1L,
LockModeType . PESSIMISTIC_FORCE _INCREMENT) ;

Commit _commit = new Commit(_repository);
_commit.getChanges().add(new Change("Intro.md", "@a1,2..."));
_entityManager .persist(_commit);
1)
1)

entityManager.lock(repository, LockModeType.PESSIMISTIC FORCE_INCREMENT);
When running the test case above, Hibernate generates the following output:

-- Alice selects the Repository entity

SELECT r.id AS id1_2_@_, r.name AS name2_2_0_, r.version AS version3_2_0_
FROM repository r

WHERE r.id = 1

-- Bob selects the Repository entity

SELECT r.id AS id1_2_0_, r.name AS name2_2_0_, r.version AS version3_2_0_
FROM repository r

WHERE r.id =1

FOR UPDATE

-- Bob increments the Repository version upon fetching the Repository entity
UPDATE repository SET version = 1 WHERE id = 1 AND version = 0

-- Bob adds a new Commit entity
INSERT INTO commit (repository_id, id) VALUES (1, 2)

INSERT INTO commit_change (commit_id, diff, path)
VALUES (2, '@al1,2...', 'Intro.md")

-- Alice tries to increment the Repository entity version
UPDATE repository SET version = 1 WHERE id = 1 AND version = 0

-- Exception thrown
javax.persistence.OptimisticlLockException:
Caused by: org.hibernate.StaleObjectStateException:

Concurrency Control

Bob

Alice Database
————— -~ entityManager find(Repository.class, 1L)—--- - - - - i
--entityManager.find(Repository.class, 1L, LockModeType.PESSIMISTIC_FORCE_INCREMENT)-»|
UPDATE repository SET version = 1 WHERE id = 1 AND version =0 R

(..
vvvvvvvvvvvvv |NSERT |NTO Comm|t (repOSItory_ld, |d) VALUES (1, 2))

H-—"UPDATE repository SET version = 1 WHERE id = 1 AND version = 0- -- --=

--StaleObjectStateException-- --== --== --==

version:0

version:1

Figure 16.12: Fail fast PESSIMISTIC _FORCE _INCREMENT lock acquisition

The flow can be explained as follows:

418

repository

id:1

repository

id:1

* Alice fetches the repository entity without acquiring any physical or logical lock.
* Alice’s thread is suspended by the JVM thread scheduler, so Bob gets the chance to fetch

the Repository entity using the PESSIMISTIC_FORCE_INCREMENT lock strategy.
The rRepository entity version is incremented right away.
Bob manages to add a new commit entity, and his transaction is committed.

already fetched Repository entity.

Alice thread is resumed, and she attempts to acquire a PESSIMISTIC_FORCE_INCREMENT on the

The optimistic locking update fails because the repository version was changed by Bob.

’ The instantaneous version incrementation has the following benefits:

* Because the entity is locked at the database row level, the entity version

incrementation is guaranteed to succeed.
« If the entity was previously loaded without being locked and the

PESSIMISTIC_FORCE_INCREMENT version update fails, the currently running transac-

tion can be rolled back right away.

Concurrency Control 419

Once a transaction acquires the pessimIsTIC_FORCE_INCREMENT lock and increments the entity
version, no other transaction can acquire a PESSIMISTIC_FORCE_INCREMENT lock because the
second select statement is blocked until the first transaction releases the row-level physical
lock.

The following example aims to demonstrate how two concurrent transactions can be coor-
dinated through a common entity PESSIMISTIC_FORCE_INCREMENT lock acquisition.

doInJPA(entityManager -> {
Repository repository = entityManager.find(Repository.class, 1L,
LockModeType . PESSIMISTIC_FORCE _INCREMENT);

executeAsync(() -> doInJPA(_entityManager -> {
startLatch.countDown();
Repository _repository = _entityManager.find(Repository.class, 1L,
LockModeType . PESSIMISTIC_FORCE_INCREMENT);

Commit _commit = new Commit(_repository);
_commit.getChanges().add(new Change("Intro.md", "@a1,2..."));
_entityManager.persist(_commit);
_entityManager. flush();
endLatch.countDown();

1));

awaitOnLatch(startlLatch);

LOGGER. info("Sleep for 50@ms to delay the other transaction");

sleep(500);

Commit commit = new Commit(repository);
commit.getChanges().add(new Change("FrontMatter.md", "©a1,5..."));
commit.getChanges().add(new Change("HibernateIntro.md", "47ci17..."));

entityManager .persist(commit);

});
endLatch.await();

InterruptedException into a RuntimeException Which, unlike checked exceptions, can be
propagated throughout a lambda expression without having to add unnecessary
try/catch clauses.

