

NgRx - Reactive State Management for

Angular

Nils Mehlhorn

This version was published on 2020-11-24.

Copyright © 2020 Nils Mehlhorn. All Rights Reserved.

The official NgRx logo is used on the cover under CC BY 4.0

This book is for sale at gum.co/angular-ngrx-book

2

https://creativecommons.org/licenses/by/4.0/
https://gumroad.com/l/angular-ngrx-book

Contents

Preface 5

Share This Book . 5

Feedback . 5

Acknowledgements . 5

About the Author . 6

1 Introduction 7

1.1 Motivation . 7

1.2 Concepts and Terminology . 11

1.3 NgRx Is Not Just A Store . 13

1.4 YouMight Not Need NgRx . 13

2 Example App 15

3 Installation 17

4 First Steps 19

5 Debugging 24

6 File Structure and Naming 28

7 State 32

7.1 Normalization . 34

7.2 What Not to Put in the State . 36

8 Actions 40

8.1 Action Creators . 41

8.2 Action Hygiene . 45

9 Reducers 46

9.1 Creating Reducers . 47

9.2 Registering Reducers . 49

9.3 Mutable APIs with immer.js . 50

9.4 Meta-Reducers . 52

9.5 Error Handling . 55

10 Selectors 56

10.1 Computed Selectors . 58

10.2 Parameterized Selectors . 61

10.3 Pipeable Selectors . 63

11 Fat vs. Thin Actions and Reducers 65

12 Feature Modules 68

12.1 Multiple Reducers per Module . 73

12.2 Deciding between root and feature state . 75

3

13 Effects 77

13.1 Installation . 77

13.2 Creating Effects . 80

13.3 Accessing the State . 84

13.4 Error Handling . 87

13.5 Optimistic vs. Pessimistic Updates . 90

13.6 Initial Data and Effects . 92

13.7 Non-Dispatching Effects . 94

13.8 Other Effect Sources . 96

14 Testing 99

14.1 Testing Reducers . 99

14.2 Test Object Factories . 102

14.3 Testing Action Creators . 105

14.4 Testing Selectors . 105

14.5 Testing Observables . 107

14.6 Testing Effects . 111

14.7 Testing Components and Services . 114

15 Performance 118

15.1 OnPush Change Detection . 119

15.2 Tracking List Elements . 119

15.3 Efficient Handling of Remote Data . 120

16 Patterns 121

16.1 Container and Presentational Components . 121

16.2 Facades . 125

16.3 Re-Hydration . 128

17 Router Store 134

17.1 Installation . 134

17.2 Selecting Router State . 136

17.3 Reacting to Router Actions . 138

18 Entity Abstraction 140

18.1 Installation . 140

18.2 Entitiy State and Adapter . 141

18.3 When to Use . 144

19 Data Abstraction 145

Resources 151

4

Preface

Share This Book

Please help me by spreading the word about this bookwith your colleagues and on places like Twitter or

LinkedIn. Here’s something you can tweet:

I’m reading the NgRx book for reactive state management in Angular by @n_mehlhorn #javascript

gum.co/angular-ngrx-book

Also, it would mean the world to me if you left a five-star review on Gumroad.

Feedback

If you have any feedback or questions, reach out to me on Twitter @n_mehlhorn or via email to

contact@nils-mehlhorn.de.

Acknowledgements

Thanks to Simon Henke, Tim Deschryver, GregorWoiwode, DavidMüllerchen and Alex Okrushko for

reviewing this book. Moreover, I want to thank the NgRx, Angular and RxJS teams for their efforts.

I’d also like to express my gratitude towards the whole Angular community for being welcoming and

helping me learn and grow.

5

https://nils-mehlhorn.de/short/qkZHR
https://nils-mehlhorn.de/short/qkZHR
https://nils-mehlhorn.de/short/RpfEd
https://nils-mehlhorn.de/short/PCMam
mailto:contact@nils-mehlhorn.de

About the Author

I’m a freelance software engineer, trainer, speaker and author. While working on enterprise software,

helping others to do the same, as well as building the online graphics tool startup SceneLab, I became a

big fan of the NgRx library. After writing multiple blog posts on advanced NgRx topics and building a

library for undo-redo, I’ve nowput allmy experience into this book to provide youwith solid foundations

and advanced patterns for approaching state management with NgRx in Angular.

You can followme on Twitter, connect with me on LinkedIn, visit mywebsite to read new articles and

work with me to build user-focused solutions without sacrificing maintainability.

6

https://nils-mehlhorn.de/short/6FrbE
https://nils-mehlhorn.de/short/rfAz8
https://nils-mehlhorn.de/short/PCMam
https://nils-mehlhorn.de/short/cQptL
https://nils-mehlhorn.de/short/jtTsg
https://nils-mehlhorn.de/short/NoZTM

Chapter 1

Introduction

1.1 Motivation

NgRx (short forAngular Reactive Extensions) is a group of open-source libraries that’s mainly concerned

with state management in Angular applications. So, talking about NgRxmostly means talking about

state. When starting out development with Angular you’re probably not explicitly concerned with state

or where it resides in your application. However, as your requirements grow, youmay notice that some

of the hardest tasks during development stem from updating and synchronizing states - and in modern

web applications there’s a couple of those and they’re all over the place:

• view state: what’s displayed?

• client state: where are we in the application? What’s the data? What are the inputs and outputs?

• browser state: what’s the URL?What’s saved in the storage? Is the network online?

• server state: what’s persisted in the database(s)?

You could break these apart further and probably mention additional ones - especially as platforms and

tech in general progress more andmore as time goes on. Basically, anything that can change within the

context of your app may be called state.

The Angular framework, arguably evenmore than other ones, already has certain state management

techniques built-in. Just consider one of the main building blocks: components. They act as a bridge

between client and view state as they render and receive data via template bindings. At the same time,

components are classes which can naturally encapsulate state through instance properties. This way,

components aren’t simply responsible for view synchronization, but also become state containers. That’s

totally fine, yet can get difficult when you need the same data in multiple components. In Angular you’d

overcome such difficulties through @Input() and @Output() bindings between parent and child

components. Consequently, your state will flow along the view hierarchy.

This gets tricky when some part of state has to be shared between components that are fairly distant in

terms of the view hierarchy. You’d pull at lot of state into higher up components, if not into the root

7

https://nils-mehlhorn.de/short/73UAk

component itself while other components might forward data that they’re not really concerned with.

We end up with these messy hybrids of state containers and view-state bridges only to serve the way in

which the latter are organized.

Figure 1.1: In Angular, state can be shared via inputs and outputs but also by binding to services outside

of the view hierarchy. This way you don’t need to funnel state across various parents when connecting

otherwise distant components.

Again, Angular offers a solution: services. These class instances live outside of the view hierarchy

and can be injected into any component - they’re perfect for sharing state. If we’d be talking about

other frameworks, this could’ve already been the point for proposing a solution in the vein of NgRx.

But whenwe’re working with Angular, services already enable us to build dedicated state containers

while components can focus on rendering views and triggering state changes back in a service. The

centerpiece of NgRx is in fact a state container service, but it’s also a bit more than that.

Now, we’ve put our state into services, sharing data gets easier, but we still encounter problemswith

managing it in plain class properties. Particularly, it’s hard to knowwhen some state changes, especially

when state objects can be mutated from all sorts of different places in our application. That’s the point

where Angular developers usually reach for observable streams and immutability. Components then

listen to a stream of subsequent states while they send off commands via service methods. In practice,

this approach is often based on an RxJS BehaviorSubject .

Essentially, we’re introducing an indirection following the Command Query Responsibility Segregation

(CQRS) pattern which gives us unidirectional data flow. There are now predefined ways in which state

can change andwe can be sure that all consumers will be notified of those changes (see Figure 1.2).

The thing is, while command and query are now technically separated, each component still has to

knowwhich command it has to send to which service in order to have its query resolved with the state

8

https://nils-mehlhorn.de/short/nQNyM
https://nils-mehlhorn.de/short/dXobd

Figure 1.2: Separating commands and queries allows for unidirectional data flow and therefore optimized

change detection and interception

it requires. As an application grows, the number of commands will do the samewhile some commands

need to be propagated between different state containers. Throw asynchronism (e.g. HTTP requests)

into the mix and it’s easy to create an entangled mess of stateful services that’s rife with race conditions

(see Figure 1.3).

Figure 1.3: Synchronizing shared states can get messy, especially with a command-oriented architecture

and when async tasks are involved

The NgRx solution: replace commands with events and introduce an event-bus. Instead of issuing

commands to a specific service, we now broadcast events globally while each part of the state can react

independently. Since we now nomore knowwhere the state is needed it has to reside on a global level.

However, this waywe also have a single-source of truth for shared state.

This second indirection is arguably even more scalable as we can just plug new receivers onto the

9

event-buswithoutmodifying the sending side. Additionally, we can factor out asynchronism. Instead of

having asynchronous command chains, tasks like an HTTP request can signal their completion through

the event-bus. This way all considerations regarding state, while they still get complex as you’re building

complex applications, can remain comprehensible.

Figure 1.4: With NgRx, shared state is elevated to global state that updates based on events

Eventually, the reasoning behind NgRx is a combination of detaching state from the view hierarchy,

separating commands and queries as well as benefitting from event-based programming. That doesn’t

mean that any of the intermediate steps are wrong or that they exclude each other. It’s just that these

considerations seem to resurface over and over again for developers when they’re working on fairly

complex applications. That’s what happened to programmers working with Elm, then the people at

Facebook formulated their Flux pattern leading to the Redux implementation. Later on, the Google

engineers working on Firebase went on to express the same approach for the Angular world within

NgRx. At the end of the day though, you’re probably not getting paid for coming up with sophisticated

state management solutions but rather for delivering working applications.

Leveraging a formalized solution like NgRx opens up a whole community where people speak the same

state management language and have created convenient development tools and drop-in extensions.

You’ll be able to time-travel through your application, facilitate fast restarts based on cached data or

easily implement features like undo-redo - all while providing maximum performance. Learning NgRx

and its underlying principles won’t solve all your problems, but it will put a battle-tested tool in your

belt for approaching state management in modern software development.

10

https://nils-mehlhorn.de/short/cGgTF
https://nils-mehlhorn.de/short/THaoN
https://nils-mehlhorn.de/short/Uet7x
https://nils-mehlhorn.de/short/SqCBY
https://nils-mehlhorn.de/short/mF6CV

PLAY-CIRCLE
Recommended Video

Rethinking State in Angular Applications by Alex Okrushko

1.2 Concepts and Terminology

That service containing the global state in Figure 1.4 is the NgRx store. It exposes the current state as an

RxJS observable and accepts incoming events, so-called actions. Anytime such an action is dispatched,

the store will compute the next state based on the incoming action and any attached information.

Subsequently, the computed state is pushed to all subscribed consumers (e.g. components) through the

store observable.

Each state is computed based on a recipe that you, the developer, can define in form a function. This

function is called reducer and takes two arguments: the current state and the action that’s currently

dispatched. So, we basically reduce one state and one action to a single next state. Wewon’t include any

outside information because, as we’ve seen in Figure 1.3, that gets messy. At the very beginning of your

application’s lifecycle, the state is undefined. For that case it’s necessary to include a default state in your

recipe, something to start off with. In any other case, you’ll want to look at the type of action you’re

dealing with and update the state accordingly. Lastly, because mutating existing state objects might

have unintended consequences for consumers, we’ll instead always create a new state.

Incidentally, the limitations we set on the reducer function, our recipe for computing the next state, are

the definition of what’s called a pure function in functional programming. Such a pure function operates

exclusively on it’s inputs and always returns the same result given the same arguments. The term in

itself doesn’t really matter, the consequences are what’s important: state transitions become reliable

and can be tested easily.

Any interaction with our state management that is not pure because it’s async or involves external

state, is represented by an effect. Effects are any impure operations that get triggered based on the

store’s event-bus while they in turn can also dispatch events themselves. This waywe can explicitly

define operations that would be off limits for a reducer like an asynchronous HTTP request or accessing

some persistent storage. Meanwhile, the NgRx store and it’s concepts remain unaltered. Our state

management will stay comprehensible, but we don’t loose anything in terms of functionality.

BOOK
Recommended Read

Here’s an article that demystifies NgRx by implementing a custom version of it:

HowNgRx Store & EffectsWork: 20 LoC Re-Implementation

11

https://nils-mehlhorn.de/short/unnKY
https://nils-mehlhorn.de/short/WedDR
https://nils-mehlhorn.de/short/UwxiX

Figure 1.5: Components dispatch actions to the store, reducers compute the next state which updates the

components. Effects are triggered by dispatched actions and will also dispatch actions themselves after

performing async tasks.

NgRx Terminology at a Glance

State Refers to a single object that represents the global application state. Usually, you’ll define an

interface that specifies what the state looks like in order to reference it in reducers and consumers.

You’ll also need an initial state that starts off your application’s state management with default

values.

Action Represents a unique event occurring in your application that is relevant to the global state

management and may lead reducers to producing a new state. It’s an object distinguished by a

type string andmight contain certain metadata about the underlying event.

Reducer A pure function that takes the current state and an action and returns the next state.

Store The store manages the state by invoking all registered reducers when it receives an action. At the

same time it makes the state accessible as a stream of values.

Selector Apure function that retrieves a certainpart of the state fromthe storewhile optionally applying

additional transformations. The re-computation of the transformation can beminimized through a

process called memoization where cached results are returned as long as the inputs stay the same.

Feature A set of one or more reducers optionally plus corresponding actions, effects and selectors,

together representing a unit of state-based functionality.

Effect Explicit definition of interaction between state management and other, possibly asynchronous,

units (e.g. storage) or operations (e.g. HTTP request).

12

1.3 NgRx Is Not Just A Store

The termNgRx is oftenused synonymouslywith its store solution, but it’smore than that. Nowadays, the

NgRxproject also provides other librarieswhich,while theyworkwell in combinationwith the store, can

be used independently. Right now, that would include @ngrx/component or @ngrx/component-store.

Moreover, there’s a team of clever and kind people behind the project who, like many others from the

community, put their efforts into advancing the Angular landscape and helping developers - often in

their free time. Consider supporting NgRx through Open Collective, especially when you’re using their

open-source libraries to build commercial software. Youmay also contribute to the project in various

ways as helping hands are always welcome.

1.4 YouMight Not Need NgRx

Let’s be honest, global state is a cop-out. No state is ever truly global - whatever that actually means.

Granted, calling some state global is convenient and no software that’s ever written is an accurate

depiction of reality. The important thing here is recognizing the limitations of viewing state through the

lense of solutions like NgRx.

You’re building a real-timemessaging app likeGoogleMessages? NgRxwillmakeyour life easier. Creating

a complex graphics editor like SceneLab? Trust me, NgRx is the way to go. Displaying some data and

forms for an enterprise app? NgRx is probably overkill. That enterprise app has gottenmore complex

than expected and you’re running into state management issues? Try integrating NgRx gradually where

it makes sense.

One argument that’s oftenmentioned against NgRx is boilerplate. Oh, just think of all the boilerplate,

they’ll say. All those actions, typings and effects you’ll write before getting anything done. In fact, the

NgRx APIs have improved tremendously with the introduction of creator functions. Most of what’s still

called boilerplate is actually the cost of making your state management explicit. When there’s a lot of

state to manage, this cost pays off in the long run.

In order to guide your decision further, the creators of NgRx came upwith the SHARI principle. When

your state meets the attributes, NgRxmight be for you:

Shared The same state is used bymultiple components and/or services

Hydrated State is (de-)serialized from a persistent storage

Available State is supposed to outlive a component or route

Retrieved State is provided by a possibly expensive side-effect (e.g. HTTP request) which shouldn’t run

every time you need the state

Impacted State is impacted by events from various sources

13

https://nils-mehlhorn.de/short/E5U7R
https://nils-mehlhorn.de/short/kqhb5
https://nils-mehlhorn.de/short/ZKpJw
https://nils-mehlhorn.de/short/UhVmm
https://nils-mehlhorn.de/short/mYw42
https://nils-mehlhorn.de/short/pERbG
https://nils-mehlhorn.de/short/6FrbE
https://nils-mehlhorn.de/short/UiEeY

There are also some alternatives to the NgRx store which you’ll want to take a look at before deciding

what’s best for your project:

NGXS Based on the same building blocks as NgRx but focussed on reducing boilerplate andmasking

reactive implementation details.

Akita Built on top of RxJS with a focus on simplicity. It promotes similar concepts as NgRx, but doesn’t

integrate event-based programming - so there’s one indirection less.

XState Finite state machines and state charts for JavaScript. If you find yourself using NgRx like a state

machine, youmight want to use this instead and take a look at the actor model.

Additionally, consider lower-level state management solutions like @ngrx/component-store or @rx-

angular/state. Maybe you’re also fine without including another dependency and RxJS itself is already

enough.

PLAY-CIRCLE
Recommended Video

YouMight Not Need NgRx byMike Ryan

BOOK
Recommended Read

Redux is Half of a Pattern by David Khourshid

14

https://nils-mehlhorn.de/short/STPLS
https://nils-mehlhorn.de/short/e8c67
https://nils-mehlhorn.de/short/AZpca
https://nils-mehlhorn.de/short/kqhb5
https://nils-mehlhorn.de/short/AqnMC
https://nils-mehlhorn.de/short/AqnMC
https://nils-mehlhorn.de/short/2GiYt
https://nils-mehlhorn.de/short/KSo8z
https://nils-mehlhorn.de/short/MqpcZ

Chapter 2

Example App

In the course of this book we’ll develop a basic issue tracker (see Figure 2.1). Users will be able to create

issues with a corresponding description and priority. It should also be possible to mark an issue as

resolved.

The issue tracker will be developed with Angular and NgRx 10 as well as Node.js 12 and npm 6. We’ll

start by creating a basic Angular application with the Angular CLI and its ng new command:

ng new ngrx-issue-tracker --routing=true

Here I’m also passing the --routing flag so that it’ll setup a separate routing module inside

app-routing.module.ts . This way we can implement multiple views: a list of all issues, a detail

view and later on a view for configuring some imaginative settings.

The commandwill also ask you to select a styling language youwant to use for the project. I’m using the

CSS superset SCSS, but youmay use whatever you’re most comfortable with since I won’t cover styling

the app in this book.

Other than that we’ll be working with the Angular defaults in order to focus primarily on NgRx. This

also means we’ll use Jasmine and Karma for testing.

All code snippets shown in this book that refer to actual application code will contain the corresponding

file name in it’s first line. For readability reasons, I’ll only include relevant module imports - e.g. when a

file is shown twice I’ll omit pre-existing import statements. I’ll also omit component data and similar

standard Angular code that isn’t relevant to the respective topic of a section.

CODE-BRANCH
The complete source code for the example app is available on GitHub:

https://github.com/nilsmehlhorn/ngrx-issue-tracker

At the end of each section you’ll find links to the corresponding changes, the resulting

source code version and an online live demo.

15

https://nils-mehlhorn.de/short/4UfjM
https://nils-mehlhorn.de/short/gLZ4P
https://nils-mehlhorn.de/short/HTCx5
https://nils-mehlhorn.de/short/F4ANL
https://nils-mehlhorn.de/short/xqodg

Figure 2.1: Issue Tracker Mockup

16

Chapter 3

Installation

Up until now our app does not contain the slightest trace of NgRx - let’s change that! The first way to do

this is by manually adding the @ngrx/store dependency through the package manager. With npm

youwould execute the following command:

npm install @ngrx/store

When you’re using yarn it would look like this:

yarn add @ngrx/store

Thenwe’ll import the StoreModule into our AppModule using its staticmethod forRoot() since

this is the point where we register the root state of the application.

// app.module.ts

import { BrowserModule } from "@angular/platform-browser";

import { NgModule } from "@angular/core";

import { AppRoutingModule } from "./app-routing.module";

import { AppComponent } from "./app.component";

import { StoreModule } from "@ngrx/store";

@NgModule({

declarations: [AppComponent],

imports: [BrowserModule, AppRoutingModule, StoreModule.forRoot({})],

providers: [],

bootstrap: [AppComponent],

})

export class AppModule {}

However, you can also use the Angular schematic for NgRx to automate this process. The Angular CLI

17

https://nils-mehlhorn.de/short/pMaHG

provides a command called add which we can invoke as follows:

ng add @ngrx/store@latest

Additionally, youmight want to install @ngrx/schematics for generating NgRx building blocks through

CLI schematics:

ng add @ngrx/schematics@latest

This commandwill also configure the NgRx schematic collection to be used as the default by Angular.

Both of these steps can also be performedmanually:

npm install @ngrx/schematics --save-dev

ng config cli.defaultCollection @ngrx/schematics

CODE-BRANCH
Installation

Changes | Source Code | Live Demo

18

https://nils-mehlhorn.de/short/hKGUJ
https://nils-mehlhorn.de/short/5wdJe
https://nils-mehlhorn.de/short/26s8P
https://nils-mehlhorn.de/short/6X5T2
https://nils-mehlhorn.de/short/jAb3Q
https://nils-mehlhorn.de/short/ipkpb

Chapter 4

First Steps

Beforewe deep-dive into a specific part of NgRx, let’s get a good overview of how everything fits together.

As we’ve seen, state management with NgRx is a cycle without a single starting point. Therefore I

think it’s best to jump into a simple example: we’ll implement a counter. Don’t worry if anything isn’t

immediately clear to you, we’ll explore each part in-depth after this little crash course.

The state of our application can be described by a plain interfacewith a number property for the counter:

// store.ts

export interface State {

count: number;

}

For nowwe’ll place all NgRx-related code in a file store.ts - we’ll look at proper file structure and

naming later.

In order to request the increment of our counter, we’ll define an action creator - so a function we can call

to create an event that indicates the intent to bump up the current count. Import the helper function

createAction() from @ngrx/store and pass a type (basically a unique name) for the action:

// store.ts

import { createAction } from "@ngrx/store";

export const increment = createAction("[Counter] Increment");

The last thing we have to do is define how this action is handled. Since this is done by a reducer, we’ll

create one using the helper function createReducer() while passing an initial count of zero as the

first argument.

For the second argument we pass the return value of another helper function on() . It creates a tiny

reducer that will only handle the types of actions that we specify. We basically declare a state transition

for a specific action. The reducer function we pass to on() defines how this transition will compute

19

https://nils-mehlhorn.de/short/nZDyB
https://nils-mehlhorn.de/short/g77Je
https://nils-mehlhorn.de/short/ciiF3
https://nils-mehlhorn.de/short/ciiF3

the next state from the last one.

// store.ts

import { createAction, createReducer, on } from "@ngrx/store";

export const countReducer = createReducer(

0,

on(increment, (count) => {

return count + 1;

})

);

We reduce the next state by returning an updated count through a simple addition of 1. Now, every time

an increment action occurs, we’ll get a new state with an updated counter value - neat!

Let’s connect our store setup with the actual application. For this we need to define which part of the

application state should be handled by the countReducer . We do this by creating an object of the

type ActionReducerMap with a generic parameter that represents our type of state. Such a map

assigns a slice of state (left side) to a reducer (right side) as follows. Naturally, the countReducer is

going to compute the count property of our State interface.

// store.ts

import { ActionReducerMap } from "@ngrx/store";

export const reducers: ActionReducerMap<State> = {

count: countReducer,

};

Thenwe open app.module.ts back up and register the reducer mapping with the store by passing it

to forRoot() :

// app.module.ts

import { reducers } from "./store";

@NgModule({

declarations: [AppComponent],

imports: [BrowserModule, AppRoutingModule, StoreModule.forRoot(reducers)],

providers: [],

bootstrap: [AppComponent],

})

export class AppModule {}

At this point our store setup is complete. The only thing left to do is built a component that can display

20

https://nils-mehlhorn.de/short/JKwhE

the current count and trigger an increment.

For this purpose you can use the generate command of the Angular CLI like this:

ng generate component components/counter

Make sure to either define a route for this component inside app-routing.module.ts or put its

component selector app-counter inside app.component.html to have it rendered in your app.

Inside the component class we’ll have a field for an observable number named count$. Note that the

dollar sign in the name indicates a pluralization following the so-called Finnish notation introduced by

Andre Staltz - a Finn.