’ The awaitonLatch and sleep method utilities have the role of converting the

Concurrency Control 420

When executing the test case above, Hibernate generates the following statements:

-- Alice selects the Repository entity

SELECT r.id AS id1_2_0_, r.name AS name2_2_0_, r.version AS version3_2_0_
FROM repository r

WHERE r.id = 1

FOR UPDATE

-- Alice increments the Repository version upon fetching the Repository entity
UPDATE repository SET version = 1 WHERE id = 1 AND version = 0

-- Bob tries to select the Repository entity, but his select is blocked
SELECT r.id AS id1_2_0_, r.name AS name2_2_0_, r.version AS version3_2_0_
FROM repository r

WHERE r.id =1

FOR UPDATE
-- Alice waits 500 ms to delay Bob's lock acquisition request

-- Alice adds a new Commit entity
INSERT INTO commit (repository_id, id) VALUES (1, 2)

INSERT INTO commit_change (commit_id, diff, path)
VALUES (2, '@a1,5...', 'FrontMatter.md")

INSERT INTO commit_change (commit_id, diff, path)
VALUES (2, '17c17...', 'Hibernatelntro.md')

-- Bob's increments the Repository version upon fetching the Repository entity
UPDATE repository SET version = 2 WHERE id = 1 AND version = 1

-- Bob adds a new Commit entity
INSERT INTO commit (repository_id, id) VALUES (1, 3)

INSERT INTO commit_change (commit_id, diff, path)
VALUES (3, '@al1,2...', 'Intro.md')

Concurrency Control

Alice |[Bob

INSERT INTO commit_change (commit_id, diff, path) VALUES (2, "17c17..

““““““““ UPDATE repository SET version = 2 WHERE id = 1 AND version = 1

Database
_____ | _entityManager.find(Repository.class, 1L, _ L L ey
LockModeType.PESSIMISTIC_FORCE_INCREMENT)
————— -—UPDATE repository SET version = 1 WHERE id = 1 AND version = 0--—----—-———-————-——————->
*___ - —_— —_— —_— —_— —_— —_— —_— —_— —_— -
“entityManager.find(Repository.class, 1L,
LockModeType.PESSIMISTIC_FORCE_INCREMENT)
T Wait for
row-level lock
----- F-INSERT INTO commit (repository_id, id) VALUES (1, 2)—----- --- - i
INSERT INTO commit_change (commit_id, diff, path) VALUES (2, '0a1,5...", 'FrontMatter.md")
_____ —_— —_— —_— —_— —_— —_— —_— —_— —_— SRS

.\, "Hibernate Irntro.md')

Figure 16.13: LockModeType.PESSIMISTIC _FORCE _INCREMENT

The flow can be explained as follows:

421

repository

id:1

version:0

repository

id:1

version:1

repository

id:1

version:2

* Alice fetches the repository entity while also acquiring a row-level lock and incrementing

the entity version.

* Alice’s thread is suspended by the JVM thread scheduler, so Bob gets the chance to fetch
the Repository entity using the PESSIMISTIC_FORCE_INCREMENT lock strategy.
* Because it uses a FOR UPDATE clause, Bob Repository entity select statement is blocked by

Alice’s row-level lock.

* Alice thread is resumed, and she waits for 500 ms to delay Bob’s lock acquisition request.
* Alice adds a new commit entity, and her transaction is committed. Therefore, the Repository

entity row-level lock is released.

* Bob can resume his select statement, and he acquires a row-level lock on the Repository

entity.

* The Repository entity version is incremented by the PESsIMISTIC_FORCE_INCREMENT lock

strategy.

* Bob manages to add his commit entity and commits his transaction.

Once the row-level lock is acquired, the entity version update is guaranteed to succeed,
therefore, reducing the likelihood of getting an optimisticLockingException.

111 J00Q

17. Why JOOQ matters

When working with a relational database, it all boils down to SQL statements.

As previously explained, Hibernate entity queries are suitable for read-write logical transac-
tions. For reporting, analytics or ETL (Extract, Transform, Load) native SQL queries are the
best choice since they can take advantage of database-specific features like window functions
or Common Table Expressions. Even for CRUD operations, there might be times when a
database-specific syntax is more suitable like it's the case for the upsert SQL operation!.

While Hibernate does a very good job to automate the vast majority of statements, it is unlikely
that you can rely on Hibernate alone for every business use case. Therefore, native queries
are a necessity for most enterprise applications.

As demonstrated in the Native query DTO projection section, both JPA and Hibernate provide
a way to execute native SQL statements. Being able to execute any SQL statement is great,
but, unfortunately, the JPA approach is limited to static statements only. To build native SQL
statement dynamically, JPA and Hibernate are no longer enough.

17.1 How jOOQ works

JOOQ is a query builder framework that allows you generate a great variety of database-
specific statements using a Java API. The psLcontext is the starting point to building any SQL
statement, and it requires two things:

* areference to a JDBC Connection
* a database dialect so that it can translate the Java API query representation into a
database-specific SQL query

For instance, when using PostgreSQL 9.5, the psLcontext can be constructed as follows:

DSLContext sql = DSL.using(connection, SQLDialect.POSTGRES_9_5);

17.2 DML statements

With the psLcontext in place, it’s time to show some simple DML statements like insert, update,
delete, as well as a trivial select query. What'’s worth noticing is that the Java API syntax is
almost identical to its SQL counterpart, so most jOOQ queries are self-describing.

Ihttps:/ /en.wikipedia.org /wiki/Merge_(SQL)

https://en.wikipedia.org/wiki/Merge_(SQL)
https://en.wikipedia.org/wiki/Merge_(SQL)

Why jOOQ matters 424

To delete all records for the post table, the following jOOQ statement must be used:

sql
.deleteFrom(table("post"))
.execute();

Which translates to the following SQL statement:
DELETE FROM post
To insert a new post table row, the following jOOQ statement can be used:

assertEquals(1, sql
.insertInto(table("post")).columns(field("id"), field("title"))
.values(1L, "High-Performance Java Persistence")
.execute()

);

Just like in JDBC, the execute method return the affected row count for the current insert,
update, OT delete SQL statement.