The constructor declares a parameter property for injection of the NgRx store. The Store service is

itself an observable emitting every timewhen a new application state is reduced. Calling select()

allowsus to only look at a specific slice of thewhole state bypassing a projecting function. It’s basically the

RxJS operators map() and distinctUntilChanged() combined, providing youwith an observable

of distinct state slices.

The store also provides a function for dispatching actions. We’ll use it to provide amethod for increment-

ing our counter where we invoke the action creator defined earlier.

// counter.component.ts

import { increment, State } from '../../store';

@Component({ ... })

export class CounterComponent {

count$: Observable<number>;

constructor(private store: Store<State>) {

this.count$ = this.store.select((state) => state.count);

}

increment(): void {

this.store.dispatch(increment());

}

}

The view template of the counter component then binds the current counter state to the view through

the AsyncPipe . Meanwhile, we bind the click event of a button to the increment method.

<!-- counter.component.html -->

<p>Counter: {{ count$ | async }}</p>

<button (click)="increment()">Increment</button>

21

https://nils-mehlhorn.de/short/GpuZD
https://nils-mehlhorn.de/short/PQ3mt
https://nils-mehlhorn.de/short/Efms5
https://nils-mehlhorn.de/short/fdb6p
https://nils-mehlhorn.de/short/YAUDb

That’s it! Running the application will give you a counter which you can happily increment. Now, you

might argue that we had to write quite a lot of code just for incrementing a counter - something you

can otherwise do in one or two lines in a component. I agree! However, structuring your application

with NgRx pays off when its complexity grows. Having clearly defined events and deterministic ways

in which the application state changes is a big plus when a lot is going on. Also, as with most things, the

first step is always the hardest. Adding a second interaction now requires considerably less effort, I’ll

show you!

Let’s create another action for multiplying the count with an arbitrary number. Again we’re using the

createAction() , but this time we call another helper function props() to setup a payload for

the action. props() accepts a generic parameter that defines the shape of the action payload. The

function itself actually doesn’t do much besides typing.

// store.ts

export const multiply = createAction(

"[Counter] Multiply",

props<{ factor: number }>()

);

Inside our component the multiply action creator can be used just like increment , but nowwe

can also pass a payload object for the resulting action:

// counter.component.ts

multiply(factor: string): void {

this.store.dispatch(multiply({ factor: parseFloat(factor) }))

}

Let’s bind this component method to another button and have an input field for the factor:

<!-- counter.component.html -->

<input #factorInput type="number" value="1" />

<button (click)="multiply(factorInput.value)">Multiply</button>

Thenwe only have to add another case to the existing reducer for handling multiply actions.

// store.ts

const reducer = createReducer(

0,

on(increment, (count) => count + 1),

on(multiply, (count, { factor }) => count * factor)

);

Here you see that the reducer function passed to on() can actually accept the corresponding action as

a second parameter. This waywe can incorporate the action payload into the computation of our next

22

https://nils-mehlhorn.de/short/nZDyB
https://nils-mehlhorn.de/short/WJAsh
https://nils-mehlhorn.de/short/WJAsh
https://nils-mehlhorn.de/short/ciiF3

state. Note that I’m destructuring the action parameter to conveniently access the factor payload

property.

CODE-BRANCH
First Steps

Changes | Source Code | Live Demo

23

https://nils-mehlhorn.de/short/4vmyo
https://nils-mehlhorn.de/short/MYidk
https://nils-mehlhorn.de/short/MQ9dy
https://nils-mehlhorn.de/short/SMQ5E

Chapter 5

Debugging

The @ngrx/store-devtools library makes NgRx compatible with the Redux DevTools. This extension is

virtually available for all browsers allowing you to debug the application state during runtime. Add the

extension to your browser and install the library with npm:

npm install @ngrx/store-devtools

The corresponding schematic will already take care of connecting the store to the extension:

ng add @ngrx/store-devtools@latest

Inorder tomanually connect theDevTools to theNgRxstoreweneed to import the StoreDevtoolsModule

into our applicationmodule using its staticmethod instrument() . Make sure to import theDevTools

module after the actual store module. While doing so we can optionally pass options like maxAge to

retain only a certain number of prior actions or logOnly in order to prevent someone from easily

messing aroundwith the state during production. Check the documentation for all available options.

// app.module.ts

import { StoreDevtoolsModule } from "@ngrx/store-devtools";

@NgModule({

declarations: [AppComponent, CounterComponent],

imports: [

BrowserModule,

AppRoutingModule,

StoreModule.forRoot(reducers),

StoreDevtoolsModule.instrument({

maxAge: 20,

logOnly: environment.production,

}),

24

https://nils-mehlhorn.de/short/zkH2Q
https://nils-mehlhorn.de/short/zrmmc
https://nils-mehlhorn.de/short/SqsDu
https://nils-mehlhorn.de/short/SqsDu
https://nils-mehlhorn.de/short/wtxhD

],

providers: [],

bootstrap: [AppComponent],

})

export class AppModule {}

Figure 5.1: Redux DevTools instrumenting NgRx store

Nowwe have access to a powerful tool for developing with NgRx. It’ll give you access to the following

features:

Inspector View current and previous states as well as what actions produced which differences

Log monitor Disable and revert actions or commit the current state to have it used as the initial state.

Chart Display the state history as a chart.

Note that you can switch between inspector, log monitor and chart through the dropdown on the

top-left.

Time-Traveling Flip back and forth through the state history while seeing your application travel

through time with the slider towards the bottom.

Dispatcher Manually send actions to the store.

Export / Import Serialize the whole application state as JSON and reload it at a different time and place.

This can also be really helpful when trying to reproduce bugs.

25

Lock / Persist Lock the state to prevent it from being altered or persist it between page reloads - the

later is especially helpful when you’re currently working on a feature that is based on numerous

prior interactions, e.g. a checkout flow.

If you want to completely exclude the DevTools instrumentation during production, you can do so with

a file replacement. For this purpose we’ll outsource environment-specific module imports into another

file like modules.ts . Here we declare an array containing the DevTools module:

// modules.ts

import { StoreDevtoolsModule } from "@ngrx/store-devtools";

export const modules = [

StoreDevtoolsModule.instrument({

maxAge: 20,

}),

];

Inside app.module.ts we’ll add the modules array into the existing imports:

// app.module.ts

import { modules } from "./modules";

@NgModule({

declarations: [AppComponent, CounterComponent],

imports: [

BrowserModule,

AppRoutingModule,

StoreModule.forRoot(reducers),

modules,

],

providers: [],

bootstrap: [AppComponent],

})

export class AppModule {}

Then we setup another file called modules.prod.ts which we’ll use when building the app for

production. There we just provide an empty set of modules:

// modules.prod.ts

export const modules = [];

Lastly, we’ll edit angular.json and have modules.ts replaced with modules.prod.ts in a

production configuration:

26

https://nils-mehlhorn.de/short/pkPxx

// angular.json

"architect": {

...

"build": {

"builder": "@angular-devkit/build-angular:browser",

"options": {...},

"configurations": {

"production": {

"fileReplacements": [

...

{

"replace": "src/app/modules.ts",

"with": "src/app/modules.prod.ts"

}

],

...

}

}

}

...

}

Now, when running ng build --prod , Angular will pick the configuration called “production” and

thus won’t instrument the Redux DevTools.

CODE-BRANCH
Debugging

Changes | Source Code | Live Demo

27

https://nils-mehlhorn.de/short/V3nWJ
https://nils-mehlhorn.de/short/S4cGj
https://nils-mehlhorn.de/short/Jb5sK

Chapter 6

File Structure and Naming

There’s no pre-defined file structure for NgRx projects that you’d strictly have to follow. As long as

youwire up everything correctly and don’t have any collisions, it’ll work. However, having some clear

patterns for organizing state models, reducers and actions can prevent your codebase from becoming

messy.

Here’s a baseline structure you can follow. I’m not claiming it’s the best way to manage your files, but

it’s probably a good starting point. I encourage you to adapt your setup to what works well for you and

your team - the most important part here is keeping consistency.

Similar to how components and services are suffixedwith component and service I’d recommend

creating separate files for every part of your store and apply the same pattern. So, reducers, actions and

state models each go in their own files ending in .reducer.ts , .actions.ts and .state.ts

respectively. Later we’ll also introduce .selectors.ts and .effects.ts files for selectors and

effects.

The counter example from before didn’t have a designated state model since the state was only repre-

sented by one number. For more complex use-cases you’ll want to define a type for the state slice that is

handled by your reducer - more on that in the next chapter.

Anything related to the store goes into a store/ directory at the root level of your app. Feature-

specific files are placed into corresponding sub-directories. Additionally, youmay create a separate file

index.ts where all state slices come together to define the root state of the application and how it’s

managed by individual reducers. Keep such configuration code out of your module declarations as

much as possible - in most projects I’ve seen there’s already going on enough in there. Some people also

introduce separate Angularmodules for encapsulating store imports. Youmight do so aswell, personally

though, in most cases I don’t see the necessity as long as we have something like index.ts .

Starting out, the file and directory structure for managing the state of our issue tracker will look as

follows:

28

src

`-- app

`-- store

|-- index.ts

`-- issue

|-- issue.actions.ts

|-- issue.reducer.ts

`-- issue.state.ts

I’d advice against grouping by type of code, e.g. putting all reducers in one directory, actions in another

and so on. Instead always group by feature to co-locate code that works together, since it is likely that

this code also changes together.

Inside issue.actions.ts we export individual actions like we’ve done before. You can then import

them directly in your components …

import { create } from "../../store/issue/actions";

… or use a named import to prevent collisions:

import * as IssueActions from "../../store/issue/actions";

The model for a state slice may be defined in an interface inside the corresponding .state.ts

file. You’ll also want to export an initial state that implements the interface from there. Here’s

issue.state.ts , we’ll fill it in during the next chapter:

// issue.state.ts

export interface IssueState {}

export const initialState: IssueState = {};

Reducer files like issue.reducer.ts should always export a single reducer function, preferably

prefixed with the state property it’s meant for:

// issue.reducer.ts

import { createReducer } from "@ngrx/store";

import { initialState } from "./issue.state";

export const issueReducer = createReducer(initialState);

INFO-CIRCLE
If you’re not yet using Angular’s Ivy engine, you’ll have to wrap the reducer into a regular

function before export.

Then everything is wired together inside index.ts by defining a type for the root state and exporting

29

a reducer mapping:

// index.ts

import { ActionReducerMap } from "@ngrx/store";

import { issueReducer } from "./issue.reducer";

import { IssueState } from "./issue.state";

export interface RootState {

issue: IssueState;

}

export const reducers: ActionReducerMap<RootState> = {

issue: issuesReducer,

};

Lastly, after registering the reducer mapping through StoreModule.forRoot() in the app mod-

ule, we can inject the store. I’m doing this in a parent component for the issue tracker while using

RootState as its generic type parameter:

// issues.component.ts

import { Component, OnInit } from "@angular/core";

import { RootState } from "../../store/root";

import { Store } from "@ngrx/store";

@Component({

selector: "app-issues",

templateUrl: "./issues.component.html",

styleUrls: ["./issues.component.scss"],

})

export class IssuesComponent {

constructor(private store: Store<RootState>) {}

}

Sometimes you’ll see people importing store files into a single variable prefixed with “from” like this:

import * as fromRoot from "../../store/root";

It’s not necessary to do so and talking to various NgRxmembers I couldn’t find clear reasoning for this.

NgRx co-creator Mike Ryan pointed me to a video of Dan Abramov, co-creator of Redux, applying this

approach. However, he only used it for importing selectors so let’s put this off until we get to those. We’ll

also look at somemore specific advice on structure and naming later whenworking with effects and

feature modules.

30

https://nils-mehlhorn.de/short/N3pAY
https://nils-mehlhorn.de/short/Pym9v

Onemore thing though: when you find yourself in a position where an action should be handled by

multiple reducers, you might exempt the action file from being named like a corresponding reducer.

Instead you can name it after the page onwhich the actions occur and place it accordingly. The same

applies for selectors that stretch over various parts of the state.

CODE-BRANCH
File Structure

Changes | Source Code | Live Demo

31

https://nils-mehlhorn.de/short/AV5qq
https://nils-mehlhorn.de/short/5pLmK
https://nils-mehlhorn.de/short/7Zr2Q

Chapter 7

State

Figure 7.1: The application state is a plain object constrained by static typing. It can contain arbitrary

information, but you should avoid redundancies and keep it serializable.

Thanks to TypeScript we are able to declare static types defining the application state. These will be used

in reducers, components, services, effects and basically anywhere you’re dealing with the state.

In TypeScript you can define data models either using interfaces or type declarations. So, whenwewant

to describe the shape of a single issue we could do this with an interface …

// issue.ts

export interface Issue {

id: string;

32

title: string;

description: string;

priority: "low" | "medium" | "high";

resolved: boolean;

}

… but also using the type keyword:

// issue.ts

export type Issue = {

id: string;

title: string;

description: string;

priority: "low" | "medium" | "high";

resolved: boolean;

};

Such type alias declarations are generally more powerful than interfaces since they can give a name

to any type - including things like functions or primitives. I tend to use interfaces in most cases and

sprinkle in some type aliases for tuples or unions - e.g. for extracting the priority type:

// priority.ts

export type Priority = "low" | "medium" | "high";

As mentioned, the base shape of your feature state should be outlined by an interface inside

<feature>.state.ts . However, you can also incorporate models from other locations as long as

theymeet some conditions (seeWhat Not to Put in the State). The issue model for example might also be

placed in a file src/app/models/issue.ts .

Here’s the first draft for our application state, containing a list of issue entities and the currently active

search filter:

// issue.state.ts

export interface Filter {

text: string;

}

export interface IssueState {

entities: Issue[];

filter: Filter;

}

An initial state for this type could look as follows where whe provide an empty list and search text:

33

https://nils-mehlhorn.de/short/ZssPF

// issue.state.ts

export const initialState: IssueState = {

entities: [],

filter: {

text: "",

},

};

You should populate your initial state with defensive but valid values: strings and collections can

be empty, booleans set to false and numbers start at zero. If you still decide to set some property to

undefined , make sure that all consumers can deal with that. Of course you can provide other, more

specific initial values if that makes more sense in your situation. It’s also possible to retrieve the initial

state from the localStorage or similar (see Re-Hydration), you’ll still need this fallback though.

This state definition will work, however, now anytimewewant to access a specific issue in a reducer

or component you need to iterate through the entities list. If your model doesn’t have an ID you

might be using an array index here instead.

const specificIssue = entities.find((issue) => issues.id === id);

The impact on performance is probably negligible at first, but we can easily improve the developer

experience with some normalization.

7.1 Normalization

Models with a unique identifier are best stored in an object where the identifier is used as a keywhile

the model instance represents the corresponding value. We can specify such a setup as an interface

with an index type:

// issue.state.ts

export interface Issues {

[id: string]: Issue;

}

This declaration says that any object of type Issues is a dictionary having strings as keys and Issue

objects as values. The type can then be used as a replacement for the list:

// issue.state.ts

export interface IssueState {

entities: Issues;

filter: Filter;

}

34

https://nils-mehlhorn.de/short/KVu3S

A corresponding initial state may initialize the issues with an empty dictionary object:

// issue.state.ts

export const initialState: IssueState = {

entities: {},

filter: {

text: "",

},

};

When accessing a specific issue we can now just use the bracket notation with an id:

const specificIssue = entities[id];

We can de-normalize a dictionary into a list that can be iterated with *ngFor by leverag-

ing Object.values() . Also, Object.keys() will give you a list all existing keys while

Object.entries() returns key-value tuples - both helpful from time to time.

const issueList: Issue[] = Object.values(entities);

Such de-normalizations are usually performed by selectors which we’ll get to later on.

Other than that, state normalization also refers to having the same data item only in a single place. For

example, imagine we’d implement a multi-select for our list of issues. In order to knowwhich ones are

selected wemight be tempted to manage another dictionary in the store:

// issue.state.ts

export interface IssueState {

entities: Issues;

selected: Issues;

filter: Filter;

}

However, when one issue is now updated we need to make any changes both inside entities as

well as selected . Since the state is immutable and we can only create new objects with reducers,

changes to an issue in one dictionary won’t be reflected anywhere else - and that’s a good thing. In

order to work around this, we can simplify our state. It’s actually pretty redundant to manage the same

objects multiple times. All we actually need is to remember which issues are selected. So a reference to

an existing issue is enough. Therefore we could replace the dictionary with a list of IDs that reference

the actual issue inside the entities property:

// issue.state.ts

export interface IssueState {

entities: Issues;

selected: string[];

35

https://nils-mehlhorn.de/short/EfqSx
https://nils-mehlhorn.de/short/fmN5A
https://nils-mehlhorn.de/short/gZgg6
https://nils-mehlhorn.de/short/8CKHv

filter: Filter;

}

We could de-normalize the list of references into actual issues with array mapping:

const selectedIssues = selected.map((id) => entities[id]);

Lightbulb
If you need to normalize a lot of nested data - possibly as a result of API calls - take a look

at Paul Armstrong’s normalizr library.

7.2 What Not to Put in the State

There are certain things that don’t belong in the NgRx store - some for conceptual reasons, others for

technical reasons.

Derived State

Anythingyou can compute from the existing state doesn’t need to be in the state - even if the computation

is expensive. For example, I can compute the number of issues with the following code:

const numberOfIssues = Object.values(entities).length;

Therefore it would be redundant to also store this information. Instead, as we’ll explore later, you

can create a selector which will re-compute it when necessary. This also holds up for more complex

computations though it’s important to structure selectors properly in order to preserve performance

(see Selectors).

If we placed derived state in our store, wewould have tomanage the same information inmultiple places.

This increases our work and the possibility of making mistakes.

Local State

This one is a bit controversial. Sometimes it’s hard to know onwhich level state should reside (or should

reside in the future). Some examples are pretty obvious. Like, you wouldn’t track whether a drop-down

is open or closedwithNgRx. Meanwhile, you’ll probably need information about the currently logged-in

user in a lot of places - so that’s something for the store.

Other times it’s not that clear cut. Take Angular’s reactive forms. They track their own state and

often it’s enough to only put submitted values into the store (as we’re about to do for the issue tracker).

However, in certain use-cases youmight benefit from syncing forms with NgRx to retain their values

between navigations and allow for easier debugging. There’s even a whole library dedicated to this

called ngrx-forms by Jonathan Ziller.

Eventually, you’ll have to decide on a case-by-case basis if some state is global or local. As a rule of thumb:

36

https://nils-mehlhorn.de/short/MCtGb
https://nils-mehlhorn.de/short/PVNJV

if some state is only relevant to one component, manage it locally. You can always start with local state

and lift it up to the store later when necessary.

Lightbulb
When you’re looking for a somewhat similar solution for managing local state, you might

want to give @ngrx/component-store or @rx-angular/state a try.

Classes and Special Objects

Developerswith a background in object-oriented programming intuitively reach for classes inTypeScript

- I’m guilty of this myself. Admittedly, Angular makes heavy use of them for the application building

blocks like components or services. However, they don’t really fit the pattern whenworking with NgRx,

because that means we’re embracing immutability. Classes, however, are commonly used in a mutable

fashion where we change their inner state by calling instance methods.

Reducers are supposed to compute a new state without modifying the last one. If we would work with

mutable classes and re-use them for subsequent states, wewould break this rule. This can then create all

sorts of problems. For one thing, it’s harder to update the viewwhen state changes since NgRx generally

relies upon simple reference checks for that. With plain objects where we always create a new state

instead of modifying the last one, those checks work like a charm:

const lastState = {

entities: {}

}

const nextState = {

...lastState,

entities: {

...lastState.entities,

['issue-1']: {

id: 'issue-1',

title: 'Embrace Immutability',

description: '...',

priority: 'high',

resolved: true

}

]

}

console.log(lastState === nextState) // prints 'false', NgRx will emit

Whenwe’re re-using class instance though, those checks stop working:

37

https://nils-mehlhorn.de/short/kqhb5
https://nils-mehlhorn.de/short/AqnMC

const lastState = new IssueState([]);

// modifies existing dictionary under the hood

lastState.addIssue({

id: "issue-1",

title: "Embrace Immutability",

description: "...",

priority: "high",

resolved: false,

});

const nextState = lastState;

console.log(lastState === nextState); // prints 'true', NgRx won't emit

Technically, you could still create a new class instance every time you draft up the next state with

Object.assign() like this:

Object.assign(new IssueState(), lastState);

Though, in that case you can’t leverage most benefits of classes - so why use them in the first place?

Also, there’s another pain point: serialization. Transforming a class instance to JSON with

JSON.stringify() might work, but parsing the resulting JSON with JSON.parse() will

just give you a plain object - the JavaScript prototype chain won’t be recovered. This makes many

use-cases more difficult, including debugging with the Redux DevTools or re-hydrating the store from

local storage or the server.

The same arguments apply for built-in classes like Map or Set . These are optimized for mutability

but also easily replaceable. Instead of Map you can leverage plain objects with index types like the

Issues dictionary we defined earlier. A Set on the other hand is not identical to a plain array list

since sets won’t accept duplicate entries. If duplicates aren’t preventable in other ways, you can still

work with Set but convert back to array before placing it in the state:

const list = [1, 1, 2, 3, 3, 4];

const uniqueList = Array.from(new Set(list)); // [1, 2, 3, 4]

Despite classes you’ll also want to avoid having any special objects like the following in your state as this

can hinder garbage collection and lead to errors that are hard to debug:

• functions

• blobs

• dates (try Date.toJson() or similar instead)

38

https://nils-mehlhorn.de/short/cWGot
https://nils-mehlhorn.de/short/iXsg4
https://nils-mehlhorn.de/short/Wopsq
https://nils-mehlhorn.de/short/EXH2a
https://nils-mehlhorn.de/short/zoKkQ
https://nils-mehlhorn.de/short/EXH2a
https://nils-mehlhorn.de/short/zoKkQ
https://nils-mehlhorn.de/short/zoKkQ
https://nils-mehlhorn.de/short/8Bv6G

• promises

• observables

• HTML elements

• window and similar

This list is non-exhaustive. So, anything that’s similar probably doesn’t belong in the state. Eventually,

we’re best off storing only plain, serializable objects in the state while still using interfaces or type aliases

for type-safety.

CODE-BRANCH
State

Changes | Source Code | Live Demo

39

https://nils-mehlhorn.de/short/uvZpk
https://nils-mehlhorn.de/short/2KPdL
https://nils-mehlhorn.de/short/mhWWK
https://nils-mehlhorn.de/short/RF7xs

Chapter 8

Actions

Figure 8.1: Events like a click or network response occurring in your application are sent to the store in

form of actions. One-by-one they’ll lead the store to produce a new state.

Actions represent unique events occurring in your application. These can originate from things like

user-interactions, HTTP calls orWebSockets. Anytime something happens that might result in a change

to the application state we send an action to the NgRx store.

While actions are an integral part of NgRx, they’re actually pretty simple in their nature. This interface

with a single property type is enough to describe them:

interface Action {

type: string;

}

You don’t even need to implement this interface specifically. Any plain object with the type property

can count as an action. We’re also allowed to add custom properties to actions in order to give context to

an event. Here’s how you could dispatch an action that indicates the submission of a new issue. Note

that the NgRx store is usually injected into components or services and therefore available via this .

40

const submitAction = {

type: "[Issue] Submit",

issue: {

id: randomId(),

title: "Understanding Actions",

description: "Actions represent events ..."

priority: "high",

resolved: false

},

};

this.store.dispatch(submitAction);

NgRx doesn’t care about names at all as long as they’re unique per type of action. The type names are

mainly for you and your co-developers to read. It’s worth thinking twice about them in order to ease

the maintenance of your app. Name your types so that when looking at the action log you can easily

understand what happened in the application. Therefore, avoid types that sound like setters or ones

that are too generic such as “Update State”.

INFO-CIRCLE
The randomId() function generates an arbitrary string to be used as an ID for our issue.