When running the previous jOOQ query, the following SQL statement is being executed:

INSERT INTO post (id, title)
VALUES (1, 'High-Performance Java Persistence')

When updating the previously inserted record:

sql

.update(table("post"))

.set(field("title"), "High-Performance Java Persistence Book")
.where(field("id").eq(1))

.execute();

JOOQ generates the following SQL statement:

UPDATE post
SET title = 'High-Performance Java Persistence Book'
WHERE id = 1

Why jOOQ matters 425

Selecting the previously updated record is just as easy:

assertEquals("High-Per formance Java Persistence Book", sql
.select(field("title"))
.from(table("post"))
.where(field("id").eq(1))
.fetch().getValue(@, "title")
)i

To execute the statement and return the SQL query result set, the fetch method must be used.
As expected, the previous jJOOQ query generates the following SQL statement:

SELECT title FROM post WHERE id = 1

17.3 Java-based schema

All the previous queries were referencing the database schema explicitly, like the table name
or the table columns. However, just like JPA defines a Metamodel API for Criteria queries,
jOOQ allows generating a Java-based schema that mirrors the one in the database.

Application run > Generation reverse
Setup —

Tool engineering

creates

v

Java-based
Schema

Database

Figure 17.1: Java-based schema generation

There are many advantages to having access to the underlying database schema right from
the Java data access layer. For instance, when executing a database stored procedure,
the argument types can be bound at compile-time. The same argument holds for query
parameters or the result set obtained from running a particular query.

When a column name needs to be modified, there is no risk of forgetting to update a given
jOOQ statement because a Java-based schema violation will prevent the application from
compiling properly. From a development perspective, the Java-based schema enables the IDE
to autocomplete jOOQ queries, therefore increasing productivity and reducing the likelihood
of typos.

Why jOOQ matters 426

After generating the Java-based schema, the application developer can use it to build any
type-safe jOOQ query.

Y

uses SQL

Database
uses

Java-based
Schema

Figure 17.2: Typesafe schema usage

To rewrite the previous DML statements to use the Java-based schema, the generated schema
classes need to be imported first:

import static com.vladmihalcea.book.hpjp. jooq.pgsql.schema.Tables.POST;

With the Java-based schema in place, the previous DML statements become even more
descriptive:

sql.deleteFrom(POST) .execute();

assertEquals(1, sql
.insertInto(POST).columns(POST.ID, POST.TITLE)
.values(1L, "High-Performance Java Persistence")
.execute()

)

sql

.update(POST)

.set(POST.TITLE, "High-Performance Java Persistence Book")
.where(POST.ID.eq(1L))

.execute();

assertEquals("High-Per formance Java Persistence Book", sql
.select(POST.TITLE)
. from(POST)
.where(POST.ID.eq(1L))
.fetch().getValue(@, POST.TITLE)

Why jOOQ matters 427

Although jOOQ can work just fine without a Java-based schema, it is much more
practical to use typesafe queries whenever possible.

17.4 Upsert

In database terminology, an upsert statement is a mix between an insert and an update
statement. First, the insert statement is executed and if it succeeds, the operation return
successfully. If the insert fails, it means that there is already a database row matching the
same unique constraints with the insert statement. In this case, an update is issued against
the database row that matches the given filtering criteria.

The SQL:2003 and SQL:2008 standards define the MerGE statement, which among other
scenarios, it can be used to emulate the upsert operation. However, MERGE acts more like an
if-then-else statement, therefore being possible to combine insert, update, and delete state-
ments. While upsert implies the same database table, Merce can also be used to synchronize
the content of two different tables.

Oracle and SQL Server implement the MerGe operation according to the standard specification,
whereas MySQL and PostgreSQL provide only an implementation for the upsert operation.

JOOQ implements the upsert operation, therefore, managing to translate the Java-based
query to the underlying database-specific SQL syntax.

To visualize how upsert works, consider the following method which aims to insert a post_-
details record if there is none, or to update the existing record if there is already a row with
the same primary key:

public void upsertPostDetails(
DSLContext sql, Biglnteger id, String owner, Timestamp timestamp) {
sql
.insertInto(POST_DETAILS)
.columns(POST_DETAILS.ID, POST_DETAILS.CREATED_BY, POST_DETAILS.CREATED_ON)
.values(id, owner, timestamp)
.onDuplicateKeyUpdate()
.set (POST_DETAILS.UPDATED_BY, owner)
.set (POST_DETAILS.UPDATED_ON, timestamp)
.execute();

Why jOOQ matters 428

Two users, Alice and Bob, are going to execute the upsertPostDetails method concomitantly,
and, because of the upsert logic, the first user is going to insert the record while the second
one is going to update it, without throwing any exception:

executeAsync(() -> {
upsertPostDetails(sql, BigInteger.valueOf(1), "Alice",
Timestamp. from(LocalDateTime.now().tolnstant(ZoneOffset.UTC)));
1)
executeAsync(() -> {
upsertPostDetails(sql, BigInteger.valueOf(1), "Bob",
Timestamp. from(LocalDateTime.now().tolnstant(ZoneOffset.UTC)));

});

JOOQ is going to translate the upsert Java-based operation to the specific syntax employed
by the underlying relational database.

17.4.1 Oracle

On Oracle, jOOQ uses the MerGE statement to implement the upsert logic:

MERGE INTO "POST_DETAILS" USING
(SELECT 1 "one" FROM dual) ON ("POST_DETAILS"."ID" = 1)
WHEN MATCHED THEN
UPDATE SET
"POST_DETAILS"."UPDATED_BY" = 'Alice',
"POST_DETAILS"."UPDATED_ON" '2016-08-11 12:19:48.22"'
WHEN NOT MATCHED THEN
INSERT ("ID", "CREATED_BY", "CREATED_ON")
VALUES (1, 'Alice', '2016-08-11 12:19:48.22")

MERGE INTO "POST_DETAILS" USING
(SELECT 1 "one" FROM dual) ON ("POST_DETAILS"."ID" = 1)
WHEN MATCHED THEN

UPDATE SET
"POST_DETAILS"."UPDATED_BY" = 'Bob"',
"POST_DETAILS"."UPDATED_ON" = '2016-08-11 12:19:48.442"'

WHEN NOT MATCHED THEN
INSERT ("ID", "CREATED_BY", "CREATED_ON")
VALUES (1, 'Bob', '2016-08-11 12:19:48.442")

Why jOOQ matters 429

17.4.2 SQL Server

Just like with Oracle, jOOQ uses MeRrGE to implement the upsert operation on SQL Server:

MERGE INTO [post_details] USING
(SELECT 1 [one]) AS dummy_82901439([one]) ON [post_details].[id] =1
WHEN MATCHED THEN
UPDATE SET
[post_details].[updated_by] = 'Alice',
[post_details]. [updated_on] '2016-08-11 12:36:33.458"
WHEN NOT MATCHED THEN
INSERT ([id], [created_by], [created_on])
VALUES (1, 'Alice', '2016-08-11 12:36:33.458')

MERGE INTO [post_details] USING
(SELECT 1 [one]) AS dummy_82901439([one]) ON [post_details].[id] = 1
WHEN MATCHED THEN
UPDATE SET
[post_details] . [updated_by] "Bob ',
[post_details].[updated_on] = '2016-08-11 12:36:33.786'
WHEN NOT MATCHED THEN
INSERT ([id], [created_by], [created_on])
VALUES (1, 'Bob', '2016-08-11 12:36:33.786"')

17.4.3 PostgreSQL

As opposed to Oracle and SQL Server, PostgreSQL offers the on conrLICT clause, which jOOQ
uses for implementing upsert:

INSERT INTO "post_details" ("id", "created_by", "created_on")
VALUES (1, 'Alice', CAST('2016-08-11 12:56:01.831' AS timestamp))
ON CONFLICT ("id") DO

UPDATE SET
"updated_by" = 'Alice’,
"updated_on" = CAST('2016-08-11 12:56:01.831' AS timestamp)

INSERT INTO "post_details" ("id", "created_by", "created_on")
VALUES (1, 'Bob', CAST('2016-08-11 12:56:01.865' AS timestamp))
ON CONFLICT ("id") DO
UPDATE SET

"updated_by" = 'Bob',

"updated_on" = CAST('2016-08-11 12:56:01.865' AS timestamp)

Why jOOQ matters 430

17.4.4 MySQL

Almost identical to PostgreSQL, MySQL uses the on pupLICATE KEY for upsert:

INSERT INTO “post_details™ (°id’, “created_by’, “created_on’)
VALUES (1, 'Alice', '2016-08-11 13:27:53.898"')
ON DUPLICATE KEY
UPDATE
"post_details™ . updated_by" = 'Alice’',
“post_details™ . updated_on" '2016-08-11 13:27:53.898'

INSERT INTO “post_details™ (°id’, “created_by’, “created_on’)

VALUES (1, 'Bob', '2016-08-11 13:27:53.905"')

ON DUPLICATE KEY

UPDATE
“post_details” . updated_by"
"post_details™ . updated_on"

'Bob",
'2016-08-11 13:27:53.905"

17.5 Batch updates

As previously explained, JDBC batching plays a very important role in tuning the data access
layer write operation performance. While Hibernate offers automated JDBC batching, for
entities using identity columns, insert statements do not benefit from this feature. This is
because Hibernate requires the entity identifier upon persisting the entity, and the only way
to know the identity column value is to execute the insert statement.

Instead of implementing an automatic entity state management mechanism like Hibernate,
jOOQ takes a WYSIWYG (what you see is what you get) approach to persistence. Even
if nowadays many relational database systems offer sequences (Oracle, SQL Server 2012,
PostgreSQL, MariaDB), the identity generator is still the only viable option for MySQL (e.g.
AUTO_INCREMENT). However, since MySQL has a very significant market share, it is important to
know that, with jOOQ, JDBC batching works just fine with insert statements.

To batch the insert statements associated to three post entries, jOOQ offers the following API:

BatchBindStep batch = sql.batch(sqgl.insertInto(POST, POST.TITLE).values("?"));

for (int i = 0; i < 3; i++) {
batch.bind(String. format("Post no. %d", i));
}

int[] insertCounts = batch.execute();

Why jOOQ matters 431
Running this test case on MySQL, jOOQ generates the following output:
INSERT INTO “post™ ("title’) VALUES (Post no. 0), (Post no. 1), (Post no. 2)

As illustrated, jOOQ manages to batch all inserts in a single database roundtrip.