Here’s the implementation:

export const randomId = () => Math.random().toString(36).substr(2, 9);

In a real app we’d usually have this ID generated by a server. We’ll learn how to do this

later when we’re working with asynchronous effects. For now, we can use this helper

function to generate a random ID synchronously.

8.1 Action Creators

It’s totally fine for the store to dispatch actions that you create inline. Though, to make our life easier

we can leverage action creators. These are simply functions that create new actions upon invocation.

Technically, we could write such an action creator ourselves:

function submitActionCreator(issue: Issue) {

return {

type: "[Issue] Submit",

issue,

};

}

41

const submitAction = submitActionCreator({

id: randomId(),

title: "Understanding Actions",

description: "Actions represent events ...",

priority: "high",

resolved: false,

});

However, there’s also a handy utility function called createAction() that you can import from

@ngrx/store . Together with the props() function it helps to reduce boilerplate when defining

actions or rather action creators:

import { createAction, props } from "@ngrx/store";

export const submit = createAction(

"[Issue] Submit",

props<{issue: Issue}>

);

The generic type passed to props() defines any custom properties - also called payload or metadata.

Both createAction() and props() actually create something very similar to our own action

creator function - they just make clever use of TypeScript to enable the succinct code above.

Note that the variable submit now contains an action creator function. These are commonly named

without suffixes like “actionCreator” since in most cases you won’t really store the actual actions inside

variables, but rather pass them directly to the store:

this.store.dispatch(

submit({

issue: {

id: randomId(),

title: "Understanding Actions",

description: "Actions represent events ...",

priority: "high",

},

})

);

It’s crucial that you don’t re-use (created) actions even when they don’t contain a payload. This way

every action is a unique object and NgRx as well as any tooling can work with those simple equality

checks we already know from the State chapter. So, every time an event occurs you’ll want to create

and dispatch a new action to represent this specific event.

42

https://nils-mehlhorn.de/short/nZDyB
https://nils-mehlhorn.de/short/WJAsh
https://nils-mehlhorn.de/short/WJAsh
https://nils-mehlhorn.de/short/nZDyB
https://nils-mehlhorn.de/short/WJAsh

When you’re deciding what to put in the metadata of your actions, the same rules that we use for the

state apply (seeWhat Not to Put in the State). Therefore only plain, serializable objects should be added

to the payload. This ensures that actions can be persisted and don’t cause unwanted side-effects.

Let’s now create a component with a form for collecting the necessary metadata:

// new-issue.component.ts

import { Store } from "@ngrx/store"

import { RootState } from "../store";

import { FormGroup, FormBuilder } from "@angular/forms"

import * as IssueActions from "../store/issue/issue.actions.ts"

@Component({...})

export class NewIssueComponent {

form: FormGroup;

constructor(private store: Store<RootState>, private fb: FormBuilder) {

this.form = this.fb.group({

title: ["", Validators.required],

description: ["", Validators.required],

priority: ["low", Validators.required],

});

}

submit(): void {

const id = randomId();

const issue = {...this.form.value, id};

this.store.dispatch(IssueActions.submit({ issue }));

}

}

Using the Angular’s FormBuilder we can create a reactive formwith two controls for an issue’s text

and priority. Don’t forget to import the ReactiveFormsModule in your applicationmodule. Take a

look at the official guide for reactive forms if any of this is new to you.

We also provide a submit() method that dispatches a corresponding action upon form submission

while passing the form value as its payload.

Lastly, we’ll setup a template and connect it to the reactive form as well as to the submission method:

<!-- new-issue.component.html -->

<form [formGroup]="form" (ngSubmit)="submit()">

<label for="text">Title</label>

43

https://nils-mehlhorn.de/short/rSM7a
https://nils-mehlhorn.de/short/mm3fD
https://nils-mehlhorn.de/short/YSPmo

<input formControlName="title" type="text" id="title" />

<label for="description">Description</label>

<input formControlName="description" type="text" id="description" />

<label for="priority">Priority</label>

<select formControlName="priority" id="priority">

<option value="low">Low</option>

<option value="medium">Medium</option>

<option value="high">High</option>

</select>

<button [disabled]="!form.valid" type="submit">Submit</button>

</form>

Now you can see our submit action being dispatched in the Redux DevTools upon form submission.

Action Creators with Additional Logic

Action creators can also embed some logic for pre-processing the payload. For example, we could

outsource the ID generation instead of having this logic reside in the component:

// issue.actions.ts

export const submit = createAction("[Issue] Submit", (issue: Issue) => {

return {

issue: {

...issue,

id: randomId(),

},

};

});

We’d get the same result, but the dispatch would then look like this:

// new-issue.component.ts

submit(): void {

const issue = this.form.value;

this.store.dispatch(IssueActions.submit(issue));

}

44

8.2 Action Hygiene

Actions are supposed to represent events that occur. Though it might be tempting, don’t view them as

commands. This decouples actions from their consequences and allows you to be more flexible when

you need to change how they’re handled.

The submit action above has the unique type “[Issue] Submit”. Action types are commonly prefixed

with a category that you put in brackets. Generally, this category should reference the event source -

e.g. a certain page or an API. However, this gets trickywhen the same action can occur onmultiple pages.

One solution might be to duplicate the action creator. Though, remember to configure all corresponding

reducers to listen for both action types (one on() can accept multiple action creators). Otherwise you

might choose a more abstract category like “Issues” allowing you to use the action creator in multiple

reducers and effects. This way youmight avoid unnecessary duplication and keep the number of actions

reasonable. However, you’d also be engaging in action re-use which loses you traceability. Eventually,

actions are cheap. If in doubt, define a new action.

PLAY-CIRCLE
Recommended Video

Good Action Hygiene byMike Ryan

CODE-BRANCH
Actions

Changes | Source Code | Live Demo

45

https://nils-mehlhorn.de/short/ciiF3
https://nils-mehlhorn.de/short/84wGA
https://nils-mehlhorn.de/short/JeJVh
https://nils-mehlhorn.de/short/ECgzr
https://nils-mehlhorn.de/short/Aj3cb

Chapter 9

Reducers

Figure 9.1: Reducers are like a funnel: the current state and an action are dropped in at the top, the next

state comes out on the bottom - nothing else gets in or out

Actions can be dispatched even if there are no registered reducers. This way you could use them solely

to trigger effects for example. Most of the time though you’ll probabaly have at least one reducer react

to an action type. Note that it’s also possible to handle the same action type in multiple reducers since

every reducer will receive every dispatched action.

46

A reducer produces the next state by returning a new object that implements the state interface. It’s

crucial to create a new object instead of modifying the existing state in order to keep the state immutable.

As we’ve learned, this makes a lot of things easier, for example change detection. If every consecutive

state is represented by a distinct object, we can just update our viewwhenwe receive a new instance.

We don’t have to perform any complicated checks where we traverse the state to see if there are any

differences.

Nowadays, creating a new object based on an existing one is pretty straightforward using the spread

operator. Those three dots will copy all properties of our last state into the next state. When you’re

defining object literals in TypeScript (or JavaScript), the last declaration wins. So, although you’re also

spreading a property that already exists in the state, it’s overriddenwith a new value by re-declaring it

after the spreading. Therefore it’s important to always spread first and update properties after that.

const issue = {

title: "Understand Reducers",

description: "Action and state go in, next state comes out",

priority: "high",

resolved: false,

};

const updatedIssue = {

...issue, // adds all properties with previous values

resolved: true, // overrides property `resolved` in this new object

};

The spread operator onlymakes a shallow copy of an object, so parts of the current statewill be integrated

into the next one. Remember that it’s forbidden tomutate the current state, yet, re-using everything that

doesn’t require change is actually encouraged since this increases performance. Additionally, you can

mutate any newly created objects as you like before returning them as part of the next state from the

reducer function.

9.1 Creating Reducers

We create a reducer by passing an initial state and several smaller state change functions to the utility

method createReducer() . The individual state change functions defined with on() enable us

to associate one or more types of actions with them. This way we can generate action-specific state

transitions that benefit from strict type-checking. Note that you’ll actually pass an action creator instead

of it’s type, that’s enough for NgRx to figure out the actual type.

// issue.reducer.ts

import { createReducer, on } from "@ngrx/store";

47

https://nils-mehlhorn.de/short/7LZM5
https://nils-mehlhorn.de/short/7LZM5
https://nils-mehlhorn.de/short/g77Je
https://nils-mehlhorn.de/short/ciiF3

import { initialState } from "./issue.state";

import * as IssueActions from "./issue.actions";

export const issueReducer = createReducer(

initialState,

on(IssueActions.submit, (state, { issue }) => {

return {

...state,

entities: {

...state.entities,

[issue.id]: {

...issue,

resolved: false,

},

},

};

})

);

Once an action is dispatched, internally, NgRx will iterate all of your state change functions and execute

the ones that match based on type. If there are multiple ones, they’ll be executed in order. However,

while you can use the same state change function for multiple action types you shouldn’t handle the

same action type with multiple state change functions - otherwise you’ll have to look in multiple places

in order to understand what an action is doing to a single slice of state.

Note that you can omit the braces and return keyword from the state change function bywrapping

the returned state object literal into parenthesis:

// issue.reducer.ts

on(IssueActions.submit, (state, { issue }) => ({

...state,

entities: {

...state.entities,

[issue.id]: {

...issue,

resolved: false,

},

},

}));

48

CODE-BRANCH
Creating Reducers

Changes | Source Code | Live Demo

9.2 Registering Reducers

Figure 9.2: The next global state is produced by funneling state slices (red shapes) through their cor-

responding reducers (grey funnels). All reducers will be called irrespective of whether they actually

handle the incoming action - if they don’t, they return the state as it is.

The storemanages the state in a single objectwhile individual slices are processed bydesignated reducers.

First we’ll declare a type for the global state by assembling the types of all slices. So, we’re basically

describing the group of red shapes from Figure 9.2.

// index.ts

import { IssueState } from "./issue/issue.state";

export interface RootState {

issue: IssueState;

}

Thenwe define a mapping from each state slice to a corresponding reducer. This mapping is represented

49

https://nils-mehlhorn.de/short/gB32C
https://nils-mehlhorn.de/short/BnHq2
https://nils-mehlhorn.de/short/cUCX3

by an ActionReducerMap which we’ll generically parametrize with the type of our application state.

In relation to Figure 9.2, this map assigns each of the red state shapes to one of the grey reducer funnels.

For our case there’s one shape (or feature) defined by IssueState which will be managed by the

reducer called issueReducer :

// index.ts

import { ActionReducerMap } from "@ngrx/store";

import { issueReducer } from "./issue/issue.reducer";

export const reducers: ActionReducerMap<RootState> = {

issue: issueReducer,

};

Eventually, we’ll pass the mapping to NgRx by importing the StoreModule through its forRoot()

method:

// app.module.ts

import { StoreModule } from "@ngrx/store";

import { reducers } from "./store/root";

@NgModule({

imports: [StoreModule.forRoot(reducers)],

})

export class AppModule {}

That’s actually everything NgRx needs to kick-off state management for our application. Importing the

StoreModule like this will also make the Store available for dependency injection. Additionally,

forRoot() accepts a configuration as an optional second parameter. Among other things, this allows

you to configure certain runtime checks notifying you about unintended violations of immutability,

serializability or action type uniqueness.

Registering reducers in this waywill initialize them directly at application startup. In Chapter 12 we’ll

be looking into registering additional reducers that can be lazy-loaded through feature modules.

CODE-BRANCH
Registering Reducers

Changes | Source Code | Live Demo

9.3 Mutable APIs with immer.js

While the spread operator definitely eases the creation of new states, you still might prefer a mutable

approach for its conciseness. However, since we can’t modify the last state, we would need some kind of

workaround - the immer.js library byMichelWeststrate provides exactly this workaround. Instead of

50

https://nils-mehlhorn.de/short/JKwhE
https://nils-mehlhorn.de/short/pMaHG
https://nils-mehlhorn.de/short/pMaHG
https://nils-mehlhorn.de/short/PQ3mt
https://nils-mehlhorn.de/short/RedXj
https://nils-mehlhorn.de/short/9Ef2Y
https://nils-mehlhorn.de/short/dkFxC
https://nils-mehlhorn.de/short/SeXWW
https://nils-mehlhorn.de/short/jWmRD

modifying the state directly, it allows you to work on a draft of the next state. This draft is effectively

a duplicate of the current state while any changes made to it will be copied onto an immutable object

representing the next state. All of this happenswhen invoking the library’s produce() functionwith

an object and a callback that operates on the corresponding draft:

const issue = {

title: "Using mutable APIs",

description: "Write convenient reducers with immer",

resolved: false,

};

const updatedIssue = produce(issue, (issueDraft) => {

issueDraft.resolved = true;

});

As you can see, produce() will eventually return a new object that incorporates the changesmade to

the draft. This is especially helpful whenworking with arrays or dictionaries as it decreases the amount

of code required for a state transition. Writing and reading code in a mutable fashion also eases the

transition into working with NgRx. Here’s how our reducer could look with immer:

// issue.reducer.ts

import produce from "immer";

export const issueReducer = createReducer(

initialState,

on(IssueActions.submit, (state, { issue }) =>

produce(state, (draft) => {

draft.entities[issue.id] = {

...issue,

resolved: false,

};

})

)

);

Note that we don’t have to return anything from the drafting function while we return the result of

produce() from the state change function.

51

Lightbulb
If you don’t like to invoke produce() in every state change function, take a look at

ngrx-etc by NgRx teammember Tim Deschryver. This library provides replacements for

createReducer() and on() which make the state directly available as a mutable

immer draft.

INFO-CIRCLE
In addition to providing a convenientwayofwriting reducers, immer also freezes resulting

objects during development in order to prevent unintended mutations at a later point. On

top of that, immer is able to generate patches documenting any changes to the state. This

is what the ngrx-wieder library uses to facilitate undo-redo.

CODE-BRANCH
Mutable APIs with immer.js

Changes | Source Code | Live Demo

9.4 Meta-Reducers

Meta-reducers are also called higher-order reducers and since reducers are just functions, meta-reducers

are actually higher-order functions. “Higher-order” means operating on other functions in form of

arguments or return values. Meta-reducers do both: they accept an existing reducer, wrap some logic

around it and return a new reducer.

Sometimes people also refer to reducers factories as meta-reducers. Those are functions you invoke to

create a reducers with certain parameters. While they are definitely useful as well, the definition we’re

using for meta-reducers implies that an existing reducers is wrapped with additional logic.

If this definition reminds you of Figure 9.2, you’re on the right track! Put simply, there’s only a single

reducer in the NgRx store while all reducers that we register are rolled into one by a meta-reducer.

Usually, you don’t need to write meta-reducers yourself very often. Still, their ability to extend domain-

specific reducerswith generic functionality canbe pretty powerful. Right again, I’llmentionngrx-wieder

as an example since its undo-redo functionality is actually implemented through ameta-reducer.

A small and commonly cited example would be a meta-reducers that logs the incoming action, the

current and the next state. It might look like this:

// meta-reducers.ts

import { ActionReducer } from "@ngrx/store";

export const loggingMetaReducer = (

reducer: ActionReducer<any>

): ActionReducer<any> => {

52

https://nils-mehlhorn.de/short/kePfT
https://nils-mehlhorn.de/short/g77Je
https://nils-mehlhorn.de/short/ciiF3
https://nils-mehlhorn.de/short/NAKUv
https://nils-mehlhorn.de/short/AULiJ
https://nils-mehlhorn.de/short/rfAz8
https://nils-mehlhorn.de/short/oDpcR
https://nils-mehlhorn.de/short/78ZSH
https://nils-mehlhorn.de/short/7ApjU
https://nils-mehlhorn.de/short/rfAz8

return (state, action) => {

console.log("current state", state);

console.log("action", action);

// execute the actual reducer

const nextState = reducer(state, action);

console.log("next state", nextState);

return nextState;

};

};

You can then either wrap one specific reducer that you created with createReducer() …

// issue.reducer.ts

// pass initial state and action handling

const reducer = createReducer();

// wrap into meta-reducer

export const issueReducer = loggingMetaReducer(reducer);

… or configure the meta-reducer during reducer registration to apply it on top of the root state:

// app.module.ts

StoreModule.forRoot(reducers, { metaReducers: [loggingMetaReducer] });

Keep in mind though, that static calls like console.log() are technically side-effects and therefore

makeyour reducers impure. So, you’re generallybetter off debuggingyour storewith theReduxDevTools

than rolling such a replacement.

A better suited example might be a meta-reducer that is able to reset the whole state. This could be

something you’d use in multiple applications, e.g. when the user logs out. For this purpose, we’ll leverage

the fact that a reducer returns its initial state when called with an undefined state (that’s also what

happenswhen the application starts-up). This waywe canwrite ameta-reducer that effectively replaces

the current state with the initial one when a special reset action occurs:

// meta-reducers.ts

import { ActionReducer, createAction } from "@ngrx/store";

export const reset = createAction("Reset");

export const resettingMetaReducer = (

reducer: ActionReducer<any>

): ActionReducer<any> => {

53

https://nils-mehlhorn.de/short/g77Je
https://nils-mehlhorn.de/short/yfumn

return (state, action) => {

if (action.type === reset.type) {

return reducer(undefined, action);

}

return reducer(state, action);

};

};

After registering this meta-reducer, we can add a button to our application that triggers the dispatch of

the reset action:

<!-- app.component.html -->

<header>

<h1>Issue Tracker</h1>

Issues

<button (click)="reset()">Reset</button>

</header>

<main>

<router-outlet></router-outlet>

</main>

// app.component.ts

import { Component } from "@angular/core";

import { reset } from "./store/meta-reducers";

import { Store } from "@ngrx/store";

@Component({ ... })

export class AppComponent {

constructor(private store: Store) {}

reset() {

this.store.dispatch(reset());

}

}

Note that you could alsowrap themeta-reducer into a factory function so that you can pass a pre-defined

action type (e.g. a logout action).

CODE-BRANCH
Meta-Reducers

Changes | Source Code | Live Demo

54

https://nils-mehlhorn.de/short/HtkR2
https://nils-mehlhorn.de/short/kmndZ
https://nils-mehlhorn.de/short/UMhYR

9.5 Error Handling

By definition, pure functions aren’t really allowed to error - at least not in a way that’s recoverable. But

what if they still do? While you shouldn’t explicitly throw errors inside a reducer, there’s no guarantee

that your code won’t produce them anyway. Youmight be accessing an undefined property or getting a

type error while parsing a string. In those cases, the error bubbles up to Angular’s global error handler

while NgRx keeps the current state and carries on like nothing happened.

As a general rule you should keep anything thatmight error out of the reducer. An operation like parsing

that is expected to error for some inputs is a side-effect. Either run it before dispatching an action or

define a corresponding effect.

However, if you’d like to enhance the stack trace in someway or recover from an unexpected error by

placing a flag into the state, youmight do so by wrapping your reducer in a try-catch block:

// issue.reducer.ts

const reducer = createReducer(

initialState

/* action handling */

);

export const issueReducer = (state: IssueState, action: Action): IssueState => {

try {

return reducer(state, action);

} catch (error) {

console.error(error);

return state;

}

};

BOOK
Recommended Read

Handling Error States with NgRx by Brandon Roberts

CODE-BRANCH
Error Handling

Changes | Source Code | Live Demo

55

https://nils-mehlhorn.de/short/UiS7r
https://nils-mehlhorn.de/short/HewW6
https://nils-mehlhorn.de/short/6THjU
https://nils-mehlhorn.de/short/r7usa
https://nils-mehlhorn.de/short/npGtk

Chapter 10

Selectors

Figure 10.1: Selectors allow us to retrieve properties from the state.

We use selectors in components and services to access the state as an RxJS observable. Up until now

we’ve only done this by invoking select() on the store while passing amapping function to the slice

of state that we need. This mapping function is called a selector. Let’s use one to display all issues in a

newly created list component:

// issue-list.component.ts

import { Store } from '@ngrx/store';

import { Observable } from 'rxjs';

import { Issue } from '../../models/issue';

import { RootState } from '../../store';

@Component({ ... })

export class IssueListComponent {

issues$: Observable<Issue[]>;

56

constructor(private store: Store<RootState>) {

this.issues$ = this.store.select((state) =>

Object.values(state.issue.entities)

);

}

}

With Object.values() the values of the issues dictionary can be accessed as an array. This waywe

can display the issues with *ngFor and the AsyncPipe .

<!-- issue-list.component.html -->

<li *ngFor="let issue of issues$ | async">

<h2>

{{ issue.title }}

<small>{{ issue.priority }}</small>

</h2>

<p>{{ issue.description }}</p>

If we’re using the samemapping functions or selectors inmultiple places, it makes sense to refactor them

into a separate file for re-usability:

// issue.selectors.ts

export const selectAll = (state: RootState) =>

Object.values(state.issue.entities);

Thenwe can import the selector and pass it to select() like this:

// issue-list.component.ts

import * as fromIssue from "../../store/issues.selectors";

this.issues$ = this.store.select(fromIssue.selectAll);

I’m using named import prefixed with “from” for the selectors module as this is the only case where it

technically makes sense: we’re selecting from the issue state. Note that this is not required. You’re free

to use individual imports or a different naming pattern instead.

Lightbulb
You can omit the generic typewhile injecting the store into your componentswhen you’re

using extracted selectors - the type will be inferred from the selector function.

57

https://nils-mehlhorn.de/short/fmN5A
https://nils-mehlhorn.de/short/EfqSx
https://nils-mehlhorn.de/short/YAUDb

An observable produced by store.select() will only emit distinct values. This way the viewwill

only be updated when there are changes to the slice of the state that is relevant. Therefore it makes

sense to restrict the return value of selectors to values that you actually need in your template.

Under the hood, NgRx is leveraging the RxJS operator distinctUntilChanged() which relies on

simple equality checks to filter duplicate values from an observable. This goes to show how beneficial

immutability can be not only for maintainability but for performance as well.

CODE-BRANCH
Selectors

Changes | Source Code | Live Demo

10.1 Computed Selectors

When selectors get more complex or need to be composed from rather different parts of the state, we

can leverage the createSelector() function to create a computed selector. It accepts up to 8 existing

selectors and a projector for combining their results. This is helpful for composing selectors. Usually,

you’ll start by defining a selector that retrieves the feature state in order to then base all other selectors

off of that:

// issue.selectors.ts

import { createSelector } from "@ngrx/store";

import { RootState } from "..";

import { Issue } from "../../models/issue";

import { Filter } from "./issue.state";

export const selectFeature = (state: RootState) => state.issue;

export const selectEntities = createSelector(

selectFeature,

({ entities }) => entities

);

export const selectAll = createSelector(selectEntities, (entities) =>

Object.values(entities)

);

Composition is not the only advantage of computed selectors. They can also contain logic for deriving

viewmodels from the underlying state. A good use-casewould be the creation of a selector for retrieving

all issues that match our filter. Here we can use the already existing issues selector and combine it with

another one that selects the current filter state. After passing these both to createSelector() we

define a projector that performs the actual filtering:

58

https://nils-mehlhorn.de/short/fdb6p
https://nils-mehlhorn.de/short/zotWh
https://nils-mehlhorn.de/short/mEM3w
https://nils-mehlhorn.de/short/8cW4z
https://nils-mehlhorn.de/short/keqZG
https://nils-mehlhorn.de/short/keqZG

// issue.selectors.ts

export const selectFilter = createSelector(

selectFeature,

({ filter }) => filter

);

export const selectFiltered = createSelector(

selectAll,

selectFilter,

(issues: Issue[], { text }: Filter) => {

if (text) {

const lowercased = text.toLowerCase();

return issues.filter(

({ title, description }) =>

title.toLowerCase().includes(lowercased) ||

description.toLowerCase().includes(lowercased)

);

} else {

return issues;

}

}

);

The resulting selector exported as selectFiltered can then be passed to store.select() like

we’ve seen before. However, computed selectors created with createSelector() have an added

benefit: memoization. This means the projector function won’t be called as long as selectAll and

selectFilter return the same values (based on strict equality checks). Instead, NgRxwill remember

the result from the last invocation and simply return it again. The selector, therefore the projector

function, is memoized. Consequently, our search logic will only be runwhen necessary. On top of that,

you can use a computed selector in multiple places and its resulting values will be cached and shared

between all subscriptions.