When using Hibernate with MySQL and need to perform lots of inserts, it is a good
idea to execute the batch inserts with jOOQ.

17.6 Inlining bind parameters

By default, just like Hibernate, jJOOQ uses Preparedstatement(s) and bind parameter values. This
is avery good default strategy since prepared statements can benefit from statement caching,
as previously explained.

However, every rule has an exception. Because the bind parameter values might influence
the execution plan, reusing a cached plan might be suboptimal in certain scenarios. Some
database systems use statistics to monitor the efficiency of a cached execution plan, but the
automatic adjustment process might take time.

For this reason, it is not uncommon to want to bypass the execution plan cache for certain
queries that take skewed bind parameter values. Because the query string forms the cache
key, by inlining the bind parameter values into the SQL statement, it is for sure that the
database will either generate a new plan or pick the cached execution plan that was generated
for the very same SQL statement.

This workaround can address the issue when bind parameter values are skewed, but it
requires building the SQL statement dynamically. The worst thing to do would be to start
concatenating string fragments and risk SQL injection attacks. Fortunately, jOOQ offers a
way to inline the bind parameters right into the SQL statements without exposing the data
access layer to SQL injection vulnerabilities. The jOOQ API ensures the bind parameter values
match the expected bind parameter types.

Because by default jOOQ relies on PreparedStatement(s), to switch to using an inlined Statement,
it is required to provide the following setting upon creating the psLContext:

DSLContext sql = DSL.using(connection, sqglDialect(),
new Settings().withStatementType(StatementType.STATIC_STATEMENT));

Why jOOQ matters 432

Afterward, when executing a parameterized query:

List<String> titles = sql
.select(POST.TITLE)

. from(POST)
.where(POST.ID.eq(1L))

. fetch(POST.TITLE);

JOOQ is going to inline all bind parameter values into the SQL statement String:

SELECT “post . title"
FROM “post”
WHERE “post™. id™ =1

Without supplying the StatementType.STATIC_STATEMENT setting, when using datasource-proxy to
intercept the executed SQL statement, the actual executed statement looks as follows:

Query:["select “post’. title’ from “post’ where “post>.id> = ?"],
Params: [(1)]

Previous Hibernate and jOOQ SQL snippet format

Although most SQL snippets generated by Hibernate or jOOQ in this book give the impression
that bind parameters are inlined, that was just for readability sake since the bind parameter
values were manually inlined after extracting the SQL statement from the actual logs.

In reality, all Hibernate statements as well as all jJOOQ statements using the default
StatementType . PREPARED_STATEMENT type are using bind parameter placeholders as illustrated in
the aforementioned datasource-proxy output.

17.7 Complex queries

In the Native query DTO projection section, there was an SQL query using Window Functions,
Derived Tables, and Recursive CTE (Common Table Expressions). Not only that it’s possible
to rewrite the whole query in Java, but that can be done programmatically.

The postCommentscores method shows how Derived Tables and Window Functions work with
jOOQ. In fact, the jOOQ API resembles almost identically the actual SQL statement.

Why jOOQ matters

public List<PostCommentScore> postCommentScores(Long postld, int rank) {
return doInJOOQ(sql -> {
return sql
.select(field(name(TSG, "id"), Long.class),
field(name(TSG, "parent_id"), Long.class),
field(name(TSG, "review"), String.class),
field(name(TSG, "created_on"), Timestamp.class),
field(name(TSG, "score"), Integer.class)
)
. from(sqgl
.select(field(name(ST, "id")), field(name(ST, "parent_id")),
field(name(ST, "review")), field(name(ST, "created_on")),
field(name(ST, "score")),
denseRank () .over (orderBy(field(name(ST, "total_score")).desc()))
.as("rank"))
.from(sqgl
.select(field(name(SBC, "id")),
field(name(SBC, "parent_id")), field(name(SBC, "review")),
field(name(SBC, "created_on")), field(name(SBC, "score")),
sum(field(name(SBC, "score"), Integer.class))
.over (partitionBy(field(name(SBC, "root_id"))))
.as("total_score")
)
.from(sqgl
.withRecursive(withRecursiveExpression(sql, postId))
.select(field(name(PCS, "id")),
field(name(PCS, "parent_id")),
field(name(PCS, "root_id")), field(name(PCS, "review")),
field(name(PCS, "created_on")),
field(name(PCS, "score")))
.from(table(PCS)).asTable(SBC)
) .asTable(ST)
)
.orderBy/(
field(name(ST, "total_score")).desc(),
field(name(ST, "id")).asc()
).asTable(TSG)
)
.where(field(name(TSG, "rank"), Integer.class).le(rank))
. fetchInto(PostCommentScore.class);

});

433

Why jOOQ matters 434

Because following a very large query is sometimes difficult, with jOOQ, it’s fairly easy to
break a query into multiple building blocks. In this particular example, the wITH RECURSIVE
query is encapsulated in its own method. Aside from readability, it is possible to reuse the
withRecursiveExpression query method for other use cases, therefore reducing the likelihood
of code duplication.

private CommonTableExpression<Record7<Long, Long, Long, Long, String, Timestamp,
Integer>> withRecursiveExpression(DSLContext sql, Long postId) {
return name(POST_COMMENT_SCORE).fields("id", "root_id", "post_id",
"parent_id", "review", "created_on", "score"
.as(sql.select(
POST_COMMENT . ID, POST_COMMENT.ID, POST_COMMENT.POST_ID,
POST_COMMENT . PARENT _ID, POST_COMMENT.REVIEW,
POST_COMMENT . CREATED_ON, POST_COMMENT .SCORE)
. from(POST_COMMENT)
.where(POST_COMMENT .POST_ID.eq(postId)
.and(POST_COMMENT . PARENT _1D.isNull()))
.unionAl1(
sql.select(
POST_COMMENT . ID,
field(name("post_comment_score", "root_id"), Long.class),
POST_COMMENT .POST_ID, POST_COMMENT.PARENT_ID,
POST_COMMENT .REVIEW, POST_COMMENT.CREATED_ON,
POST_COMMENT . SCORE)
. from(POST_COMMENT)
.innerJoin(table(name(POST_COMMENT_SCORE)))
.on(POST_COMMENT . PARENT 1D eq(
field(name(POST_COMMENT_SCORE, "id"), Long.class)))

To fetch the list of PostcommentScore entries, the application developer just has to call the
postCommentScores method. However, the application requires the pPostCommentScore entries to
be arranged in a tree-like structure based on the parent1d attribute. This was also the case
with Hibernate, and that was the reason for providing a custom ResultTransformer. Therefore,
a PostCommentScoreRootTrans former is added for the jOOQ query as well.

List<PostCommentScore> postCommentScores = PostCommentScoreRootTransformer.
INSTANCE . transform(postCommentScores(postId, rank));

Why jOOQ matters 435

The PostCommentScoreRootTrans former class is almost identical to the PostCommentScoreResultIrans-
former used in the Hibernate Fetching chapter.

public class PostCommentScoreRootTransformer {

public static final PostCommentScoreRootTransformer INSTANCE =
new PostCommentScoreRootTransformer();

public List<PostCommentScore> transform(
List<PostCommentScore> postCommentScores) {
Map<Long, PostCommentScore> postCommentScoreMap = new HashMap<>();
List<PostCommentScore> roots = new ArraylList<>();

for (PostCommentScore postCommentScore : postCommentScores)

Long parentId = postCommentScore.getParentId();

if (parentld == null) {
roots.add(postCommentScore) ;

} else {
PostCommentScore parent = postCommentScoreMap.get(parentId);
if (parent != null) {

parent.addChild(postCommentScore);

}
postCommentScoreMap . putlfAbsent(

postCommentScore.getId(), postCommentScore);

}

return roots;

17.8 Stored procedures and functions

When it comes to calling stored procedures or user-defined database functions, jOOQ is
probably the best tool for this job. Just like it scans the database metadata and builds a Java-
based schema, jOOQ is capable of generating Java-based stored procedures as well.

For example, the previous query can be encapsulated in a stored procedure which takes
the postid and the rankid and returns a rRercursor which can be used to fetch the list of
PostCommentScore entries.

Why jOOQ matters

CREATE OR REPLACE FUNCTION post_comment_scores(postId BIGINT, rankId INT)

RETUR
$BODY$
DECL

BEGI

END;

NS REFCURSOR AS

ARE

postComments REFCURSOR;

N

OPEN postComments FOR
SELECT id, parent_id, review, created_on, score

FROM (
SELECT

id, parent_id, review, created_on, score,
dense_rank() OVER (ORDER BY total_score DESC) rank

FROM (

SELECT
id, parent_id, review, created_on, score,
SUM(score) OVER (PARTITION BY root_id) total_score
FROM (

WITH RECURSIVE post_comment_score(id, root_id, post_id,

)

parent_id, review, created_on, score) AS (

SELECT
id, id, post_id, parent_id, review, created_on,
score

FROM post_comment

WHERE post_id = postId AND parent_id IS NULL

UNION ALL

SELECT pc.id, pcs.root_id, pc.post_id, pc.parent_id,
pc.review, pc.created_on, pc.score

FROM post_comment pc

INNER JOIN post_comment_score pcs

ON pc.parent_id = pcs.id

SELECT id, parent_id, root_id, review, created_on, score

FROM post_comment_score

) score_by_comment

) score_total
ORDER BY total_score DESC, id ASC
) total_score_group
WHERE rank <= ranklId;
RETURN postComments;

$BODY$ LANGUAGE plpgsql

436

Why jOOQ matters 437

When the Java-based schema was generated, jOOQ has created a postCommentscore class for
the post_comment_scores PostgreSQL function. The postCommentscore jOOQ utility offers a very
trivial API, so calling the post_comment_scores function is done like this:

public List<PostCommentScore> postCommentScores(Long postIld, int rank) {
return doInJOOQ(sgl -> {
PostCommentScores postCommentScores = new PostCommentScores();
postCommentScores.setPostid(postId);
postCommentScores.setRankid(rank);
postCommentScores.execute(sql.configuration());
return postCommentScores.getReturnValue().into(PostCommentScore.class);

});

}
With jOOQ, calling database stored procedures and user-defined functions is as easy
as calling a Java method.