Note that I’m also setting up a text input in the issue list component that dispatches a search action

upon change. A corresponding reducer then updates the filter text. Check the sources linked at the end

of this section to see the corresponding code.

Memoization is another process that relies on simple equality checks and thus immutability. So, in order

to have themwork correctly always keep inmindWhat Not to Put in The State and only create new

objects in reducers instead of modifying existing ones.

Also note that only the projector of selectors createdwith createSelector() ismemoized. Therefore

59

https://nils-mehlhorn.de/short/keqZG
https://nils-mehlhorn.de/short/keqZG

Figure 10.2: Computed selectors transform the state into viewmodels. The state can stay normalized

while memoization of the projector ensures performance.

youmight move more complex selection logic into a projector even if you’re just selecting a single state

slice. A good example would be the creation of a viewmodel that offers some statistics on our issues like

howmany there are in total and howmany have already been resolved:

// issue.selectors.ts

export interface IssueStats {

total: number;

resolved: number;

}

export const selectStats = createSelector(

selectAll,

(issues): IssueStats => {

const resolved = issues.filter((issue) => issue.resolved);

return {

total: issues.length,

resolved: resolved.length,

};

}

);

We could then display these statistics always up-to-date in the application header:

// app.component.ts

@Component({ ... })

export class AppComponent {

60

stats$: Observable<fromIssue.IssueStats>;

constructor(private store: Store) {

this.stats$ = this.store.select(fromIssue.selectStats);

}

}

<!-- app.component.html -->

<header>

<h1>Issue Tracker</h1>

Issues

<div *ngIf="stats$ | async as stats">

{{ stats.resolved }} / {{ stats.total }} resolved

<button (click)="reset()">Reset</button>

</div>

</header>

<main>

<router-outlet></router-outlet>

</main>

Lastly, if you ever find yourself in a situation where a selector might be caching a large dataset that isn’t

used anymore, you can reset its memoization:

selectIssuesByPriority.release();

In the end, memoization trades space for speed by caching computed results. Therefore it makes sense

to release obsolete caches once their values are no longer required.

PLAY-CIRCLE
Recommended Video

NgRx: Selectors AreMore Powerful than You Think by Alex Okrushko

CODE-BRANCH
Computed Selectors

Changes | Source Code | Live Demo

10.2 Parameterized Selectors

Sometimes you need outside information for retrieve the right slice of state. For example when selecting

a specific issue we’d need to provide its ID. Even for those cases we can leverage memoized selectors -

simply specify additional parameters for the projector:

61

https://nils-mehlhorn.de/short/DS4iS
https://nils-mehlhorn.de/short/P2Y2F
https://nils-mehlhorn.de/short/GpgtS
https://nils-mehlhorn.de/short/ktVXC

// issue.selectors.ts

export const selectOne = createSelector(

selectEntities,

(entities: Issues, id: string) => entities[id]

);

You’d then use this selector by passing the parameter properties as a second argument to

store.select() . We might do so in an issue detail-view to retrieve a specific issue based on

a route parameter:

// issue-detail.component.ts

import { Issue } from "../../store/issues.state";

import * as fromIssue from "../../store/issues.selectors";

import { ActivatedRoute } from "@angular/router";

@Component({ ... })

export class IssueDetailComponent {

issue$: Observable<Issue>;

constructor(private route: ActivatedRoute, private store: Store) {

this.issue$ = this.route.params.pipe(

switchMap((params) => this.store.select(fromIssue.selectOne, params.id))

);

}

}

Parameterized selectors are incorporating the parameter properties in their memoization. So, if you’re

reusing the same selector while alternating properties, its result will be computed again each time.

Instead youmight want to create distinct selectors with a factory function:

// issue.selectors.ts

export const createSelectOne = () =>

createSelector(

selectEntities,

(entities: Issues, id: string) => entities[id]

);

// issue-detail.component.ts

this.store.select(fromIssue.createSelectOne(), params.id);

However, this mostly makes sense when you’re applying the same selector with different properties

multiple times on one page. Our detail viewwill only ever display a single issue at a time. Consequently,

62

it wouldn’t matter much that the selector memoization is reset when switching between different detail

views.

CODE-BRANCH
Parameterized Selectors

Changes | Source Code | Live Demo

10.3 Pipeable Selectors

Later onwe’ll be using effects to load issues from a server upon application start. Now, sincewe’re always

defining an initial state for every reducer, it’s hard to know in a componentwhether there are no existing

issues or if they’re just not loaded yet. In order to solve this dilemmawe’ll introduce a loaded flag

into the state:

// issue.state.ts

export interface State {

issues: Issue[];

filter: Filter;

loaded: boolean;

}

Here’s a corresponding selector:

// issue.selectors.ts

export const selectLoaded = createSelector(

selectFeature,

({ loaded }) => loaded

);

Now, instead of selecting from the store we can also pipe it like a regular observable. This waywe’re

able to leverage RxJS operators like skipWhile() to wait for the flag being switched.

// issue-list.component.ts

import { skipWhile } from "rxjs/operators";

import { select } from "@ngrx/store";

import * as fromIssue from "../../store/issues.selectors";

this.issues$ = this.store.pipe(

skipWhile((state: RootState) => !fromIssue.selectLoaded(state)),

select(fromIssue.selectAll)

);

Note that the select() method defined on the store is also available in form of an RxJS operator.

Therefore, we’re able to use selectors even after applying other operators.

63

https://nils-mehlhorn.de/short/fXUEN
https://nils-mehlhorn.de/short/i2Lrr
https://nils-mehlhorn.de/short/LT6PV
https://nils-mehlhorn.de/short/rED7d
https://nils-mehlhorn.de/short/ZABNe
https://nils-mehlhorn.de/short/ewZkp

If we need our operator sequence in several places, we can extract it into a custom RxJS operator with

the standalone pipe() function.

// issue.selectors.ts

import { pipe } from "rxjs";

import { skipWhile } from "rxjs/operators";

import { select } from "@ngrx/store";

export const selectAllLoaded = () =>

pipe(

skipWhile((state: RootState) => !selectLoaded(state)),

select(selectAll)

);

Thenwe can use this pipeable selector by applying it as an operator to the store observable:

// issue-list.component.ts

this.issues$ = this.store.pipe(fromIssue.selectAllLoaded());

Pipeable selectors like this always come in handy when you want to view the state in a time-dependent

way. However, often times you’re probably fine by sticking to regular selections and chaining a couple

component-specific operators after that.

Lightbulb
Instead of having a bunch of boolean flags in your state you might want to introduce

some kind of status property based on an enum that explicitly pre-defines valid states

(similar to a state machine). Otherwise you’ll have lots of code dedicated to switching flags

which likely ends up with invalid combinations.

CODE-BRANCH
Pipeable Selectors

Changes | Source Code | Live Demo

64

https://nils-mehlhorn.de/short/uVJW8
https://nils-mehlhorn.de/short/HVMLz
https://nils-mehlhorn.de/short/gUCn9
https://nils-mehlhorn.de/short/cWema

Chapter 11

Fat vs. Thin Actions and Reducers

Let’s talk about a common question: howmuch of your logic should be runwhen creating actions versus

when its corresponding reducer is executed? In other words: should you prefer fat actions and thin

reducers with a lot of information payload information or thin actions and fat reducers where there’s

only the bare minimum in the payload?

As with many things in software development, it depends, but in general you should favor thin actions

and fat reducers for twomain reasons:

1. Reducers are just pure functions that return the new state. It requires little effort to test their logic

by passing them a state plus an action and assert that the resulting state is correct. Testing with fat

actions usually involves more moving parts.

2. Having logic in reducers means you knowwhere to look for it. When the logic is tied to the action

creation it might be in a lot of different places. Note that you can still put reducer logic in a separate

file (e.g. issue.logic.ts) in order to keep the actual reducermore readable. Remember though

that the functions youwrite there are still executed inside the reducer and should therefore be

effectively pure.

Additionally, you’re probably more in an immutable mindsetwhile writing reducers and therefore less

likely to mutate state as you’d be when creating actions somewhere else. To show youwhat I mean, let’s

implement the functionality for resolving existing issues. We could work with a fat action allowing us

to simply re-assign the issue inside the reducer:

// issue.actions.ts

export const resolve = createAction(

"[Issue] Resolve",

props<{ issue: Issue }>()

);

65

// issue.reducer.ts

on(IssueActions.resolve, (state, { issue }) => ({

...state,

entities: {

...state.entities,

[issue.id]: issue,

},

}));

However, this might tempt us to perform amutation during dispatch with a component method like

follows where issue would be part of the last state:

// issue-list.component.ts

resolve(issue: Issue): void {

issue.resolved = true;

this.store.dispatch(IssueActions.resolve({ issue }));

}

What you’d actually need to do here is copy the issue during action creation:

// issue-list.component.ts

resolve(issue: Issue): void {

this.store.dispatch(

IssueActions.resolve({ issue: { ...issue, resolved: true } })

);

}

CODE-BRANCH
Fat Action

Changes | Source Code | Live Demo

Eventually, due to the reasons just mentioned, we might be better off with a thin action that only

contains the ID of a corresponding issue:

// issue.actions.ts

export const resolve = createAction(

"[Issue] Resolve",

props<{ issueId: string }>()

);

// issue.reducer.ts

on(IssueActions.resolve, (state, { issueId }) => {

const issue = state.entities[issueId];

66

https://nils-mehlhorn.de/short/JLwjN
https://nils-mehlhorn.de/short/HEzHR
https://nils-mehlhorn.de/short/8ECGz

return {

...state,

entities: {

...state.entities,

[issueId]: {

...issue,

resolved: true,

},

},

};

});

Such a thin action also complies better with viewing actions as events whereas the fat action seems

more like a setter. Other than that, thin actions might also ease debugging since it’s easier to dispatch

thin actions through the Redux DevTools.

An exception of this rule are side-effects like the ID generation that we talked about for the issue

submission. Keep these out of reducers even if theyadda littlemoreweight toyouractions. Asmentioned

in the previous chapter, the same applies for operations that might error.

CODE-BRANCH
Thin Action

Changes | Source Code | Live Demo

67

https://nils-mehlhorn.de/short/a2EJo
https://nils-mehlhorn.de/short/69YrL
https://nils-mehlhorn.de/short/cByZT

Chapter 12

Feature Modules

Reducers that are registeredwith StoreModule.forRoot() in the appmodule will be loaded eagerly

upon startup. Yet, in large Angular apps you’re probably working with several, possibly lazy-loaded

feature modules. At first sight, this doesn’t seem to fit well with the NgRx approach of managing the app

state in one global object. But, don’t worry, there’s a solution: we can also import additional reducers at a

later point in time when a module is loaded with StoreModule.forFeature() . Note that feature

reducers extend your existing store dynamically as you’ll always have only one store per application.

Let’s implement a feature module that allows the user to manage some settings. We’ll use the Angular

CLI to generate a new lazy-loaded module:

ng generate module settings --routing true --route settings --module app

Thenwe’ll create files for actions, selectors, reducer and state definition. Youmaywant to use the NgRx

feature schematic here as follows:

ng generate @ngrx/schematics:feature settings/store/settings

--module settings/settings.module --creators --flat

After running this command you might still have to do some manual tweaking to end up with the

following file structure:

src/

`-- app/

`-- settings/

|-- store/

| |-- settings.actions.ts

| |-- settings.reducer.ts

| |-- settings.selectors.ts

| `-- settings.state.ts

`-- settings.module.ts

68

https://nils-mehlhorn.de/short/N3pAY
https://nils-mehlhorn.de/short/UL5zH
https://nils-mehlhorn.de/short/WfVxZ
https://nils-mehlhorn.de/short/WfVxZ

The actions file should be similar to the one used for the issues - nothing really new here.

// settings.actions.ts

import { createAction, props } from "@ngrx/store";

import { Priority } from "../../models/priority";

export const changeNotificationPriority = createAction(

"[Settings] Change Notification Priority",

props<{ notificationPriority: Priority }>()

);

Inside settings.state.ts , however, we’ll have to provide some more typings. Besides defin-

ing a feature state interface called SettingsState and a corresponding initial state, we’ll also

export an extended root state. The latter isn’t strictly required but generally makes it easier to rea-

son about the state. That’s because when the settings module is loaded, the root state will contain

the SettingsState under a new property "settings" . By extracting the property key into a

constant settingsFeatureKey we are able to re-use it in some other places without typos. The

SettingsRootState is then defined with this key through the bracket notation:

// settings.state.ts

import { Priority } from "../../models/priority";

import { RootState } from "../../store";

export interface SettingsState {

notificationPriority: Priority;

}

export const initialState: SettingsState = {

notificationPriority: "low",

};

export const settingsFeatureKey = "settings";

export interface SettingsRootState extends RootState {

[settingsFeatureKey]: SettingsState;

}

Take a look at Figure 12.1 to get a better understanding of how these new state typings fit into the global

state. Note that the feature state for the settings module is called SettingsState while its feature

root state is defined through SettingsRootState . Meanwhile, the issues state might be represented

by one of the other red shapes inside the root state.

69

Figure 12.1: NgRxmanages all state slices in one state object that can be viewed as a tree. All reducers

registered at startup make up the root state. Feature states can be appended to the state tree later on. In

order to reference the whole state inside feature modules we define a specific feature root state.

The feature reducer is again really similar towhatwe already know. Herewe only have one state change

function for reacting to the change of some priority level at which a user would receive notifications:

// settings.reducer.ts

import { createReducer, on } from "@ngrx/store";

import { initialState } from "./settings.state";

import * as SettingsActions from "./settings.actions";

export const settingsReducer = createReducer(

initialState,

on(

SettingsActions.changeNotificationPriority,

(state, { notificationPriority }) => ({

...state,

notificationPriority,

})

)

);

Finally,weregister the reducer in themoduleusingour featurekeywith StoreModule.forFeature()

. When registering a single reducer this method accepts a string key for placing the feature state into the

70

https://nils-mehlhorn.de/short/UL5zH
https://nils-mehlhorn.de/short/UL5zH

global state as well as the reducer itself:

// settings.module.ts

import { StoreModule } from "@ngrx/store";

import { settingsReducer } from "./store/settings.reducer";

import { settingsFeatureKey } from "./store/settings.state";

@NgModule({

imports: [

CommonModule,

StoreModule.forFeature(settingsFeatureKey, settingsReducer),

],

})

export class SettingsModule {}

In order to access the feature state you’ll want to first define a feature selector. NgRx provides a utility

method createFeatureSelector() for this towhichwe’ll pass our featurekey. Subsequent selectors

can then be based off of this feature selector.

// settings.selectors.ts

import { createFeatureSelector, createSelector } from "@ngrx/store";

import {

SettingsRootState,

SettingsState,

settingsFeatureKey,

} from "./settings.state";

export const selectFeature = createFeatureSelector<

SettingsRootState,

SettingsState

>(settingsFeatureKey);

export const selectNotificationPriority = createSelector(

selectFeature,

(settings) => settings.notificationPriority

);

Here’s how a corresponding component for managing our fictional settings can look:

// settings.component.ts

import { Component, OnInit } from '@angular/core';

import { Store } from '@ngrx/store';

71

https://nils-mehlhorn.de/short/3aEBX

import { Observable } from 'rxjs';

import { Priority } from '../models/priority';

import * as fromSettings from './store/settings.selectors';

import * as SettingsActions from './store/settings.actions';

@Component({ ... })

export class SettingsComponent {

notificationPriority$: Observable<Priority>;

constructor(private store: Store) {

this.notificationPriority$ = this.store.select(

fromSettings.selectNotificationPriority

);

}

changeNotificationPriority(notificationPriority: Priority): void {

this.store.dispatch(

SettingsActions.changeNotificationPriority({ notificationPriority })

);

}

}

<!-- settings.component.html -->

<h2>Settings</h2>

<label for="priority">Notification Priority</label>

<select

formControlName="priority"

id="priority"

#prioritySelect

[value]="notificationPriority$ | async"

(change)="changeNotificationPriority(prioritySelect.value)"

>

<option value="low">Low</option>

<option value="medium">Medium</option>

<option value="high">High</option>

</select>

72

INFO-CIRCLE
I’ve deliberately excluded effects from this chapter since there’s almost no difference

between feature and root effects. The architectural considerations for feature modules

mostly relate to state and reducer definitions. Don’t worry, I’ll be mentioning feature

effects in the effects chapter.

CODE-BRANCH
Feature Modules

Changes | Source Code | Live Demo

12.1 Multiple Reducers per Module

Sometimes a feature gets to complex for a single reducer and we would like to divide it into separate

slices. Imagine that the settings page grows into several sub-categories: one for managing notification

settings, another one for configuring your profile and so on. It would make sense to have a designated

reducer for managing each settings category. Luckily, it’s also possible to register multiple reducers

within a feature module just like we did for the root state. For this purpose I’d encourage the following

file structure where a module-specific index.ts is introduced similar to the one for the store root:

src/

`-- app/

|-- settings/

| `-- store/

| |-- notification/

| | |-- notification.actions.ts

| | |-- notification.reducer.ts

| | |-- notification.selectors.ts

| | `-- notification.state.ts

| |-- profile/

| | |-- profile.actions.ts

| | |-- profile.reducer.ts

| | |-- profile.selectors.ts

| | `-- profile.state.ts

| `-- index.ts

`-- store/

|-- issue/

| |-- issue.actions.ts

| |-- issue.reducer.ts

| |-- issue.selectors.ts

| `-- issue.state.ts

`-- index.ts

73

https://nils-mehlhorn.de/short/9qvZs
https://nils-mehlhorn.de/short/XMY7n
https://nils-mehlhorn.de/short/9TTef

This way the files of directories like issue/ or notification/ don’t have to care whether

they provide root or feature reducers. Let’s move the reducer from settings.reducer.ts to

notification.reducer.ts and rename it to notificationReducer ; same thing for the state

interface from settings.state.ts to notification.state.ts . Next, we can introduce corre-

sponding files for profile settings in a profile/ sub-directory. Then we define the combined module

state inside the new index.ts :

// index.ts

import { ActionReducerMap, createFeatureSelector } from "@ngrx/store";

import { RootState } from "../../store";

import { notificationReducer } from "./notification/notification.reducer";

import { NotificationState } from "./notification/notification.state";

import { profileReducer } from "./profile/profile.reducer";

import { ProfileState } from "./profile/profile.state";

export interface SettingsState {

notification: NotificationState;

profile: ProfileState;

}

export const settingsReducers: ActionReducerMap<SettingsState> = {

notification: notificationReducer,

profile: profileReducer,

};

export const settingsFeatureKey = "settings";

export interface SettingsRootState extends RootState {

[settingsFeatureKey]: SettingsState;

}

export const selectFeature = createFeatureSelector<

SettingsRootState,

SettingsState

>(settingsFeatureKey);

Note that I’ve pulled the selector aswell as the interfaces SettingsState and SettingsRootState

up while embedding NotificationState and ProfileState accordingly. Also, I defined a

reducer mapping that we can pass to StoreModule.forFeature() instead of a single reducer:

74

https://nils-mehlhorn.de/short/UL5zH

// settings.module.ts

import { StoreModule } from "@ngrx/store";

import { settingsFeatureKey, settingsReducers } from "./store";

@NgModule({

imports: [StoreModule.forFeature(settingsFeatureKey, settingsReducers)],

})

export class SettingsModule {}

Eventually, we need to create new selectors for the sub-feature states based on selectFeature :

// notification.selectors.ts

import { createSelector } from "@ngrx/store";

import * as fromSettings from "..";

export const selectFeature = createSelector(

fromSettings.selectFeature,

({ notification }) => notification

);

export const selectPriority = createSelector(

selectFeature,

(settings) => settings.priority

);

CODE-BRANCH
Multiple Reducers per Module

Changes | Source Code | Live Demo

12.2 Deciding between root and feature state

Any state that is managed by a root reducer will be accessible from everymodule of your application.

The state of feature reducers, in turn, is only availablewhen the correspondingmodule is loaded. Despite

the fact that all of these state slices will be held in a single object by NgRx, you can only guarantee that

root reducers are loaded everywhere while feature modules might get initialized later when they’re

lazy-loaded. Therefore you need to structure your state andmodules accordingly.

Generally, you can apply the same rules youmight already be using for organizing other parts of your

app. For example, when deciding where to register a component you’ll probably place it in the most

specific place possible. So, if we’re talking about a component that is only used by a certain module, it’ll

reside with the module. If the component is instead re-used in manymodules or serves a core purpose

in your app (e.g. navigation) it’s commonly registered in the root or a shared module.

75

https://nils-mehlhorn.de/short/7ZtRX
https://nils-mehlhorn.de/short/xrH3q
https://nils-mehlhorn.de/short/nKbXi

Replacing the word “component” with “reducer” gives us a good starting point for organizing our store.

Module-specific state should be managed per module while shared or core state belongs into the store

root. When you get to a point where feature state is suddenly required bymultiple modules you’ve got

two options:

1. Re-think your module separation

2. Pull feature state up into the root

Both options are equally valid and you should decide on a case-by-case basis. Although pulling the state

up probably seems easier most of the time, there might be worth in revisiting your architecture. Either

way it makes sense to keep state local as long as possible and only pull it up when you need to.

76

Chapter 13

Effects

A side-effect is a function that does anything else than deterministically compute a value based on its

parameters. Most of the time this is narrowed to changing external state or performing asynchronous

tasks. So, when you’remutating a class attribute, that’s a side-effect. Making a network request to update

a database? Definitely a side-effect. Persisting something to local storage? You guessed it!

Now youmay ask: well, what’s so bad about side-effects? I’ll give you the answer that I was missing for

a long timewhen getting in functional programming concepts: there’s nothing bad about side-effects.

In fact, they’re an essential part of any non-trivial application. Imagine we could never save any user

inputs because it’s a side-effect - that would be pretty boring.

By referring to code that is not pure as having side-effects or being effectful we make things explicit.

If effects are explicit, they’re easier to know about and trace. Effects we don’t know about, in contrast,

probably cause bugs more often than ones we register explicitly. In Angular, side-effects are usually

scattered throughout the application. Components can trigger HTTP requests via services which might

populate class attributes with the response values and so on. With NgRx, however, we’re able to isolate

effects to keep them in check.

Up until now the only place to execute logic with NgRx is inside reducers. But reducers are - and should

remain - pure functions in order to keep state transitions easily comprehensible. Luckily, NgRx has a

package that provides remedy: @ngrx/effects . It allows us to define side-effects in form of long-

running observables that are based on the event-bus, dispatch events themselves or both. While you

could still define side-effects inside of components or plain services, the effects package offers valuable

foundations for managing the creation, lifecycle and error handling of effects.

13.1 Installation

You can install the most recent version of @ngrx/effects with npm or yarn respectively like this:

77

npm install @ngrx/effects

yarn add @ngrx/effects

Again, there’s also a schematic for adding the library which creates and registers an effects class by

default. When passing --minimal it omits this setup which is probably better in our case:

ng add @ngrx/effects@latest --minimal

This way you should end up importing EffectsModule.forRoot() into the app module with an

empty array after the StoreModule :

// app.module.ts

import { StoreModule } from "@ngrx/store";

import { reducers } from "./store/root";

import { EffectsModule } from "@ngrx/effects";

@NgModule({

imports: [StoreModule.forRoot(reducers), EffectsModule.forRoot([])],

})

export class AppModule {}

CODE-BRANCH
Installation

Changes | Source Code | Live Demo

Simulating a REST API

I’m using Angular’s In-memoryWeb API to simulate a backend server. Note that its source has moved

into the official Angular monorepo here. Either way, you can install the module as follows:

npm install angular-in-memory-web-api

After that youmay implement an Angular service that acts as a backend database:

// database.service.ts

import { Injectable } from "@angular/core";

import { InMemoryDbService } from "angular-in-memory-web-api";

import { Issue } from "../models/issue";

import { randomId } from "../util";

interface Database {

issues: Issue[];

}

78

https://nils-mehlhorn.de/short/WPzrk
https://nils-mehlhorn.de/short/pMaHG
https://nils-mehlhorn.de/short/As4tj
https://nils-mehlhorn.de/short/GhaBV
https://nils-mehlhorn.de/short/UnKPR
https://nils-mehlhorn.de/short/XUKn8
https://nils-mehlhorn.de/short/n8yMy

@Injectable()

export class DatabaseService implements InMemoryDbService {

createDb(): Database {

return {

issues: [

{

id: this.genId(),

title: "Example Issue",

description: "This is a pre-existing issue",

priority: "medium",

resolved: false,

},

],

};

}

genId(): string {

return randomId();

}

}

Finally, spin this in-memory database up by importing the InMemoryWebApiModule into your root

module while passing the service to its forRoot() method:

import { InMemoryWebApiModule } from "angular-in-memory-web-api";

@NgModule({

imports: [InMemoryWebApiModule.forRoot(DatabaseService)],

})

export class AppModule {}

This module will now intercept all requests made under /api by the HTTP client while we can work

as if there was a real backend server.