17.9 Streaming

When processing large result sets, it's a good idea to split the whole data set into multiple
subsets that can be processed in batches. This way, the memory is better allocated among
multiple running threads of execution.

One way to accomplish this task is to split the data set at the SQL level, as explained in the
DTO projection pagination section. Streaming is another way of controlling the fetched result
set size, and jOOQ makes it very easy to operate on database cursors.

To demonstrate how streaming works, let’s consider a forum application which allows only
one account for every given user. A fraud detection mechanism must be implemented to
uncover users operating on multiple accounts.

To identify a user logins, the IP address must be stored in the database. However, the IP
alone is not sufficient since multiple users belonging to the same private network might
share the same public IP. For this reason, the application requires additional information to
identify each particular user. Luckily, the browser sends all sorts of HTTP headers which
can be combined and hashed into a user fingerprint. To make the fingerprint as effective
as possible, the application must use the following HTTP headers: User Agent, Content
Encoding, Platform, Timezone, Screen Resolution, Language, List of Fonts, etc.

Why jOOQ matters 438

The user_id, the ip and the fingerprint are going to be stored in a post_comment_details table.
Every time a post_comment is being added, a new post_comment_details is going to be inserted
as well. Because of the one-to-one relationship, the post_comment and the “post_comment_-
details' tables can share the same Primary Key.

:] post_comment_details V¥
id BIGINT(20)
post_id BIGINT(20)
user_id BIGINT(20)
ip VARCHAR(18)
fingerprint VARCHAR(256)

>

Figure 17.3: The post_comment _details table

The fraud detection batch process runs periodically and validates the latest added post_com-
ment_details. Because there can be many records to be scanned, a database cursor is used.

JOOQ offers a Java 8 stream API for navigating the underlying database cursor, therefore, the
batch process job can be implemented as follows:

try (Stream<PostCommentDetailsRecord> stream = sql
.selectFrom(POST_COMMENT_DETAILS)
.where(POST_COMMENT_DETAILS.ID.gt(lastProcessedld))
.stream()) {
processStream(stream);

The try-with-resources statement is used to ensure that the underlying database
stream always gets closed after being processed.

Because there can be thousands of posts added in a day, when processing the stream, a fixed-
size HashMap is used to prevent the application from running out of memory.

To solve this issue, a custom-made MaxsizeHashMap can be used so that it provides a FIFO (first-
in, first-out) data structure to hold the current processing data window. Implementing a
MaxSizeHashMap is pretty straight forward since java.util.LinkedHashMap Offers a removeEldestEntry
extension callback which gets called whenever a new element is being added to the Map.

Why jOOQ matters 439

public class MaxSizeHashMap<K, V> extends LinkedHashMap<K, V> {
private final int maxSize;

public MaxSizeHashMap(int maxSize) {
this.maxSize = maxSize;

@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > maxSize;

The 1pFingerprint class is used for associating multiple user ids to a specific IP and fingerprint.
Because the 1pFingerprint object is used as a Map key, the equals and hashCode methods must be
implemented so that they use the associated IP and fingerprint.

public class IpFingerprint {
private final String ip;
private final String fingerprint;

public IpFingerprint(String ip, String fingerprint) {

this.ip = ip;
this. fingerprint = fingerprint;
}
@0Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
IpFingerprint that = (IpFingerprint) o;
return Objects.equals(ip, that.ip) &&
Objects.equals(fingerprint, that.fingerprint);
}
@0verride

public int hashCode() {
return Objects.hash(ip, fingerprint);

With these utilities in place, the processStream must create a tree structure that can be
navigated as follows: post_id -> IpFingerprint —> list of user_id.

Why jOOQ matters 440

The processstream method iterates the underlying database cursor and builds a vap where the
key is the post_id and the value is a Map of fingerprints and user ids.

private void processStream(Stream<PostCommentDetailsRecord> stream) {
Map<Long, Map<IpFingerprint, List<Long>>> registryMap =
new MaxSizeHashMap<>(25);

stream. forEach(postCommentDetails -> {
Long postId = postCommentDetails
.get (POST_COMMENT_DETAILS.POST_ID);
String ip = postCommentDetails
.get (POST_COMMENT_DETAILS.IP);
String fingerprint = postCommentDetails
.get (POST_COMMENT_DETAILS.FINGERPRINT);
Long userId = postCommentDetails
.get (POST_COMMENT_DETAILS.USER_ID);

Map<IpFingerprint, List<Long>> fingerprintsToPostMap =
registryMap.get(postld);

if(fingerprintsToPostMap == null) {
fingerprintsToPostMap = new HashMap<>();
registryMap.put(postld, fingerprintsToPostMap);

IpFingerprint ipFingerprint = new IpFingerprint(ip, fingerprint);

List<Long> userlIds = fingerprintsToPostMap.get(ipFingerprint);
if(userlds == null) {
userIds = new ArraylList<>();
fingerprintsToPostMap.put(ipFingerprint, userlds);

if(!userlds.contains(userlId)) {
userlds.add(userlId);
if(userlds.size() » 1) {
notifyMultipleAccountFraud(postld, userlds);

});

If the user_id list contains more than one entry, it means there have been multiple users
identified by the same fingerprint, therefore, a notification must be sent to the system
administrator.

Why jOOQ matters 441

Even if streaming is a very good fit for processing very large results sets, most often,
it is much more appropriate to operate on smaller batches to avoid long-running
transactions.

17.10 Keyset pagination

As explained in the DTO projection pagination section, pagination can improve performance
since the application only fetches as much data as it’s required to be rendered by the current
view. The default pagination technique supported by JPA and Hibernate is called the offset
method, and it is efficient only for small result sets or when navigating the first pages of a
large result set. The further the page, the more work is going to be done by the database to
fetch the current subset of data. To overcome the offset pagination limitation, the application
developer has two alternatives.

The first choice is to narrow down the result set as much as possible using multiple filtering
criteria. From a user experience perspective, this is probably the best option as well since
the user can select the exact subset of data that she is interested in operating. If the filtered
subset is rather small, the offset pagination limitation is not going to be a big issue.

However, if the filtered subset is still large and there is no more filtering that can be further
applied, then keyset pagination becomes a better alternative to using the SQL-level offset
support. Keyset pagination uses the database table primary key to mark the position of the
current fetching data subset.

If JPA 2.1 and Hibernate 5.2 do not offer support for keyset pagination, jOOQ provides a seek()
method which translates to a database-specific keyset pagination query syntax.

Considering the front page of a forum application which displays all the posts in the de-
scending order of their creation, the application requires a paginated view over the following
PostSummary records:

€' PostSummary

3

PostSummary(Long, String, Timestamp)

m getld() Long
m getTitle() String
m getCreatedOn() Timestamp

Figure 17.4: The PostSummary class

Why jOOQ matters 442

The keyset pagination query is rather trivial as illustrated by the following code snippet:

public List<PostSummary> nextPage(String user, int pageSize,
PostSummary offsetPostSummary) {
return doInJOOQ(sql -> {
SelectSeekStep2<Record3<Long, String, Timestamp>, Timestamp, Long>
selectStep = sql
_select(POST.ID, POST.TITLE, POST_DETAILS.CREATED_ON)
. from(POST)
. join(POST_DETAILS).on(POST.ID.eq(POST_DETAILS.ID))
.where(POST_DETAILS.CREATED_BY.eq(user))
.orderBy (POST_DETAILS.CREATED_ON.desc(), POST.ID.desc());
return (offsetPostSummary != null)
? selectStep
.seek(offsetPostSummary.getCreatedOn(), offsetPostSummary.getId())
.limit(pageSize)
. fetchInto(PostSummary.class)
. selectStep
.limit(pageSize)
. fetchInto(PostSummary.class);

1);

To fetch the first page, the offset PostSummary is nul1:
List<PostSummary> results = nextPage(pageSize, null);
When fetching the first page on PostgreSQL, jOOQ executes the following SQL query:

SELECT "post"."id", "post"."title", "post_details"."created_on"

FROM "post"

JOIN "post_details" on "post"."id" = "post_details"."id"
ORDER BY "post_details"."created_on" DESC, "post"."id" DESC
LIMIT 5

After fetching a page of results, the last entry becomes the offset postsummary for the next page:

PostSummary offsetPostSummary = results.get(results.size() - 1);
results = nextPage(pageSize, offsetPostSummary);

Why jOOQ matters 443

When fetching the second page on PostgreSQL, jOOQ executes the following query:

SELECT "post"."id", "post"."title", "post_details"."created_on"

FROM "post"
JOIN "post_details" on "post"."id" = "post_details"."id"
WHERE (
1 =1 AND
("post_details"."created_on", "post"."id") <
(CAST('2016-08-24 18:29:49.112' AS timestamp), 95)
)
ORDER BY "post_details"."created_on" desc, "post"."id" desc
LIMIT 5

On Oracle 11g, jOOQ uses the following SQL query:

SELECT "v@" "ID", "vi" "TITLE", "v2" "CREATED_ON"
FROM (
SELECT "x"."vO", "x"."v1", "x"."v2", rownum "rn
FROM (
SELECT
"POST"."ID" "v@", "POST"."TITLE" "v1",
"POST_DETAILS"."CREATED_ON" "v2"
FROM "POST"
JOIN "POST_DETAILS" on "POST"."ID" = "POST_DETAILS"."ID"
WHERE (
1 =1 and (
"POST_DETAILS"."CREATED_ON" <= '2016-08-25 03:04:57.72' and (
"POST_DETAILS"."CREATED_ON" < '2016-08-25 03:04:57.72"' or (
"POST_DETAILS"."CREATED_ON" =
'2016-08-25 03:04:57.72" and
"POST"."ID" < 95

)
ORDER BY "v2" desc, "v@" desc

) x
WHERE rownum <= (@ + 5)

)

WHERE "rn" > 0

ORDER BY "rn"

Why jOOQ matters 444

Because Oracle 11g does not support comparison with row value expressions as well a
dedicated SQL operator for limiting the result set, JOOQ must emulate the same behavior,
hence the SQL query is more complex than the one executed on PostgreSQL.

Keyset pagination is a very handy feature when the size of the result set is rather large. To get
a visualization of the performance gain obtain when switching to keyset pagination, Markus
Winand has a No-Offset article* explaining in great detail why offset is less efficient than
keyset pagination.

Ahttp:/ /use-the-index-luke.com/no-offset

http://use-the-index-luke.com/no-offset
http://use-the-index-luke.com/no-offset