You might also want to try an Angular-external solution like the json-server module. In any case, it

should go without saying that you’ll want to use an actual server for a real application.

CODE-BRANCH
Simulating a REST API

Changes | Source Code | Live Demo

79

https://nils-mehlhorn.de/short/g9tjE
https://nils-mehlhorn.de/short/JcaBm
https://nils-mehlhorn.de/short/HpZnW
https://nils-mehlhorn.de/short/miW5K

13.2 Creating Effects

Let’s start with an effect for saving issues to a server. This effect will be encapsulated in an in-

jectable service class called IssuesEffects . You can either create this class yourself inside

issue.effects.ts and register it through the array passed to EffectsModule.forRoot() - or

run the following schematic:

ng generate @ngrx/schematics:effect store/issue --module app --root true

If the command offers to generate any additional code, you may decline for now so we can build the

class up step-by-step. It should look as follows:

// store/issues/effects.ts

import { Injectable } from "@angular/core";

import { Actions, Effect } from "@ngrx/effects";

@Injectable()

export class IssuesEffects {

constructor(private action$: Actions) {}

}

Note that the @Injectable() decorator should not contain the providedIn metadata option since

the class will be managed by NgRx. The Actions service is an observable provided by NgRx that

emits any dispatched action after it went through your reducers (i.e. the state has been updated). It’s

injected as action$ following the Finnish notation. This observable will be the basis for most effects.

We’ll want to save issues to the server as soon as the user submits it and preferably before it’s stored in

the state. However, listening to action$ will emit the submit action after the issueReducer

has run. Therefore we need to describe this process with two actions instead of one. A submit action

should trigger our effect while a newly defined submitSuccess action shouldmake the reducer store

the issue into the state.

// issue.actions.ts

export const submit = createAction("[Issue] Submit", props<{ issue: Issue }>());

export const submitSuccess = createAction(

"[Issue] Submit Success",

props<{ issue: Issue }>()

);

Actions created through submitSuccess now also contain a fully-constructed Issue that’ll be

returned from the server. This issue then already contains a server-generated ID, so there’s no need

for our ID generator anymore. Consequently, the submit method of our component as well as the

80

https://nils-mehlhorn.de/short/WPzrk
https://nils-mehlhorn.de/short/88qqH
https://nils-mehlhorn.de/short/eZuPy
https://nils-mehlhorn.de/short/Eu57B

reducer have to be refactored as follows:

// new-issue.component.ts

submit(): void {

const issue = this.form.value;

this.store.dispatch(IssueActions.submit({ issue }));

}

// issue.reducer.ts

on(IssueActions.submitSuccess, (state, { issue }) => {

return {

...state,

entities: {

...state.entities,

[issue.id]: issue,

},

};

});

We create an individual effect using the createEffect() function. It accepts a factory function

that returns a stream producing actions. For saving submitted issues this stream is created by piping

the Actions observable through some RxJS operators. This waywe can expose an observable that

effectively dispatches additional actions to the store after performing an asynchronous operation.

// issue.effects.ts

import { HttpClient } from "@angular/common/http";

import { Injectable } from "@angular/core";

import { Actions, createEffect, ofType } from "@ngrx/effects";

import { map, mergeMap } from "rxjs/operators";

import { Issue } from "../../models/issue";

import * as IssueActions from "./issue.actions";

@Injectable()

export class IssueEffects {

submit$ = createEffect(() =>

this.action$.pipe(

ofType(IssueActions.submit),

mergeMap((action) => this.http.post<Issue>(`/api/issues`, action.issue)),

map((issue) => IssueActions.submitSuccess({ issue }))

)

);

81

https://nils-mehlhorn.de/short/biwti
https://nils-mehlhorn.de/short/Eu57B

constructor(private action$: Actions, private http: HttpClient) {}

}

Let’s break those pipeable operators down one-by-one:

1. ofType() : This is a custom operator provided by NgRx. It’s basically like RxJS’ filter() , but

specifically for actions. We can simply pass an action creator and the operator will check the type

of all actions coming throughwhile letting only the ones we specified pass. After applying it we’ve

got an observable that will only emit dispatched actions created with the submit action creator

- so any action of type "[Issues] Submit" . You’re also able to pass multiple types or creators

to ofType() for cases where you’d like to listen for more than one kind of action.

2. mergeMap() : This operator does two things: it maps emitted values to another observable

through a project function and also merges the values that in turn are emitted from all resulting

observables. By destructuring the action parameter we’re able to construct a server request for

saving an issue. Nowwe’ve got an observable that will map each submit action to an HTTP

POST request and subsequently merge all responses. Merging is the right choice here, because

a user might create a second issue before the first one is saved. However, we want to save all

issues no matter when they are submitted or in what order. Other so-called “flattening” opera-

tors like switchMap() or concatMap() wouldn’t allow this. With switchMap() an issue

would only be saved successfully when it’s not interrupted by a more recent submission. In

turn, concatMap() would retain the order of submissions, possibly making us wait longer than

necessary.

3. map() : Lastly, we need tomap each HTTP response back to an action that can be dispatched

to the store. The observable created by the HTTP client is unwrapped to an Issue through

mergeMap() at this point. Thereforewe only need to pass this server-generated issue to our new

submitSuccess action creator. We end up with an observable that will emit actions of the type

"[Issues] Submit Success" .

The resulting effect is stored in a public property of the effect class - again using Finnish notation. The

naming doesn’t really matter, storing it this way just makes the effect available for subscription by NgRx.

Inorder tokickoff oureffectweneed to register its classwithNgRx through EffectsModule.forRoot()

. NgRxwill then subscribe to any observable created with createEffect() and dispatch resulting

actions to the store. Don’t forget to also import the HttpClientModule so that the HttpClient

becomes available to our effect class.

// app.module.ts

import { HttpClientModule } from "@angular/common/http";

import { EffectsModule } from "@ngrx/effects";

import { IssuesEffects } from "./store/issue/issue.effects";

82

https://nils-mehlhorn.de/short/J9C8E
https://nils-mehlhorn.de/short/nR7nR
https://nils-mehlhorn.de/short/J9C8E
https://nils-mehlhorn.de/short/CaGn4
https://nils-mehlhorn.de/short/TjU5X
https://nils-mehlhorn.de/short/YPTqw
https://nils-mehlhorn.de/short/TjU5X
https://nils-mehlhorn.de/short/YPTqw
https://nils-mehlhorn.de/short/Efms5
https://nils-mehlhorn.de/short/CaGn4
https://nils-mehlhorn.de/short/WPzrk
https://nils-mehlhorn.de/short/WPzrk
https://nils-mehlhorn.de/short/biwti
https://nils-mehlhorn.de/short/2zND5
https://nils-mehlhorn.de/short/gupnP

@NgModule({

imports: [HttpClientModule, EffectsModule.forRoot([IssuesEffects])],

})

export class AppModule {}

INFO-CIRCLE
Effects from feature modules can be defined in the same way, however, they’re registered

by passing all effect classes as an array to EffectsModule.forFeature() in their

corresponding feature module. Note that these kinds of effects will only be started once a

respective feature module is loaded.

As you can see, @ngrx/effects allows us to explicitly define side-effects like HTTP calls without

interfering with any of the store concepts that we learned before. We just get a place where we can

trigger tasks based on actions and eventually return other actions once these tasks are done.

That said, it’s advisable to use effects only for such orchestration while extracting other details. For our

example, that would meanmoving the HTTP request into a regular Angular service:

// issue.service.ts

@Injectable({ providedIn: "root" })

export class IssueService {

constructor(private http: HttpClient) {}

save(issue: Issue): Observable<Issue> {

return this.http.post<Issue>(`/api/issues`, issue);

}

}

// issue.effects.ts

import { IssueService } from "../../services/issue.service";

@Injectable()

export class IssueEffects {

submit$ = createEffect(() =>

this.action$.pipe(

ofType(IssueActions.submit),

mergeMap((action) => this.issues.save(action.issue)),

map((issue) => IssueActions.submitSuccess({ issue }))

)

);

83

constructor(private action$: Actions, private issues: IssueService) {}

}

Lightbulb
You’ll get better type hints on effect observables when you pass an arrow function with a

body to createEffect() , see here for more details.

CODE-BRANCH
Creating Effects

Changes | Source Code | Live Demo

13.3 Accessing the State

There will be times where you can’t or don’t want to attach all required metadata to an action. Instead,

you’d rather access the state from your effect. Let’s say wewant to prevent submission of issues having

the same title as an already existing one. Consequently, we need to filter our existing effect based on

what’s in the store. We can do so using the RxJS operator withLatestFrom() . It’ll hold the latest

value from one ormultiple other observables ready and gives us an observable that emits our underlying

action and such additional values combined. In our case, there’s one other observable: a selection of all

issues from the store:

// issue.effects.ts

import { filter, map, mergeMap, withLatestFrom } from "rxjs/operators";

import { Store } from "@ngrx/store";

import * as fromIssue from "./issue.selectors";

@Injectable()

export class IssueEffects {

submit$ = createEffect(() =>

this.action$.pipe(

ofType(IssueActions.submit),

withLatestFrom(this.store.select(fromIssue.selectAll)),

filter(([action, issues]) =>

issues.every(({ title }) => title !== action.issue.title)

),

mergeMap(([action, issues]) => this.issues.save(action.issue)),

map((issue) => IssueActions.submitSuccess({ issue }))

)

);

84

https://nils-mehlhorn.de/short/biwti
https://nils-mehlhorn.de/short/Xxtzt
https://nils-mehlhorn.de/short/yJc3f
https://nils-mehlhorn.de/short/wf5EV
https://nils-mehlhorn.de/short/toggM
https://nils-mehlhorn.de/short/trZ6C

constructor(

private action$: Actions,

private issues: IssueService,

private store: Store

) {}

}

Inside the subsequent filter() operator we’re then able to check that the title of the issue-to-be is

different from every existing issue. If the predicate function defined inside filter() returns false

, the underlying value is excluded from the stream - otherwise it passes through unaltered. That’s why

the projection inside mergeMap() now also works with the tuple of action and issues array.

INFO-CIRCLE
Always remember that effects are run after reducers. So, the action you’re basing your

effect onmay already have changed the state. If this doesn’t fit your use-case youmight

want to split up your action like we did with submit and submitSuccess .

While withLatestFrom() is definitely a neat way to incorporate the state into effects, it also has a

catch: applying it directly on the streamwill run the selector upon effect registration - so, basically upon

app startup. This might degrade performance when your application grows and you’re registering a lot

of effects like this. As a workaround, we can combine our stream lazily with the state selection by using

the concatMap() operator. It maps stream values to observables which are unwrapped in order once

they complete. Therefore it’s similar to mergeMap() , but while mergeMap() just merges the values

of resulting observables, concatMap() also maintains their order.

// issue.effects.ts

import { map, mergeMap, withLatestFrom, concatMap } from "rxjs/operators";

import { of } from "rxjs";

createEffect(() =>

this.action$.pipe(

ofType(IssueActions.submit),

concatMap((action) =>

of(action).pipe(withLatestFrom(this.store.select(fromIssue.selectAll)))

),

filter(([action, issues]) =>

issues.every(({ title }) => title !== action.issue.title)

),

mergeMap(([action, issues]) => this.issues.save(action.issue)),

map((issue) => IssueActions.submitSuccess({ issue }))

85

https://nils-mehlhorn.de/short/nR7nR
https://nils-mehlhorn.de/short/nR7nR
https://nils-mehlhorn.de/short/CaGn4
https://nils-mehlhorn.de/short/trZ6C
https://nils-mehlhorn.de/short/YPTqw
https://nils-mehlhorn.de/short/CaGn4
https://nils-mehlhorn.de/short/CaGn4
https://nils-mehlhorn.de/short/YPTqw

)

);

of() is a function that creates an observable which will emit the function argument(s) and complete

right after that. By creating the underlying observable this way and applying withLatestFrom()

we basically get the same stream as before, but the selector will only be run once the first action passes

through the effect.

SMILE
I know that all this RxJS operator mumbo jumbo can be hard to grasp - I’ve been there, I

feel you. Don’t get discouraged, there’s nothing wrong with you! At some point it’ll click -

actually there probably will be several clicks each time you get a deeper understanding of

reactive concepts. What helps me is imagining observables like pneumatic tubes where

packages rush through. Operators are a way to transform or filter these packages as well

as combine multiple tubes in different ways. That doesn’t mean you need to use the same

mental concept. Many people seem to respond well to visual representations - draw your

own, take a look at marble diagrams or experiment with an interactive visualizer. See

what works for you, ask questions and keep going. I believe in you!

If you find yourself accessing the state this way inmultiple effects, you can also create a custom RxJS

operator to re-use this operator sequence. It might look like this …

export const withLatestFromDeferred = <A, B>(other: Observable) =>

pipe(concatMap((value: A) => of(value).pipe(withLatestFrom(other))));

… and could be used like that:

// issue.effects.ts

createEffect(() =>

this.action$.pipe(

ofType(IssueActions.submit),

withLatestFromDeferred(this.store.select(fromIssue.selectAll)),

filter(([action, issues]) =>

issues.every(({ title }) => title !== action.issue.title)

),

mergeMap(([action, issues]) => this.issues.save(action.issue)),

map((issue) => IssueActions.submitSuccess({ issue }))

)

);

In general your actions should already provide enough metadata to run corresponding effects. This

makes state transitions more predictable. So, don’t blindly grab anything from the state, but also rethink

86

https://nils-mehlhorn.de/short/sgpNu
https://nils-mehlhorn.de/short/trZ6C
https://nils-mehlhorn.de/short/iZtps
https://nils-mehlhorn.de/short/ifx8s
https://nils-mehlhorn.de/short/duNE5

how andwhere you’re dispatching actions from time to time.

Exclamation-Triangle
Take care not tomutate the state or action payloads inside effects. The rules of immutability

still apply here. If you’re tempted, rather use the spread operator or leverage Immer’s

produce() function.

CODE-BRANCH
Accessing the State

Changes | Source Code | Live Demo

13.4 Error Handling

Effects are basically just long-running observables. So, once an error occurs, they’re done and won’t

emit anymore values. Luckily, NgRx has already some error handling built-in: effects will be restarted

up to 10 times when they produce errors. This is meant to provide some baseline recoverability while

preventing your application from producing errors in an endless loop.

Lightbulb
You can disable the default error handler where NgRx resubscribes by passing a configu-

ration object with the property useEffectsErrorHandler set to false as a second

argument to createEffect() . However, you don’t need to do this evenwhen you’re

handling some errors yourself - you can have both. Moreover, you’re able to provide your

own default error handler through the EFFECTS_ERROR_HANDLER injection token. This

way you could for example alter the number of times that effects are restarted.

Whenyou’re expecting errors though, you’re better off defining explicit error handling per effect. Maybe

you already noticed that filtering duplicate issue titles on the client-side might be ill-advised. Multiple

clients could run into race conditions, therefore the solution from the previous chapter should probably

be moved to the server. So, let’s pretend that the HTTP request triggered by the effect can produce an

error-response due to server validation and consequently remove the filtering. With NgRx’s default

error handling, a user could then submit 10 issues with an already existing title until the effect breaks -

after that they wouldn’t even be able to submit an issue with a valid title. We can fix this with custom

error handling using the catchError() operator. It allows us to handle individual errors and return

a fallback observable.

// issue.effects.ts

import { EMPTY } from "rxjs";

import { catchError, map, mergeMap } from "rxjs/operators";

createEffect(() =>

this.action$.pipe(

87

https://nils-mehlhorn.de/short/utF7x
https://nils-mehlhorn.de/short/V7YXv
https://nils-mehlhorn.de/short/VgzhX
https://nils-mehlhorn.de/short/biwti
https://nils-mehlhorn.de/short/PYpwu
https://nils-mehlhorn.de/short/QRt8e

ofType(IssueActions.submit),

mergeMap((action) =>

this.issues.save(action.issue).pipe(catchError(() => EMPTY))

),

map((issue) => IssueActions.submitSuccess({ issue }))

)

);

Notice that I’ve applied the error handling to the inner observable, the one returned from the HTTP call

underneath this.issues.save() . This waywe’re providing a fallback for the request observable.

It’s important to handle errors inside flattening operators or rather on inner observables. If we instead

apply catchError() on the outer piping, we’d be replacing the whole effect observable upon error.

Moreover, the EMPTY constant fromRxJS represents anobservable that completes immediatelywithout

emitting any values. By returning such an empty observable from our error handling we’re basically

letting the HTTP call fail silently. Youmight want to get more fine-grained here, maybe evenmove some

specific error cases into the respective service. Eventually though, we end up with a similar behavior to

what we had before while using the filter() operator: invalid issue submissions will be ignored -

only now the validation can take place server-side.

Figure 13.1: In most cases effects perform async tasks based on dispatched actions and communicate

their result back to the store in form of new actions.

Sometimes it’s necessary to let our store know about the failure of effects. Let’s introduce a loading

flag into our issue state to demonstrate this:

// issue.state.ts

export interface State {

issues: Issue[];

filter: Filter;

loaded: boolean;

88

https://nils-mehlhorn.de/short/QRt8e
https://nils-mehlhorn.de/short/xt9Ve
https://nils-mehlhorn.de/short/nR7nR

loading: boolean;

}

Youmight want to display some kind of loading spinner while this flag is true. We’d flip it when the user

submits the issue and reset it once the effect is done:

// issue.reducer.ts

createReducer(

initialState,

on(IssueActions.submit, (state) => {

return {

...state,

loading: true,

}),

on(IssueActions.submitSuccess, (state, { issue }) => {

return {

...state,

entities: {

...state.entities,

[issue.id]: issue,

},

loading: false,

};

})

);

Now, what happens when the submission fails? Nothing, since we’re letting it fail silently. In those cases

you can instead recover from an underlying error with an action that informs the store about the failure

- remember to create this action inside issues.actions.ts .

// issue.actions.ts

export const submitFailure = createAction("[Issue] Submit Failure");

// issue.effects.ts

createEffect(() =>

this.action$.pipe(

ofType(IssueActions.submit),

mergeMap((action) =>

this.issues.save(action.issue).pipe(

map((issue) => IssueActions.submitSuccess({ issue })),

catchError(() => of(IssueActions.submitFailure()))

89

)

)

)

);

Note that we’ll now also need to move the action mapping into the inner piping so that mergeMap()

can always unwrap an observable containing an action. Then we can also reset the loading flag

when the submission has failed:

// issue.reducer.ts

on(IssueActions.submitFailure, (state) => ({

...state,

loading: false,

}));

Of course, you’re free to implement the error handling that best fits your use-case. Other options might

include custom retry logic with retry() / retryWhen() or querying another API as a fallback.

CODE-BRANCH
Error Handling

Changes | Source Code | Live Demo

13.5 Optimistic vs. Pessimistic Updates

There are two points in time where we can update client state that’s reflecting data stored on a server:

1. Before the changes are made on the server. That would be called optimistic since we can’t be sure

that a corresponding server request is successful - worst case we’ll have to rollback the local state.

2. After the changes are made on the server. We’d call that pessimistic since we don’t want to reflect

a state locally that didn’t already persist to a database.

Currently, our issue submission is implemented pessimistically because we’re only putting issues into

the state once submitSuccess is dispatched. So, let’s implement issue resolving in an optimistic way

to see both approaches and their consequences for the user experience. First, we’ll define an action for

triggering the resolve process. It’ll just contain the ID of an issue that should be resolved. Additionally,

we define an action that indicates effect failure which will allow us to rollback client-side changes when

they’ve been too optimistic.

// issue.actions.ts

export const resolve = createAction(

"[Issue] Resolve",

props<{ issueId: string }>()

);

90

https://nils-mehlhorn.de/short/CaGn4
https://nils-mehlhorn.de/short/CaGn4
https://nils-mehlhorn.de/short/i9yY5
https://nils-mehlhorn.de/short/nF7a2
https://nils-mehlhorn.de/short/B93QP
https://nils-mehlhorn.de/short/mhMpw
https://nils-mehlhorn.de/short/UYxRW

export const resolveFailure = createAction(

"[Issue] Resolve Failure",

props<{ issueId: string }>()

);

export const resolveSuccess = createAction("[Issue] Resolve Success");

You can dispatch actions created with resolve through a little button on each issue in your view.

Sincewe’re optimistic about this, we’ll keep updating the state directly after this in our reducer. However,

when the reducer gets a failure action it’ll rollback the resolve:

// issue.reducer.ts

on(IssueActions.resolveFailure, (state, { issueId }) => {

const issue = state.entities[issueId];

return {

...state,

entities: {

...state.entities,

[issueId]: {

...issue,

resolved: false,

},

},

};

});

We still need an effect to propagate this change to the server. Keep in mind that it’ll run after a corre-

sponding resolve action has been reduced. Therefore we’ll fallback to a resolveFailure action

upon error in order to trigger a rollback:

createEffect(() =>

this.action$.pipe(

ofType(IssueActions.resolve),

mergeMap(({ issueId }) =>

this.issues.resolve(issueId).pipe(

map(() => IssueActions.resolveSuccess()),

catchError(() => of(IssueActions.resolveFailure({ issueId })))

)

)

)

91

);

Operations that add data (like our issue submission) are a bit more difficult to implement in an optimistic

way. When a resource already exists (as it’s the case for the resolving) we can reference it by its server-

generated ID for the rollback. However, when you need an optimistic behaviorwhile you’re just creating

a resource you’d have to use an intermediate ID on the client-side. You’d subsequently replace this

client-generated ID once the resource was create successfully on the server - or have the server persist

the client-side ID.

Moreover, you might want to limit optimistic updates to non-crucial parts of your application. This way

the user won’t ever see wrong states where it matters. Additionally, you should let optimistic updates

timeout after a short duration so that no data is rolled back too late for the user to notice.

CODE-BRANCH
Optimistic vs. Pessimistic Updates

Changes | Source Code | Live Demo

13.6 Initial Data and Effects

Remember the loaded flag that we introduced in the example for pipeable selectors? Let’s put it to

use by loading issues from the server in an effect.

First, we’ll define an action for initiating the load as well as another one for notifying the store about

success. Youmight also define a failure action here, if you need it.

// issue.actions.ts

export const load = createAction("[Issue] Load");

export const loadSuccess = createAction(

"[Issue] Load Success",

props<{ issues: Issue[] }>()

);

Thenwe canwrite a corresponding effect where this.issues.getAll() returns an HTTP-based

observable containing an issue array:

// issue.effects.ts

createEffect(() =>

this.action$.pipe(

ofType(IssueActions.load),

switchMap(() => this.issues.getAll()),

map((issues) => IssueActions.loadSuccess({ issues }))

)

92

https://nils-mehlhorn.de/short/r7PZY
https://nils-mehlhorn.de/short/Dykxq
https://nils-mehlhorn.de/short/SPnQe

);

Lastly, our reducer could put the retrieved issues into the store and flip the loaded flag accordingly:

// issue.reducer.ts

on(IssueActions.loadSuccess, (state, { issues }) => {

const entities: Issues = {};

issues.forEach((issue) => (entities[issue.id] = issue));

return {

...state,

entities,

loaded: true,

};

});

The only question is: where are we going to dispatch the load action? You’ll find several suggestions

out there, but let’s explore two solid options:

1. Upon initialization of a container component

2. Upon effect initialization

The first optionmight also be the most obvious one: we’d request the issues where we need them and

only there. This could take place in the component which displays them in a list or its parent. We could

simply dispatch from inside ngOnInit() :

// issues.component.ts

ngOnInit(): void {

this.store.dispatch(IssueActions.load())

}

This approach comes with some drawbacks though - depending onwhat you’re trying to achieve. On

one side, we’ll be loading the data each time the container component is added to the view. Youmight

work around this behavior by checking the loaded flag in the corresponding effect by accessing the

state. On the other side, we need to make sure that the issues are loaded in every place where we need

them. Let’s say you’re adding a detail route: a specific issue might then be loaded when navigating from

the list, but could be missing upon page reload.

Another option for fetching initial data is presented by effect lifecycle hooks. Similar to component

hooks, you’re able to implement certain methods for tapping into the lifecycle of your effect classes.

The OnInitEffects hook is to effects what OnInit is to components. It allows us to implement

the method ngrxOnInitEffects() fromwhich we can return an action to be dispatched once the

effects class is initialized:

93

https://nils-mehlhorn.de/short/wtuWP
https://nils-mehlhorn.de/short/Ym3Uu
https://nils-mehlhorn.de/short/5MPND
https://nils-mehlhorn.de/short/5ndmZ
https://nils-mehlhorn.de/short/LJHdk

// issue.effects.ts

import { OnInitEffects } from "@ngrx/effects";

@Injectable()

export class IssueEffects implements OnInitEffects {

load$ = createEffect(() =>

this.action$.pipe(

ofType(IssueActions.load),

switchMap(() => this.issues.getAll()),

map((issues) => IssueActions.loadSuccess({ issues }))

)

);

ngrxOnInitEffects(): Action {

return IssueActions.load();

}

}

Returning our loading action will fetch the issues once IssueEffects is registered with a root or

feature module. However, this also means that the underlying HTTP request will be kicked-off upon

app start or at the latest when the corresponding feature module is lazy-loaded. Consequently, you will

have less availability problems then before, but in turn youmight be running a lot of work upfront.

Exclamation-Triangle
Youmight be tempted to base effects for initial data uponNgRx lifecycle actions like INIT

or ROOT_EFFECTS_INIT . Yet, the former only denotes the initialization of the store

and will be dispatched too late as to be picked up by any effect. This is not the case for

the latter, however, as its namewould suggest, the action of type ROOT_EFFECTS_INIT

will only be dispatched once after all root effects are registered. So, youwon’t be able to

leverage it inside feature effects. Therefore, you’remostly better offwith the other options

presented here.

CODE-BRANCH
Initial Data and Effects

Changes | Source Code | Live Demo

13.7 Non-Dispatching Effects

Normally, effects are required to be observables emitting actions which can be dispatched. However,

there are caseswhere youwant to run some logic based on a dispatched actionwithout the need to notify

94

https://nils-mehlhorn.de/short/gSnZ8
https://nils-mehlhorn.de/short/gSnZ8
https://nils-mehlhorn.de/short/o3CjX
https://nils-mehlhorn.de/short/o3CjX
https://nils-mehlhorn.de/short/Yacj5
https://nils-mehlhorn.de/short/BUS47
https://nils-mehlhorn.de/short/MRruQ

the store after it’s done. What youwant is an effect that doesn’t result in an action. For example,wemight

want to display a notification once an issue is successfully saved. After filtering for the corresponding

action type, we’d invoke a NotificationService via the tap() operator. It allows us to run

some code every time a value passes throughwithout altering the stream itself. Without anything else,

the notification$ observable would now emit any already dispatched submitSuccess action

again, effectively creating an endless loop. In order to prevent this, we can pass a second configuration

parameter to createEffect() with a property dispatch set to false . NgRxwill then ignore

any actions coming from this effect:

// issue.effects.ts

@Injectable()

export class IssueEffects {

notification$ = createEffect(

() =>

this.action$.pipe(

ofType(IssueActions.submitSuccess),

tap(({ issue }) => {

this.notifications.info(`Issue submitted: ${issue.title}`);

})

),

{ dispatch: false }

);

constructor(

private action$: Actions,

private issues: IssueService,

private notifications: NotificationService

) {}

}

Such non-dispatching effects also allow you to return observables from the effect creator that aren’t

of type Observable<Action> . So, you’re free to transform the effect stream to your needs without

running into type conflicts.

The NotificationService used in this example could be a regular Angular service creating a

Material Snackbar, Bootstrap Toast or some other tasty pop-up. For this example it just opens a browser

alert.

CODE-BRANCH
Non-Dispatching Effects

Changes | Source Code | Live Demo

95

https://nils-mehlhorn.de/short/S8J4d
https://nils-mehlhorn.de/short/biwti
https://nils-mehlhorn.de/short/2YFq8
https://nils-mehlhorn.de/short/uSGpV
https://nils-mehlhorn.de/short/Gxqft
https://nils-mehlhorn.de/short/zicys
https://nils-mehlhorn.de/short/6XiB9

13.8 Other Effect Sources

Nowwe know that you don’t need to let your effects lead to actions, but there’s more: you also don’t

need to base them on actions. So far all our effects have been observables piping off of the Actions

observable, however, you can use whatever youwant as an effect source. Having said this, I’ll have to

add that it makes sense to connect at least one end of any effect to the store. Therefore an effect should

either produce actions or incorporate the action$ stream at some point - otherwise the resulting

observable is probably not store-related and should rather be placed in another service.

Here’s an incomplete example that listens to a media query toggling dark mode based on browser

preferences:

@Injectable()

export class ThemeEffects {

darkMode$ = createEffect(() => {

const darkModeMatcher = this.document.defaultView.matchMedia(

"(prefers-color-scheme: dark)"

);

return fromEvent(darkModeMatcher, "change").pipe(

map((event: MediaQueryListEvent) => event.matches),

startWith(darkModeMatcher.matches),

distinctUntilChanged(),

map((darkMode) => ThemeActions.toggleDarkMode({ darkMode }))

);

});

constructor(@Inject(DOCUMENT) private document: Document) {}

}

Lightbulb
The rxjs-web library created by Jan-NiklasWortmann provides reactivewrappers around

nativeWeb APIs.

WebSockets could pose another effect source. Imagine we’d be implementing a real-time chat appli-

cation where newmessages are pushed to clients. A corresponding effect could be based on an RxJS

WebSocketSubject created with the webSocket() factory function:

import { webSocket } from "rxjs/webSocket";

import { Message } from "./message.state.ts";

import * as MessageActions from "./message.actions.ts";

@Injectable()

96

https://nils-mehlhorn.de/short/Eu57B
https://nils-mehlhorn.de/short/Jaqki
https://nils-mehlhorn.de/short/PMx2h
https://nils-mehlhorn.de/short/mE5uC
https://nils-mehlhorn.de/short/ZLzuw
https://nils-mehlhorn.de/short/U6W5h
https://nils-mehlhorn.de/short/kMvDW

export class MessageEffects {

private socket = webSocket<Message>("ws://localhost:8081");

receivedMessage$ = createEffect(() =>

this.socket.pipe(map((message) => MessageActions.receive({ message })))

);

sentMessage$ = createEffect(

() =>

this.action$.pipe(

ofType(MessageActions.send),

tap((action) => this.socket.next(action.message))

),

{ dispatch: false }

);

constructor(private action$: Actions) {}

}

The receivedMessage$ effectmapsmessages coming in from the socket to actions that are dispatched

to the store. Meanwhile, the non-dispatching sentMessage$ effect sends messages to the socket

based on actions of type MessageActions.send .

Note that you’re always free to start such effects off with actions and switch to other streams afterwards

(e.g. with operators like switchMap() or exhaustMap()). Both examples could also benefit from

extracting details into separate services for media matching andwebsocket management. Also, you’ll

want to think about error handling when implementing this in a real application.

As you can see, effects are a great way of connecting various external interactions to the store without

making it considerably harder to reason about state transitions. By mapping all state-relevant events to

actions, nothing changes for our state management. After all, we still get a new state for each dispatched

action - we just have new sources where these actions can come from.

Other effects may incorporate - but are not limited to - the following sources:

• timers and intervals

• browser events

– key events

– mouse events

– …manymoreWeb APIs

• router events

• webworker messages

97

https://nils-mehlhorn.de/short/TjU5X
https://nils-mehlhorn.de/short/832TE
https://nils-mehlhorn.de/short/YTB7L

• observables from services or libraries (e.g. Angular Firebase SDK)

Exclamation-Triangle
Don’t use store selections as effect sources unless you really know what you’re doing -

even then you should probably only use those for non-dispatching effects. Otherwise

your state transitions might cause effect loops that are hard to debug.

BOOK
Recommended Reads

Deciding whether an effect is the right choice for your situation can be difficult. Here are

two great reads for getting a better feel for this topic:

Stop Using NgRx Effects for That byMichael Pearson

Start Using NgRx Effects for This by Tim Deschryver

98

https://nils-mehlhorn.de/short/psMXR
https://nils-mehlhorn.de/short/AGWjQ
https://nils-mehlhorn.de/short/V7tUy

Chapter 14

Testing

Although functional programming concepts might seem tedious at some points, it’s precisely because

of them that testing of the resulting code is incredibly straight-forward. NgRx embraces functional

programming while providing us with powerful testing utilities. So, we’re in a good position to ensure

that our issue tracker works as expected.

In this chapter I’ll show you how to test all parts of your store as well as any code that interacts with

it. We’ll only be looking at unit / integration tests since end-to-end testing shouldn’t care for the state

management library you’re using under the hood. I’ll also say somewords onwhich parts should receive

the most testing attention andwhere youmight let things slide a bit - just promise that the latter stays

between you andme.

I’ll be writing the tests with the Jasmine testing framework as it’s the default for applications created

through the Angular CLI - you’re free to chose an alternative like Jest though. Overall, there’s a bunch of

things you could be doing different in this chapter, but for the sake of keeping this book actionable I’ll be

showing you some techniques that work well for NgRx.

SMILE
Getting comfortable with Angular testing takes some time. If anything here looks confus-

ing, circle back to the official testing docs. They’re a good place to start and nothing’s ever

wrong with freshing up the basics!

14.1 Testing Reducers

We’ve learned that reducers are pure functions. A pure function computes a return value only by reading

from input values - no mutations, no side-effects. It only expresses itself through its output which will

always be the same for the same inputs no matter how often we call it. Therefore we can validate a pure

function by just validating its return value once for a certain category of inputs. We don’t need to mock

dependencies or set up any kind of state around it. We just need to call the function and check that the

return value looks like we expect it to.

99

https://nils-mehlhorn.de/short/HTCx5
https://nils-mehlhorn.de/short/yvbRs
https://nils-mehlhorn.de/short/M4sVe
https://nils-mehlhorn.de/short/nWc62

Figure 14.1: Verifying that a reducer works correctly can be done simply by asserting the next state it

produces

There are two input parameters for a reducer function: the current state and an action. Both of these

are plain objects that we can easily construct for our tests. Passing them to a reducer will give us the

next state which we can then assert for correctness. That’s it. Repeat this pattern for each combination

of action and actionmetadata and you’re done. You can follow a structure where youwrap all tests in an

outer describe() group named after the reducer and subsequently group by type of action. Inside

each describe() for an action type you can place multiple tests with it() for different action

payloads and states. Feel free to introduce additional groups where necessary.

There are only two edge cases:

• initially NgRxwill call the reducer with an undefined state to get the initial state

• all reducers receive every action, a reducer can therefore receive an unknown action

You’ll want to start your reducer test suite with these edge cases:

// issue.reducer.spec.ts

import { issuesReducer, initialState } from "./issues.reducer";

import { INIT } from "@ngrx/store";

describe("Issue Reducer", () => {

describe("init action", () => {

it("should return the initial state", () => {

const nextState = issuesReducer(undefined, { type: INIT });

expect(nextState).toBe(initialState);

100

https://nils-mehlhorn.de/short/W79NR
https://nils-mehlhorn.de/short/W79NR
https://nils-mehlhorn.de/short/ALH4T

});

});

describe("unknown action", () => {

it("should return the previous state", () => {

const nextState = issuesReducer(initialState, {} as any);

expect(nextState).toBe(initialState);

});

});

});

For the initial action we just use the one that the framework will actually dispatch while expecting

our initial state to be returned. For the second edge case we want the state to stay the same, so we’ll

just re-use the initial state and match it against the result. To ensure that the unknown action stays

unknown, we provide an empty object without a type. This requires a type assertion to any because

an empty object isn’t really an action. Instead you might also choose a type called "UNKNOWN" , but

watch out not to use it for a real action in the future.

These tests will be the same for any reducer, however, because the edge cases are not actually handled

by us but rather by the createReducer() function youmight decide to skip them - after all, they’re

already somewhat tested in the NgRx suite.

Eitherway, all other tests can now be dedicated to our custom actions. Here’s a test for resolving an issue:

// issue.reducer.spec.ts

import { IssueState } from "./issue.state";

import * as IssueActions from "./issue.actions";

describe("resolve", () => {

it("should resolve issue", () => {

const issueId = "issue-1";

const state: IssueState = {

...initialState,

loaded: true,

entities: {

[issueId]: {

id: issueId,

title: "Test Issue",

description: "This is a test description",

priority: "low",

resolved: false,

101

https://nils-mehlhorn.de/short/g77Je
https://nils-mehlhorn.de/short/Ug5bF

},

},

};

const nextState = issueReducer(state, IssueActions.resolve({ issueId }));

expect(nextState.entities[issueId].resolved).toBeTruthy();

});

});

Lightbulb
Try not to mimic the reducer functionality by deriving the target state from you’re inputs

and checking that it equals the reducer’s return value. Either perform specific assertions

or manually craft the target state inside of an toEqual() assertion.

Note that I’m incorporating the initial state while constructing the input state. This way I don’t have to

come up with valid test doubles for parts of the state that aren’t relevant to the current action. For more

complex state shapes you can leverage test object factories.

Reducers should be rigorously tested because they contain a lot of logic. At the same time they’re

probably the parts that are the easiest to test - so, you can’t make excuses, but also don’t need to!

CODE-BRANCH
Testing Reducers

Changes | Source Code | Live Demo

14.2 Test Object Factories

Manually defining states over and over again per test case will bloat your test suites. Sharing test

data between different suites could be one solution, but this also couples individual tests to each other.

Changing the data for a single case means youmight break another one.

A better solution involves test object factories. These utility classes can provide different instances of

dummy data to each test case. Here’s a test object factory for the issue state:

// issue.factory.spec.ts

import { Issue } from "../../models/issue";

import { initialState, Issues, IssueState } from "./issue.state";

export class IssueFactory {

private lastId = 0;

entity(issue?: Partial<Issue>): Issue {

const id = this.lastId++;

return {

102

https://nils-mehlhorn.de/short/kMaXw
https://nils-mehlhorn.de/short/Euup2
https://nils-mehlhorn.de/short/6PczM
https://nils-mehlhorn.de/short/AE4NY

id: `issue-${id}`,

title: `Title ${id}`,

description: `Description ${id}`,

priority: `medium`,

resolved: false,

...issue,

};

}

entities(...issues: Issue[]): Issues {

const entities: Issues = {};

issues.forEach((issue) => (entities[issue.id] = issue));

return entities;

}

state(state: Partial<IssueState>): IssueState {

return {

...initialState,

...state,

};

}

}

Now, our test cases can be more concise while we can still override the test data, e.g. by passing a

partial issue to entity() . It’s advisable not to rely too much on pre-defined values from the factory

- otherwise you’re again coupled to shared data. Instead, you’re better off asserting by reference or

explicitly overriding values that are essential to a specific test case.

Let’s refactor our reducer test for resolving an issue to use the factory:

// issue.reducer.spec.ts

import { IssueFactory } from "./issue.factory.spec";

describe("Issue Reducer", () => {

let factory: IssueFactory;

beforeEach(() => {

factory = new IssueFactory();

});

103

https://nils-mehlhorn.de/short/JRWBc

describe("resolve", () => {

it("should resolve issue", () => {

const issue = factory.entity();

const state = factory.state({

loaded: true,

entities: factory.entities(issue),

});

const nextState = issueReducer(

state,

IssueActions.resolve({ issueId: issue.id })

);

expect(nextState.entities[issue.id].resolved).toBeTruthy();

});

});

});

Here’s another handy factory function that allows you to mock the root state based on the initial state

and some overrides:

// index.spec.ts

import { INIT } from "@ngrx/store";

import { reducers, RootState } from ".";

export const mockState = (override: Partial<RootState> = {}): RootState => {

const initialState = {};

Object.entries(reducers).forEach(([key, reducer]) => {

initialState[key] = reducer(undefined, { type: INIT });

});

return {

...initialState,

...override,

} as RootState;

};

Defining this in a central place allows your individual test suites to be more decoupled from the root

state. Now, when you add another reducer, you won’t have to update several test suites when they

relied onmocking the root state.

CODE-BRANCH
Test Object Factories

Changes | Source Code | Live Demo

104

https://nils-mehlhorn.de/short/4fiGR
https://nils-mehlhorn.de/short/DJDFw
https://nils-mehlhorn.de/short/WKp43

14.3 Testing Action Creators

Technically, the tests from the previous chapter did not only test a reducer but also the corresponding

action creators. We could separate these units by defining the resulting actions inline when invoking

the reducer from a test. Then the action creators could receive their own test suite:

// issue.actions.spec.ts

import * as IssueActions from "./issue.actions";

describe("Issue Actions", () => {

describe("resolve", () => {

it("should return resolve action", () => {

const issueId = "issue-1";

const action = IssueActions.resolve({ issueId });

expect(action.issueId).toBe(issueId);

});

});

});

However, since actions are merely data structures and action creators utility functions for creating them,

there’s notmuch to verify - the interesting aspects are already covered by the type system. Consequently,

the resulting tests are incredibly trivial and don’t really serve a purpose. Maintaining themwill probably

cost youmore than they’re worth. Therefore youmay omit individual action creator tests and rather

verify them in combination with reducers as we’ve done before.

CODE-BRANCH
Testing Action Creators

Changes | Source Code | Live Demo

14.4 Testing Selectors

Selectors are also pretty decoupled from the actual store. They’re basically pure functions operating

on one parameter, the root state. This makes them almost as smooth to test as reducers. We drop a

pre-defined state in and assert the output. Here’s howwe could test the feature selector for the issue

state:

// issue.selectors.spec.ts

import { RootState } from "..";

import { selectFeature } from "./issue.selectors";

import { initialState } from "./issue.state";

describe("selectFeature", () => {

105

https://nils-mehlhorn.de/short/UB9Qg
https://nils-mehlhorn.de/short/jBe7b
https://nils-mehlhorn.de/short/z9BmD

it("should select feature state", () => {

const issueState = factory.state({

entities: factory.entities(factory.entity(), factory.entity()),

});

const rootState = mockState({

issue: issueState,

});

expect(selectFeature(rootState)).toEqual(issueState);

});

});

Though, I think it’s obvious from this example that testing trivial selectors by themselves might not be

worth your time. Therefore you probably just want to test more complex selectors in a corresponding

test suite.

Usually, such selectors are created with createSelector() and although you can test them in the

sameway, youmight get awaywith testing only a specific part: the projector. The third argument passed

to createSelector() is actually the only one that really can (or should) contain logic. The selectors

you pass before are either trivial or also defined with their own projector while everything in-between

is again taken care of by the type system. That’s why aMemoizedSelector exposes the projector as a

property we can leverage for our test:

// issue.selectors.spec.ts

import { initialState, IssueState } from "./issue.state";

import { selectFiltered } from "./issue.selectors";

describe("selectFiltered", () => {

it("should select all for empty filter", () => {

const issues = [factory.entity(), factory.entity()];

const filtered = selectFiltered.projector(issues, { text: "" });

expect(filtered).toEqual(issues);

});

it("should filter issues for non-empty filter", () => {

const first = factory.entity({

title: "First",

description: "This is a Test",

});

const second = factory.entity({

title: "Second",

106

https://nils-mehlhorn.de/short/keqZG
https://nils-mehlhorn.de/short/keqZG
https://nils-mehlhorn.de/short/pqqbL

description: "This is a Test",

});

let filtered = selectFiltered.projector([first, second], {

text: "First",

});

expect(filtered).toEqual([first]);

filtered = selectFiltered.projector([first, second], {

text: "test",

});

expect(filtered).toEqual([first, second]);

});

});

As youmight’ve noticed, testing only the projector also spares us frommocking the whole root state.

Instead, we can just provide mocks for the result of upstream selectors.

Parameterized selectors are no different. Their projector only has one additional parameter you need to

supply:

// issue.selectors.spec.ts

import { selectOne } from "./issue.selectors";

describe("selectOne", () => {

it("should select issue by id", () => {

const first = factory.entity();

const second = factory.entity();

const entities = factory.entities(first, second);

const selected = selectOne.projector(entities, first.id);

expect(selected).toEqual(first);

});

});

Testing pipeable selectors is different as we’re basically testing RxJS operators or rather observables that

incorporate these operators. Let’s explore observable testing in a separate section - we’ll be needing this

for testing the remaining parts of our app and a pipeable selector is a perfect example for getting started.

14.5 Testing Observables

Frommy point of view there are twomain approaches for testing observables:

1. asynchronous testing with toArray() operator

107

https://nils-mehlhorn.de/short/KNxW3
https://nils-mehlhorn.de/short/iZiiB

2. marble testing

Either one is fine and you can even mix them throughout your codebase depending on what seems

easier for a specific test case. Claims that one or the other is better are purely based on opinion and

definitely not scientifically proven.

Async Testing

A Jasmine testing function (the one you pass to it()) can be made asynchronous by declaring a

parameter, usually called done . This parameter will then contain a callback function whichwe can

invoke to inform the framework that our test has completed.

INFO-CIRCLE
Jasmine also offers the option to pass an async function or return a promise. However,

observables cannot be awaited directly. You’d have to turn them into promises which

might be a bit tricky right now. Angular also provides a bunch of async helpers, but let’s

keep it simple and solid.

When testing observableswe can then call done() from inside of observer callbacks (next , error

, complete). Many times though, we have observables that will invoke the next callback with

multiple emissions. In those caseswe don’twant to complete the test case upon the first emission. Instead

we’d like to assert all emissions that occur until the observable completes. That’s where the toArray()

operator comes into play. It’ll collect all emissions and emit them as an array once the underlying

observable completes.

Equipped with this knowledge we’re able to define a test for our pipeable selectAllLoaded() selec-

tor:

// issue.selectors.spec.ts

import { of } from "rxjs";

import { toArray } from "rxjs/operators";

import { IssuesState } from "./issues.state";

import { selectLoadedIssues } from "./issues.selectors";

describe("Issue Selectors", () => {

describe("selectAllLoaded", () => {

it("should emit issues once loaded", (done) => {

const unloadedState = mockState({

issue: factory.state({ loaded: false }),

});

const issue = factory.entity();

const loadedState = mockState({

108

https://nils-mehlhorn.de/short/5T7xq
https://nils-mehlhorn.de/short/jAo9J
https://nils-mehlhorn.de/short/ALH4T
https://nils-mehlhorn.de/short/zXQKJ
https://nils-mehlhorn.de/short/P9wPj
https://nils-mehlhorn.de/short/fJuzz
https://nils-mehlhorn.de/short/YPBVm
https://nils-mehlhorn.de/short/iZiiB
https://nils-mehlhorn.de/short/iZiiB

issue: factory.state({

loaded: true,

entities: factory.entities(issue),

}),

});

of(unloadedState, loadedState)

.pipe(selectAllLoaded(), toArray())

.subscribe((states) => {

expect(states.length).toBe(1);

expect(states[0]).toEqual([issue]);

done();

});

});

});

});

After defining two subsequent states andpassing them to of() weget anobservable thatwillmimic the

state transition fromunloaded to loadedbefore completing. Piping it throughour selectAllLoaded()

operator should skip the first state emission. We can verify this inside the next callback passed to

subscribe() where we have access to all emissions thanks to toArray() . There we can assert our

expectations in order to then finish the test by calling done() .

Note that you’ll have to mock the root state (here represented be unloadState and loadedState)

for pipeable selectors that are directly applied to the store.

Lightbulb
You don’t need to unsubscribe in these kinds of tests. If the observable doesn’t complete,

toArray() won’t emit and the test will timeout.

INFO-CIRCLE
Technically, of() is a bit different from the actual store as it emits synchronously

upon subscription. Therefore you might want to instead create the observable with

scheduled() while passing asyncScheduler when you need to run code after the

subscription but before the observer is invoked.

Marble Testing

I’ve mentionedmarble diagrams before as a graphical representation for observables. Now, instead of

having imageswith these graphical representationswe could also draw themwith plainASCII characters.

Here’s an observable that emits two values a and b before completing as denoted by the pipe symbol

at the end:

109

https://nils-mehlhorn.de/short/sgpNu
https://nils-mehlhorn.de/short/iZiiB
https://nils-mehlhorn.de/short/iZiiB
https://nils-mehlhorn.de/short/sgpNu
https://nils-mehlhorn.de/short/P5LQD
https://nils-mehlhorn.de/short/VGXZm
https://nils-mehlhorn.de/short/ifx8s

--a--b--|

Time elapses with each character whenmoving from left to right while a dash represents one frame

of time where nothing happens. What we end upwith is a domain-specific language (DSL) that can be

used to precisely describe any observable you could imagine. This DSL is called marble syntax and RxJS

provides testing utilities for matching expressions of this syntax against actual observables.

Transferring this concept to our test case we’d say that a and b in the previous marble diagram are

two consecutive states - a could contain the loaded flag set to false whereas b would have it

set to true . When we now apply the selectAllLoaded() operator, we’d expect to have a new

observable that only emits the second state. In marble syntax this observable would look like this:

-----b--|

The emission of a is gone and has been replace with a dash - so time passes while nothing emits past

the operator at that point.

In order to progress observables correctly along a diagram, RxJS uses a virtual clock. This way our tests

can remain synchronous and deterministic. It also allows us to test code in a fraction of the time that

it would usually take for execution (e.g. when using the delay() operator). This virtual timezone is

initialized through a test scheduler which accepts a function for matching two values with the testing

framework of our choice - here it is for Jasmine:

// issue.selector.spec.ts

import { TestScheduler } from "rxjs/testing";

const scheduler = new TestScheduler((actual, expected) => {

// Jasmine-specific equality check

expect(actual).toEqual(expected);

});

When passing code to the scheduler’s run() function, all observables will be executed synchronously

in virtual time. We also get a set of helper functions for parsing cold and hot observables frommarble

strings as well as matching an existing observable against them. Now that we know how our observable

should look before and after the selectAllLoaded() operator is applied, the only thing left to do is

write that into a test case:

// issue.selector.spec.ts

it("should emit issues once loaded", () => {

scheduler.run(({ hot, expectObservable }) => {

const unloadedState = {

issue: factory.state({ loaded: false }),

};

const issue = factory.entity();

110

https://nils-mehlhorn.de/short/5T7xq
https://nils-mehlhorn.de/short/ZguBK
https://nils-mehlhorn.de/short/ECRcd

const loadedState = {

issue: factory.state({

loaded: true,

entities: factory.entities(issue),

}),

};

const selection = hot("--a--b--|", {

a: unloadedState,

b: loadedState,

}).pipe(selectAllLoaded());

expectObservable(selection).toBe("-----b--|", { b: [issue] });

});

});

Note that the runhelpers hot() and cold() accept representatives for eachemittedmarble (here a

and b) in formof a dictionary. The same applies for the toBe() matcher on expectObservable()

. Also, I’m using hot() for creating the underlying observable, because the NgRx store is using a

BehaviorSubject - therefore a hot observable - under the hood.

Personally, I’d say it’s easier to get started with async observable testing. Using an additional operator

like toArray() might incorporate logic that isn’t essential to the code we’re testing, but so does any

testing utility. It only gets trickywhen youwant to test time-related observable logic - in those cases

you’re probably better off with marble testing where time is virtualized. In the following sections I’ll

write async tests so that you’re not forced to learn the marble DSL right now.

PLAY-CIRCLE
Recommended Video

Unit Testing NgRx RxJS withMarbles by Sam Brennan & Keith Stewart

CODE-BRANCH
Testing Selectors and Observables

Changes | Source Code | Live Demo

14.6 Testing Effects

Testing effects means testing observables. So, we can directly apply what we’ve learned. However, since

effects are defined as injectable classes wemight want to spin up an Angular TestBed first:

import { TestBed } from "@angular/core/testing";

import { provideMockActions } from "@ngrx/effects/testing";

describe("IssueEffects", () => {

111

https://nils-mehlhorn.de/short/nQNyM
https://nils-mehlhorn.de/short/iZiiB
https://nils-mehlhorn.de/short/Ez5yF
https://nils-mehlhorn.de/short/bbg3B
https://nils-mehlhorn.de/short/v9m8n
https://nils-mehlhorn.de/short/aEfwY
https://nils-mehlhorn.de/short/vdZXp

let action$: Observable<Action>;

let effects: IssueEffects;

let serviceSpy: jasmine.SpyObj<IssueService>;

let factory: IssueFactory;

beforeEach(() => {

factory = new IssueFactory();

serviceSpy = jasmine.createSpyObj("IssueService", ["save"]);

TestBed.configureTestingModule({

providers: [

IssueEffects,

{ provide: IssueService, useValue: serviceSpy },

provideMockActions(() => actions$),

],

});

effects = TestBed.inject(IssueEffects);

});

});

Here I’m performing a setup step before each testwhere all dependencies of the effect class aremocked in

a testing module. The IssueService is mocked with a Jasmine spy in order exclude the HTTP layer

from this test suite. Additionally, NgRx provides a testing utility function provideMockActions()

which allows us to replace the action observable with an arbitrary observable. Under the hood, it’s using

the RxJS observable creator defer() . Therefore, the callback returning our action$ replacement

will only be called upon subscription to an individual effect inside a single test. This way each test can

provide an observable mock that fits best.

Eventually, the actual instance of IssueEffects is retrieved from the testbed. Frankly though, it’s

not totally necessary to use a testbed for unit-testing services. You could also pass the mocks directly

into the class constructor - the subsequent test cases will look exactly the same.

Nowwe can describe each effect observable through test cases for all possible scenarios. Let’s start with

the happy path for the issue submission:

describe("submit$", () => {

it("should save issue and dispatch success", (done) => {

const first = factory.entity();

const second = factory.entity();

action$ = of(

IssueActions.submit({ issue: first }),

IssueActions.submit({ issue: second })

112

https://nils-mehlhorn.de/short/eGKN2
https://nils-mehlhorn.de/short/pFGDT
https://nils-mehlhorn.de/short/TWxAy

);

serviceSpy.save.and.returnValues(of(first), of(second));

effects.submit$.pipe(toArray()).subscribe((actions) => {

expect(actions).toEqual([

IssueActions.submitSuccess({ issue: first }),

IssueActions.submitSuccess({ issue: second }),

]);

done();

});

});

});

I’m faking two submit actions through an observable created with the RxJS of() function. Mean-

while, the issue service spy is prepared for two subsequent invocations where it’ll respond with observ-

ables containing complete issues (normally, these would be coming from a server). Testing the effect

then only requires us to assert that NgRxwould receive the proper success actions. Note that I’m not

checking for any invocations on the spy since that’s rather an implementation detail. Youmight deviate

from this approach in some situations - especially for non-dispatching effects.

Here’s another test verifying that the effect dispatches a failure action when the service call fails while

recovering afterwards:

it("should dispatch failure and recover on error", (done) => {

const first = factory.entity();

const second = factory.entity();

action$ = of(

IssueActions.submit({ issue: first }),

IssueActions.submit({ issue: second })

);

serviceSpy.save.and.returnValues(

throwError(new Error("Validation Error")),

of(second)

);

effects.submit$.pipe(toArray()).subscribe((actions) => {

expect(actions).toEqual([

IssueActions.submitFailure(),

IssueActions.submitSuccess({ issue: second }),

]);

done();

});

113

https://nils-mehlhorn.de/short/sgpNu

});

The failingHTTP request ismockedwith the RxJS throwError() function and a plain error. In reality

that’d probably be an HttpErrorResponse , so feel free to expand this setup if you’re performingmore

specific error handling.

Limiting effects to orchestration especially pays off for testing where we’re then able to mock imple-

mentation details like HTTP requests. Effects that rely on other sources can be tested in the sameway.

However, our implementations for toggling dark mode and communicating in real-time are using APIs

like fromEvent() and webSocket() that are difficult to mock. Therefore it would make sense to

introduce designated services for media matching and web socket creation - the former is also available

from the Angular CDK.While you’ll be having the same problems when testing these new services,

you’d end up with an improved separation of concern and you’d only have a hard time mocking the

mentioned APIs once.

If your effect is accessing the state, you also need to mock the NgRx store. We’ll be looking into that in a

separate section as it’s also required for testing components and services which depend on the store.

CODE-BRANCH
Testing Effects

Changes | Source Code | Live Demo

14.7 Testing Components and Services

We’ve discussed testing each part of anNgRx store on it’s own. Nowwe’ll take a look at units that depend

on the store such as components, services or even directives. While nothing in general changes to the

way you’d test these units, we’ve got two different options for dealing with the state management. We

can either leave it aside bymocking the store or include it into the testing scope with integration tests.

Mocking the Store

Mocking the store in many different test suites is cumbersome. That’s why NgRx provides another

testing utility function provideMockStore() that can do the work for us. Among other things,

it creates a MockStore which you’ll import into your providers when setting up the testbed for a

component test:

// issue-list.component.spec.ts

describe("IssueListComponent", () => {

let component: IssueListComponent;

let fixture: ComponentFixture<IssueListComponent>;

let store: MockStore<RootState>;

let factory: IssueFactory;

let dispatchSpy: jasmine.Spy;

114

https://nils-mehlhorn.de/short/NcQQ9
https://nils-mehlhorn.de/short/LL2CK
https://nils-mehlhorn.de/short/XGQb9
https://nils-mehlhorn.de/short/kMvDW
https://nils-mehlhorn.de/short/PSFUu
https://nils-mehlhorn.de/short/fjDTK
https://nils-mehlhorn.de/short/wNKn4
https://nils-mehlhorn.de/short/8Akcm
https://nils-mehlhorn.de/short/o9KLG
https://nils-mehlhorn.de/short/tt4ww

beforeEach(async () => {

factory = new IssueFactory();

await TestBed.configureTestingModule({

declarations: [IssueListComponent],

providers: [provideMockStore<RootState>({ initialState: mockState() })],

imports: [RouterTestingModule],

}).compileComponents();

store = TestBed.inject(MockStore);

dispatchSpy = spyOn(store, "dispatch");

fixture = TestBed.createComponent(IssueListComponent);

component = fixture.componentInstance;

fixture.detectChanges();

});

});

Optionally, you can pass a MockStoreConfig for providing an initial state. After retrieving the

mocked store instance from the testbed, youmay also set the state explicitly in each test suite in order to

assert correct component rendering:

// issue-list.component.spec.ts

it("should display issues", () => {

let elements = fixture.debugElement.queryAll(By.css("li"));

expect(elements.length).toBe(0);

const issues = [factory.entity(), factory.entity()];

store.setState(

mockState({

issue: factory.state({

loaded: true,

entities: factory.entities(...issues),

}),

})

);

fixture.detectChanges();

elements = fixture.debugElement.queryAll(By.css("li"));

expect(elements.length).toBe(issues.length);

});

Additionally, you can override the values returned from selectors through the overrideSelector()

method. This will give you a regular MemoizedSelector whose result you can also update later on

via setResult() and a subsequent call to the store’s refreshState() method:

115

https://nils-mehlhorn.de/short/FVNxh
https://nils-mehlhorn.de/short/pqqbL

// issue-list.component.spec.ts

it("should display issues (selector override)", () => {

let elements = fixture.debugElement.queryAll(By.css("li"));

const selector = store.overrideSelector(fromIssue.selectFiltered, []);

fixture.detectChanges();

expect(elements.length).toBe(0);

const issues = [factory.entity(), factory.entity()];

selector.setResult(issues);

store.refreshState();

fixture.detectChanges();

elements = fixture.debugElement.queryAll(By.css("li"));

expect(elements.length).toBe(issues.length);

});

The difference is that you don’t have to elaborately setup the state beforehand while you isolate the

selectors from the test. Otherwise you’d also be implicitly testing the selectors. On the other hand, you

now have to knowwhich selector is actually used by the component internally. Consequently, you’re

somewhat violating encapsulation principles.

Currently, there’s no designated utility for verifying action dispatches with themock store, however,

you can still get that done yourself. A straight-forward approach may involve spying on the store’s

dispatch() method. Here’s how this could look whenmimicking a search input:

// issue-list.component.spec.ts

it("should dispatch search", () => {

const dispatchSpy = spyOn(store, "dispatch");

const text = "abc";

const input = fixture.debugElement.query(By.css("input"));

input.nativeElement.value = text;

input.nativeElement.dispatchEvent(new Event("input"));

fixture.detectChanges();

expect(dispatchSpy).toHaveBeenCalledWith(IssueActions.search({ text }));

});

Alternatively, you could setup an async test based on the scannedActions$ property of the mock

store.

Integration Testing

Instead of mocking the store, we could also integrate the real thing into the testbed. This waywewould

assure that both units work well together (as it’s the case in your actual application). For this purpose,

116

you’d import the regular StoreModule into your setup:

// issue-list.component.spec.ts

let component: IssueListComponent;

let fixture: ComponentFixture<IssueListComponent>;

let store: Store<RootState>;

let factory: IssueFactory;

beforeEach(async () => {

factory = new IssueFactory();

await TestBed.configureTestingModule({

declarations: [IssueListComponent],

imports: [RouterTestingModule, StoreModule.forRoot(reducers)],

}).compileComponents();

store = TestBed.inject(Store);

fixture = TestBed.createComponent(IssueListComponent);

component = fixture.componentInstance;

fixture.detectChanges();

});

it("should display issues", () => {

let elements = fixture.debugElement.queryAll(By.css("li"));

fixture.detectChanges();

expect(elements.length).toBe(0);

store.dispatch(IssueActions.submitSuccess({ issue: factory.entity() }));

fixture.detectChanges();

elements = fixture.debugElement.queryAll(By.css("li"));

expect(elements.length).toBe(1);

});

I wouldn’t advise you to write both unit and integration tests for the same component. You’ll have twice

the amount of code to maintain, while your confidence in the code probably won’t increase that much.

CODE-BRANCH
Testing Components and Services

Changes | Source Code | Live Demo

117

https://nils-mehlhorn.de/short/pMaHG
https://nils-mehlhorn.de/short/EYmP9
https://nils-mehlhorn.de/short/4Q5hL
https://nils-mehlhorn.de/short/LJWvA

Chapter 15

Performance

I’ve been touching on performance here and there already, but actually there aren’t too many NgRx-

specific points to consider. The concepts embedded into the framework will already provide you with a

solid foundation for lightning fast applications - anything else mostly relates to Angular in general.

While I’m not a fan of dismissing performance optimizations as the root of all evil, make sure to invest

your time where it matters. Grab low-hanging fruits and compare your solutions to others when

something feels off, but don’t engage in extensive optimization of non-critical parts. Instead, measure

application performance, narrow problems down and weigh costs versus benefits. Let’s recap some

internal considerations before extending our view to howNgRx relates to Angular performance.

It might seem counter-intuitive to some, but functional programming is what makes NgRx fast. Pure

functions and immutability are the foundation for memoization and simple equality checks. This way

we can defer expensive computations and view updates to a minimum.

Whenmemoizing selectors you’re trading memory for computation resources. Caching the result of

a selector function means we don’t have to re-calculate it all the time. That’s a powerful technique,

especially for a single-threaded language like JavaScript. Therefore you should leverage selector memo-

izationwhen you need to transform the state before making it available to consumers. Remember to

reset selectors when their results are no longer required though.

Selection observables will only emit distinct states, therefore the view can only update when it really

needs to. Underneath we’re creating shallow state copies and that’s also incredibly fast since we’re

reusing most of the state. Anything that drops out of the state will just be picked up by the garbage

collection. At the same time, state normalization ensures that we’re not keeping any redundancies in

memory.

Onemore interesting detail: Angular event bindings (i.e. calling a class method from the template) will

block the change detection until the handler code completes. With NgRxwe’re mostly just dispatching

an action in order to then directly return the control flow toAngular. Thisway the view stays responsive

while state transitions take place “in the background”.

118

15.1 OnPush Change Detection

Angular has two strategies for detecting changes to the component state that need to be rendered into the

view. There’s a default one which triggers in a multitude of cases; in very simple terms, it basically runs

all the time. That’s not inherently bad and Angular, by default, delivers decent performance. Running

the change detection less often still provides potential for improvement and that’s why the OnPush

strategy also exists. It’ll trigger only in the following three cases:

1. when a component’s inputs are reassigned

2. when events occur on a component or one of its children

3. when a component is dirty, meaning it’s explicitly marked for change detection through a call to

markForCheck() on a ChangeDetectorRef (like it’s done inside of the AsyncPipe)

You can configure a component to use OnPush change detection by specifying the changeDetection

metadata property in its decorator:

// issue-list.component.ts

import { Component, OnInit, ChangeDetectionStrategy } from "@angular/core";

@Component({

selector: "app-issues",

templateUrl: "./issues.component.html",

styleUrls: ["./issues.component.scss"],

changeDetection: ChangeDetectionStrategy.OnPush,

})

export class IssueListComponent {}

Since all selections from the store come in the form of an observable, applying this performance op-

timization is pretty straightforward. Note, however, that you’ll have to invoke the change detection

manually when involving component state that isn’t bound through the AsyncPipe.

Lightbulb
Libraries like @ngrx/component and @rx-angular/template expand on this topic in order

to optimize rendering even further.

15.2 Tracking List Elements

When rendering lists with the NgFor directive, Angular replaces DOM elements once the underlying

object reference changes. In order to help the framework to optimize this process, you can provide a

function for re-identifying elements with trackBy . While shallow copying won’t change too many

object references at the same time, you can still benefit from applying this optimization, especially for

transient elements produced from selector projectors.

119

https://nils-mehlhorn.de/short/S7c7B
https://nils-mehlhorn.de/short/sxjuL
https://nils-mehlhorn.de/short/YAUDb
https://nils-mehlhorn.de/short/E5U7R
https://nils-mehlhorn.de/short/Wym6R
https://nils-mehlhorn.de/short/hDmMj

// issue-list.component.ts

trackByIssues(index: number, issue: Issue): string {

return issue.id;

}

<!-- issue-list.component.ts -->

<li *ngFor="let issue of issues$ | async; trackBy: trackByIssues">...

15.3 Efficient Handling of Remote Data

Try not to replicate your whole database on the client-side by fetching everything into the store. Keep

the amount of cached data reasonable and try to clear parts that aren’t used anymore.

You also don’t have to store the complete resource returned froma server response. It’s totally fine to omit

properties that aren’t required for your application. Destructuring and the object property shorthand

syntax are your friends here.

Additionally, you can fill up your store incrementally with approaches like pagination. Unfortunately,

NgRx doesn’t provide pagination support out-of-the-box. However, maybe you’re also better off keeping

paginated collections out of the store depending on your use-case. This way you can easily clean up

obsolete resources when a component is destroyed.

Lastly, remember to normalize entities by replacing nesting with key references before putting them

into the state. Otherwise you’re storing redundant information that you’ll also have to update multiple

times.

BOOK
Recommended Read

Here’s an article I wrote on how to manage pagination in a reusable way with the data

source abstraction fromAngular Material: Angular Material Pagination Data Source

CODE-BRANCH
Performance

Changes | Source Code | Live Demo

120

https://nils-mehlhorn.de/short/99KiE
https://nils-mehlhorn.de/short/BqBRQ
https://nils-mehlhorn.de/short/doWAG
https://nils-mehlhorn.de/short/ZtMK7

Chapter 16

Patterns

In this chapter we’ll explore some patterns that relate to the use of NgRx in varying extends. I’m

intentionally refraining from calling them “best practices” because I know that those two words are

synonymous with “the only right way of doing things” to some people - of course that’s not true for

you! You’re a well-reflected developer who weighs their options before choosing the right thing for

themselves. I know that since you obviously made the incredibly wise decision to read this book.

16.1 Container and Presentational Components

There’s this architectural concept in UI development where you separate components into the following

two categories:

Presentational Components (aka dumb components) are purely concerned with looks. They don’t

maintain state, depend on services or perform computations. They just render their template inputs

into the view and emit events based on user interaction. These constraints allow them to be reusable

and easily tested. Consequently, youwouldn’t inject the store into a presentational component. This

way, it’s loosely coupled to the application logic and you can easily change where the underlying state is

managed. Usually, presentational components also only contain other presentational components.

Container Components (aka smart components) are organizational wrappers around presentational

or other container components. They deal with services and business logic, may contain state, but

don’t really care that much for how things look. While dependency injection still allows for some loose

coupling, container components are generally less-likely to be reused. They select state from the store in

order to forward the data to presentational components via input bindings. Upon user interaction, the

presentational components notify the containers via event emission which in turn will dispatch actions

to the store.

This pattern doesn’t specifically relate to NgRx or even Angular, but rather to component-based UI

development in general. However, you’re likely to encounter it in combination with state management

121

solutions. There’s even an NgRx schematic for generating a container component that depends on the

store:

ng generate @ngrx/schematics:container issues

Figure 16.1: The separation between container and presentational components prevents logic and state

management details from leaking across the view hierarchy.

Inour case, the IssuesComponent could serveas a container componentwhile NewIssueComponent

and the IssueListComponent would be presentational ones:

// issues.component.ts

@Component({ ... })

export class IssuesComponent implements OnInit {

issues$: Observable<Issue[]>;

constructor(private store: Store) {}

ngOnInit(): void {

this.issues$ = this.store.pipe(fromIssue.selectAllLoaded());

}

onSearch(text: string): void {

this.store.dispatch(IssueActions.search({ text }));

}

122

https://nils-mehlhorn.de/short/wzJ3b

onResolve(issue: Issue): void {

this.store.dispatch(IssueActions.resolve({ issueId: issue.id }));

}

onSubmit(issue: Issue): void {

this.store.dispatch(IssueActions.submit({ issue }));

}

}

<!-- issues.component.html -->

<app-new-issue (submitNew)="onSubmit($event)"></app-new-issue>

<app-issue-list

*ngIf="issues$ | async as issues; else loading"

[issues]="issues"

(resolve)="onResolve($event)"

(search)="onSearch($event)"

></app-issue-list>

<ng-template #loading>Loading...</ng-template>

// issue-list.component.ts

@Component({ ... })

export class IssueListComponent {

@Input()

issues: Issue[];

@Output()

search = new EventEmitter<string>();

@Output()

resolve = new EventEmitter<Issue>();

constructor() {}

onSearch(text: string): void {

this.search.emit(text);

}

onResolve(issue: Issue): void {

this.resolve.emit(issue);

123

}

}

@Component({ ... })

export class NewIssueComponent {

form: FormGroup;

@Output()

submitNew = new EventEmitter<Issue>();

constructor(private fb: FormBuilder) {

this.form = this.fb.group({

title: ['', Validators.required],

description: ['', Validators.required],

priority: ['low', Validators.required],

});

}

onSubmit(): void {

const issue = this.form.value;

this.submitNew.emit(issue);

}

}

I’m not a fan of overly strict boundaries although I like the notion of separating concerns. Introducing

lots of components just because it’s the the cool thing to do often results in solid chaos. I’ve also found

that prematurely optimizing components for reuse canmake development unnecessarily complicated

- many times you don’t really know how components are going to be reused beforehand. There’s no

one-size-fits-all solution and you should evaluate your options per instance.

After all, we’re basically in the same territory thatmotivated us to integrate NgRx in the first place. NgRx

already provides various tools for separating concerns andmoving themout of components. Dispatching

actions to the store is comparable to the event binding of presentational components, providing you

with the sought-after indirection. Moreover, state transitions are handled in reducers, selectors map the

state to models for the viewwhile effects are isolated to dedicated services.

Nevertheless, this pattern is something to keep inmind forwhen your components are getting too smart,

e.g. because they’re juggling numerous dependencies or managing huge chunks of state. Yet, breaking

components apart is often only half of the solution. The other half might be rethinking your approach

and possibly introducing new services, directives or pipes.

124

CODE-BRANCH
Container and Presentational Components

Changes | Source Code | Live Demo

16.2 Facades

The facade pattern is not specific to NgRx, Angular or evenweb development. It’s a general software-

design pattern originating from object-oriented programming. The idea is this: when you’re connecting

a unit of code to one or more distinct units, instead of letting those interact directly you’re defining a

clear boundary: a facade. Bymasking how thingswork on the other side, you prevent different concerns

from leaking into each other. Eventually, a facade is an abstraction that’s meant to hide complexity.

Figure 16.2: Facades are services sitting between components and the store. They expose selections as

observables andmapmethod calls to dispatched actions in order to abstract the state management

When applying the pattern to NgRx, components are interacting with the store only through a facade.

The components don’t directly depend on the store anymore. Meanwhile, the facade exposes observables

based on selections from store and provides methods that dispatch actions. Here’s what a facade for our

issues could look like:

// issue.facade.ts

import { Injectable } from "@angular/core";

import { Store } from "@ngrx/store";

import { Issue } from "../../models/issue";

import * as IssueActions from "./issue.actions";

import * as fromIssue from "./issue.selectors";

@Injectable({ providedIn: "root" })

export class IssueFacade {

125

https://nils-mehlhorn.de/short/TtaBd
https://nils-mehlhorn.de/short/XCP44
https://nils-mehlhorn.de/short/2Ejwo
https://nils-mehlhorn.de/short/iLp99

issues$ = this.store.pipe(fromIssue.selectAllLoaded());

constructor(private store: Store) {}

submit(issue: Issue): void {

this.store.dispatch(IssueActions.submit({ issue }));

}

resolve(issueId: string): void {

this.store.dispatch(IssueActions.resolve({ issueId }));

}

search(text: string): void {

this.store.dispatch(IssueActions.search({ text }));

}

}

// issues.component.ts

@Component({ ... })

export class IssuesComponent implements OnInit {

issues$: Observable<Issue[]>;

constructor(private facade: IssueFacade) {}

ngOnInit(): void {

this.issues$ = this.facade.issues$;

}

onSearch(text: string): void {

this.facade.search(text);

}

onResolve(issue: Issue): void {

this.facade.resolve(issue.id);

}

onSubmit(issue: Issue): void {

this.facade.submit(issue);

}

126

}

You end upwith a single service having a concise interface that abstracts the statemanagement from the

component’s perspective. The notion is comparable to the separation of container and presentational

components, but instead of outsourcing implementation details to a parent, you put them in a service.

Note that youmay place the facade into a feature sub-directory inside store/ .

While this pattern sounds intriguing on paper, youmight notice that we didn’t win that much in terms

of complexity. The relation between properties and selections as well as methods and actions is still

1-to-1, yet we almost doubled the amount of code. Somemight say that the facade abstraction only lives

up to its potential when selection logic gets more complicated. Most of the time though, you’ll probably

be fine with a tool that’s already in your NgRx belt: selectors. That’s where you can abstract from the

shape of the actual state and produce additional presentational types if necessary. They’re also fast, easy

to test and composable beyond reducer boundaries.

There’s another problem with facades: you’re breaking the indirection between cause and effect by

grouping actions and selections into the same service. You’ve put in all the effort to adopt event-sourcing

in your application in order to go back to a service-oriented architecture at the last moment.

Dispatching actions from a service also promotes reusing the same action type for different underlying

events. Thismakes it harder to trace backwhat’s happening in your app. The proposed solution is adding

a generic dispatch() method to the facade. A component would then still dispatch actions by itself

while reading state from the facade. At that point you really have to ask yourself what you’re trying to

achieve with a leaky facade whose benefits are already questionable. Take a look at alternative state

management options and see if something fits better in your case.

Whenmasking NgRxwith facades, you need to consider: what’s the complexity you’re trying to hide?

The store has essentially twomethods: one for reading data and another one for communicating events.

Those twomethods represent the basic idea of NgRx, Redux as well as CQRS and event-based program-

ming in general. Meanwhile, a component isn’t exposed to the store internals like reducers or effects.

The store itself is already a facade and the public API are selectors and actions.

The facade pattern is definitely useful in software-design, Angular (e.g. the HttpClient is a facade) and

maybe even in combination with NgRx. However, I doubt that it should be the default approach for

dealing with the state management solution. A good use-case might be interop with other stateful

services. In general though you should avoid hasty abstractions.

BOOK
Recommended Read

Here’s the article that introduced facades to the NgRx world and a discussion of their

usefulness:

NgRx + Facades: Better State Management by Thomas Burleson

NgRx Facades: Pros and Cons by Sam Julien

127

https://nils-mehlhorn.de/short/Vd5ar
https://nils-mehlhorn.de/short/Evw8A
https://nils-mehlhorn.de/short/YPb2L

CODE-BRANCH
Facades

Changes | Source Code | Live Demo

16.3 Re-Hydration

It’s a common requirement: persisting NgRx state in order to load it back up when the application is

restarted. This process of populating an empty object with domain data is called re-hydration. While

it’s common to persist the store data to the browser storage (mostly localStorage), youmight also

re-hydrate from a server-side cache.

There are some pitfalls to watch out for when applying this pattern. For one thing, you should take

care not to store sensitive data in potentially insecure storages. Consider factors such as multiple users

working on the samemachine. Additionally, the state you’re storing can become outdated. Consequently,

youmight incorporate techniques like validation and partial re-hydration. For this examplewe’ll develop

a simplified solution that saves the whole root state to the localStorage .

The popular approach for implementing re-hydration is based onmeta-reducers. Such a re-hydration

meta-reducer would have to do two things:

1. Persist the resulting state after each action has been processed by the actual reducer(s)

2. Provide persisted state upon initialization

Recalling our logging meta-reducer, persisting the result state is pretty straight-forward: we simply

replace the log statements with browser API calls for serializing an object to JSON and putting it into

the localStorage . Since we’ve taken care to keep our state serializable, this should work right-away.

Additionally, we’ve already learned that NgRx calls reducers oncewith an undefined state and an INIT

action to retrieve the initial state. This would be the place for parsing a potentially existing stored

state and returning it instead of the underlying reducer’s initial state. Here’s how a corresponding

meta-reducer might look:

// hydration.reducer.ts

import { ActionReducer, INIT } from "@ngrx/store";

import { RootState } from "..";

export const hydrationMetaReducer = (

reducer: ActionReducer<RootState>

): ActionReducer<RootState> => {

return (state, action) => {

if (action.type === INIT) {

const storageValue = localStorage.getItem("state");

if (storageValue) {

try {

128

https://nils-mehlhorn.de/short/mhVZj
https://nils-mehlhorn.de/short/FfrPW
https://nils-mehlhorn.de/short/5DiCX
https://nils-mehlhorn.de/short/KVu3S
https://nils-mehlhorn.de/short/KVu3S
https://nils-mehlhorn.de/short/KVu3S
https://nils-mehlhorn.de/short/gSnZ8
https://nils-mehlhorn.de/short/gSnZ8

return JSON.parse(storageValue);

} catch {

localStorage.removeItem("state");

}

}

}

const nextState = reducer(state, action);

localStorage.setItem("state", JSON.stringify(nextState));

return nextState;

};

};

Note that I’mwrapping the parsing into a try-catch block in order to recover when there’s invalid data

in the storage.

Since we’re trying to re-hydrate the whole store, we’ll have to register the meta-reducer at the root:

// index.ts

import { hydrationMetaReducer } from "./hydration.reducer";

export const metaReducers: MetaReducer[] = [hydrationMetaReducer];

// app.module.ts

@NgModule({

imports: [

StoreModule.forRoot(reducers, { metaReducers })

]

})

Lightbulb
There’s a well-known library called ngrx-store-localstorage youmight utilize to sync your

store to the localStorage . It’s leveraging the plain meta-reducer approach and offers

some advantages over a custom implementation.

CODE-BRANCH
Re-Hydration: Meta-Reducer

Note that the re-hydrated state will be overridden by the data loaded from the in-memory

database. Check the devtools to trace the re-hydration.

Changes | Source Code | Live Demo

Serialization, parsing andpersistence are processes that clearly sound like side-effects tome. Just because

JSON.stringify() , JSON.parse() and the localStorage are synchronous APIs, doesn’t mean

129

https://nils-mehlhorn.de/short/T87qg
https://nils-mehlhorn.de/short/KVu3S
https://nils-mehlhorn.de/short/D3KJh
https://nils-mehlhorn.de/short/Wo9HJ
https://nils-mehlhorn.de/short/vJ4Tg
https://nils-mehlhorn.de/short/iXsg4
https://nils-mehlhorn.de/short/Wopsq
https://nils-mehlhorn.de/short/KVu3S

they’re pure. Placing them into a reducer (or meta-reducer) is in itself a violation of NgRx principles.

That doesn’t mean it’s not allowed to implement re-hydration this way, but there might be value in a

different approach

Let’s rethink re-hydration based on the NgRx building blocks. Interactions with browser APIs should

go into effects. However, setting the state is not possible from an effect, so we’ll still need a reducer, or

rather a meta-reducer. It would only hydrate the state based on an action dispatched by an effect.

We’ll start by defining an action that kicks-off the hydration aswell as two additional actions that indicate

whether a stored state could be retrieved:

// hydration.actions.ts

export const hydrate = createAction("[Hydration] Hydrate");

export const hydrateSuccess = createAction(

"[Hydration] Hydrate Success",

props<{ state: RootState }>()

);

export const hydrateFailure = createAction("[Hydration] Hydrate Failure");

Ourmeta-reducer can be incredibly simple and thus remain pure: it just has to replace the state based

on hydrateSuccess actions. In any other case it’ll execute the underlying reducer.

// hydration.reducer.ts

import { Action, ActionReducer } from "@ngrx/store";

import * as HydrationActions from "./hydration.actions";

function isHydrateSuccess(

action: Action

): action is ReturnType<typeof HydrationActions.hydrateSuccess> {

return action.type === HydrationActions.hydrateSuccess.type;

}

export const hydrationMetaReducer = (

reducer: ActionReducer<unknown>

): ActionReducer<unknown> => {

return (state, action) => {

if (isHydrateSuccess(action)) {

return action.state;

} else {

return reducer(state, action);

130

}

};

};

The isHydrateSuccess() helper function implements a user-defined type guard. This waywe can

safely access the state payload property based on the action type of hydrateSuccess .

Nowwe canwrite the effect that dispatches hydrateSuccess and hydrateFailure actions based

onwhether there’s a serialized state available from the localStorage . It’ll be started by a hydrate

action thatwe return through the OnInitEffects lifecycle. We’ll then try to retrieve a value from the

storage using the constant key "state" in order to parse it and return the corresponding hydration

actions. If we’re successful in parsing the state, it’ll end up at our meta-reducer which puts it into the

NgRx store.

// hydration.effects.ts

@Injectable()

export class HydrationEffects implements OnInitEffects {

hydrate$ = createEffect(() =>

this.action$.pipe(

ofType(HydrationActions.hydrate),

map(() => {

const storageValue = localStorage.getItem("state");

if (storageValue) {

try {

const state = JSON.parse(storageValue);

return HydrationActions.hydrateSuccess({ state });

} catch {

localStorage.removeItem("state");

}

}

return HydrationActions.hydrateFailure();

})

)

);

constructor(private action$: Actions, private store: Store<RootState>) {}

ngrxOnInitEffects(): Action {

return HydrationActions.hydrate();

}

131

https://nils-mehlhorn.de/short/sCWTT
https://nils-mehlhorn.de/short/KVu3S
https://nils-mehlhorn.de/short/5MPND

}

What’s still missing is an effect that persists the current state to the localStorage in the first

place. We’ll base it off of the actions stream in order to wait for either an hydrateSuccess or

hydrateFailure . This way we won’t overwrite an existing state before the re-hydration is done.

Thenwe stop looking at actions an instead subscribe to the store with the switchMap() operator. Slap

a distinctUntilChanged() on top and you’ll have a stream that emits the state any time it changes.

Lastly, we’ll mark the effect as non-dispatching and serialize the state to the localStorage inside of a

tap() operator.

// hydration.effects.ts

serialize$ = createEffect(

() =>

this.action$.pipe(

ofType(HydrationActions.hydrateSuccess, HydrationActions.hydrateFailure),

switchMap(() => this.store),

distinctUntilChanged(),

tap((state) => localStorage.setItem("state", JSON.stringify(state)))

),

{ dispatch: false }

);

Don’t forget to register the new effect class in your module declaration. Additionally, you’d be better

off injecting the localStorage and/or outsourcing the whole parsing and persistence process into

another service.

Apart from complying with the NgRx principles, this effect-based re-hydration implementation addi-

tionally allows us to

• leverage dependency injection and thus ease testing

• incorporate time-based filtering (e.g. RxJS operators like auditTime())

• perform advanced error handling

• re-hydrate from asynchronous sources

The only disadvantage would be that we can’t provide a stored state as a direct replacement for the

initial state. If that’s a requirement, you might try to register reducers via dependency injection in order

to still get around an impure implementation.

132

https://nils-mehlhorn.de/short/KVu3S
https://nils-mehlhorn.de/short/TjU5X
https://nils-mehlhorn.de/short/fdb6p
https://nils-mehlhorn.de/short/KVu3S
https://nils-mehlhorn.de/short/S8J4d
https://nils-mehlhorn.de/short/F2xow
https://nils-mehlhorn.de/short/ekbmD
https://nils-mehlhorn.de/short/ZHJPR

Exclamation-Triangle
Keep in mind that the shape of your application state can change between different

releases. Meanwhile, your clients will have old versions in their storage - carelessly re-

hydrating those will probably break your app. Possible solutions might involve tracking

some kind of version or deep-checking state keys. Depending on the outcome you could

discard or migrate serialized states.

BOOK
Recommended Read

I’ve written up a similar approach for autosaving the state to a server:

Angular Autosave for Forms, Services and NgRx

CODE-BRANCH
Re-Hydration: Meta-Reducer + Effects

Note that the re-hydrated state will be overridden by the data loaded from the in-memory

database. Check the devtools to trace the re-hydration.

Changes | Source Code | Live Demo

133

https://nils-mehlhorn.de/short/FYadC
https://nils-mehlhorn.de/short/nPNkP
https://nils-mehlhorn.de/short/SttyX
https://nils-mehlhorn.de/short/Fpa3j

Chapter 17

Router Store

The router store connects the Angular router to NgRx. It’s not a replacement for the Angular router but

rather a bridge for working with the router state (path, query params, data) using the tools we know

(reducers, selectors, effects). There are two things the router store does:

1. serialize the router state into the store

2. emit actions based on navigation to update this state

While it’s not strictly necessary to leverage this module for interacting with the router, it has certain

advantages.

Firstly, the store can remain the single source of truth. Take a look at the issue detail component that we

implemented. It doesn’t just depend on the store but also requires the activated route to retrieve the

correct issue. With the router store the ID route paramwould be available from the state. This waywe

could write a selector that abstracts the connection between route and issue for the component.

Secondly, writing effects based on navigation gets easier. While it’s perfectly fine to use events emitted

by the router as an effect source, it might be more convenient to have a set of well-defined actions

instead.

Additionally, the router store will propagate state changes back to the router and navigate accordingly.

Time-travelling throughapplication stateswith the dev toolswill thereforework across routes. Moreover,

you can influence the route serialization and thus easily store additional information that might seem a

bit lost elsewhere.

17.1 Installation

Run one of the following commands to install the Node module either with npm or yarn:

npm install @ngrx/router-store

134

https://nils-mehlhorn.de/short/gY8RF
https://nils-mehlhorn.de/short/gY8RF

yarn add @ngrx/router-store

There’s also a schematic which will directly register the library within your appmodule:

ng add @ngrx/router-store@latest

Otherwise you need to import the StoreRouterConnectingModule yourself using its forRoot()

method. Make sure to import the module after the store and effects as well as the router itself.

// app.module.ts

...

import { StoreRouterConnectingModule, RouterState } from "@ngrx/router-store";

@NgModule({

imports: [

...

StoreRouterConnectingModule.forRoot({

routerState: RouterState.Minimal

}),

],

...

})

export class AppModule {}

You can pass a StoreRouterConfig while initializing the module allowing you to configure the

following:

• stateKey : The property under which the router state is serialized into the store. Defaults to

router

• serializer : A custom implementation of RouterStateSerializer

• navigationTiming : Whether navigation actions should be dispatched before or after guards

and resolvers have run. By default, it’s before.

• routerState : Member of RouterState enum for using either the default or a minimal

serialization approach. Doesn’t take effect when you’re providing a custom serializer.

Exclamation-Triangle
Only the minimal serialization is actually serializable to JSON. You should prefer it to

conformwith NgRx and Angular Ivy runtime checks. To the same end, you should take

care to keep any route data (provided in the route config or by resolvers) serializable.

After that themodulewill happilydispatchcorrespondingactionsduring routing like routerNavigatedAction

to indicated a successful navigation. Take a look at the docs for all available actions and their possible

orders.

135

https://nils-mehlhorn.de/short/eBTMV
https://nils-mehlhorn.de/short/n42tP
https://nils-mehlhorn.de/short/7hwcG
https://nils-mehlhorn.de/short/kuiwQ
https://nils-mehlhorn.de/short/nE4G6
https://nils-mehlhorn.de/short/4Y9A9
https://nils-mehlhorn.de/short/gzDoz
https://nils-mehlhorn.de/short/gzDoz
https://nils-mehlhorn.de/short/KEG4o
https://nils-mehlhorn.de/short/KEG4o

However, actions that aren’t processed by a reducer won’t result in state transitions. So, in order to

serialize the route information into the state we still need to register a reducer with the store. Luckily,

we don’t need to write one ourselves this time. NgRx already provides the routerReducer which

we can add to our reducer mapping. At the same time we also need to extend the state typing with the

RouterReducerState type. Note that the property key we’re using corresponds to the stateKey

from the router store configuration.

// index.ts

import { routerReducer, RouterReducerState } from "@ngrx/router-store";

export interface RootState {

issue: IssueState;

router: RouterReducerState;

}

export const reducers: ActionReducerMap<RootState> = {

issue: issueReducer,

router: routerReducer,

};

Open up the dev tools and youwill see how router state transitions in sync with the routing. On top of

that, travelling back and fourth through states will also navigate your application accordingly. This way

you get time-travelling debugging across different routes.

17.2 Selecting Router State

Given you’re using one of the existing route serializations, NgRx provides a bunch of selectors out of the

box. You can get a grip on them by calling getSelectors() imported from @ngrx/router-store

with a selector for the router state. In order to benefit frommemoization you should only retrieve the

selectors once though. Youmight want to introduce a file like router.selectors.ts in the store

directory for this purpose. There you can re-export the selectors again with a destructuring assignment:

// router.selectors.ts

import { getSelectors } from "@ngrx/router-store";

import { RootState } from "..";

export const selectFeature = (state: RootState) => state.router;

export const {

selectCurrentRoute,

selectFragment,

selectQueryParams,

136

https://nils-mehlhorn.de/short/T2pdX
https://nils-mehlhorn.de/short/hdTSe
https://nils-mehlhorn.de/short/Q3XKs

selectQueryParam,

selectRouteParams,

selectRouteParam,

selectRouteData,

selectUrl,

} = getSelectors(selectFeature);

Nowwe can leverage these selectors to build another selector that retrieves a specific issue for our detail

view. While selectRouteParams would definitely be an option, selectRouteParam might be

even more convenient. That’s actually not a selector by itself but a rather a factory function for one.

When passing a route parameter key we’ll receive a selector for this specific parameter only. Thenwe

combine that with our existing selectEntities selector:

// issue.selectors.ts

import * as fromRouter from "../router/router.selectors";

export const selectActiveId = fromRouter.selectRouteParam("id");

export const selectActive = createSelector(

selectEntities,

selectActiveId,

(entities, id) => entities[id]

);

The resulting selector can thenbeused inourdetail componentwhile allowingus todrop thedependency

on ActivatedRoute :

// issue-detail.component.ts

import * as fromIssue from '../../store/issue/issue.selectors';

@Component({ ... })

export class IssueDetailComponent {

issue$: Observable<Issue>;

constructor(private store: Store) {

this.issue$ = this.store.select(fromIssue.selectActive);

}

}

The component now contains even less logic and thus becomes easier to test.

137

https://nils-mehlhorn.de/short/Zvi7z

17.3 Reacting to Router Actions

The router store actions aren’t strictly reserved for the router reducer. We can also listen to them in our

reducers or effects like any other action.

Maybe wewould like to display a loading indicator at the top of the page during navigation. For this we

couldflip a loadingflag to true upon routerRequestAction andback to false once anavigation

succeeds, fails or gets canceled as indicated by routerNavigatedAction , routerErrorAction

and routerCancelAction respectively. Here’s how that could look in an additional reducer:

// navigation.reducer.ts

import {

routerCancelAction,

routerErrorAction,

routerNavigatedAction,

routerRequestAction,

} from "@ngrx/router-store";

import { createReducer, on } from "@ngrx/store";

import { initialState } from "./navigation.state";

export const navigationReducer = createReducer(

initialState,

on(routerRequestAction, (state) => ({

...state,

loading: true,

})),

on(routerNavigatedAction, routerErrorAction, routerCancelAction, (state) => ({

...state,

loading: false,

}))

);

As an example for a router-based effect one could write a non-dispatching effect that notifies some

analytics tool about page views:

// router.effects.ts

import { routerNavigatedAction } from "@ngrx/router-store";

@Injectable()

export class RouterEffects {

pageView$ = createEffect(

() =>

138

https://nils-mehlhorn.de/short/9rD9p
https://nils-mehlhorn.de/short/gzDoz
https://nils-mehlhorn.de/short/fEcCe
https://nils-mehlhorn.de/short/352S4

this.action$.pipe(

ofType(routerNavigatedAction),

tap((action) =>

this.analytics.trackPageView(action.payload.routerState.url)

)

),

{ dispatch: false }

);

constructor(private action$: Actions, private analytics: AnalyticService) {}

}

Some people also use router-based effects for pre-loading data similar to a route data resolve. Personally,

I’m not a big fan of that. Depending on the use-case, I’d rather chose an actual resolve or dispatch the

loading action from the routed component.

CODE-BRANCH
Router Store

Changes | Source Code | Live Demo

139

https://nils-mehlhorn.de/short/uyhVU
https://nils-mehlhorn.de/short/z4ZjD
https://nils-mehlhorn.de/short/e8726
https://nils-mehlhorn.de/short/Kx3Cv

Chapter 18

Entity Abstraction

Managing entities like our issues can get repetitive. You’ll mostly be performing the same actions for

any entity collection: creating, reading, updating, deleting. At the same time the state will probably look

really similar between different entities. That seems like we’d be creating a good chunk of very similar

code aka boilerplate - yuck!

The NgRx entity adapter provides a generic approach for minimizing boilerplate whenworking with

entity collections. On a conceptional level it’s basically the same approach that’s used for plain collections

aka arrays. Instead of creating a new array implementation for any element type, we’re reusing the

same implementation in a generic fashion, only specifying the element type per instance. Just like an

array has methods for operating on the underlying elements, the entity adapter provides functionality

for updating entity collections in the state. Meanwhile, the NgRx concepts remain untouched. The

NgRx entity abstraction is rather elegant, but there’s no magic - we’ll just defer some operations to the

adapter instead of implementing them ourselves.

18.1 Installation

Here are the commands to install the NgRx entity package:

npm install @ngrx/entity

yarn add @ngrx/entity

There’s also a schematic, however, at this point it doesn’t do anything other than installing the depen-

dency:

ng add @ngrx/entity@latest

140

18.2 Entitiy State and Adapter

In order to manage a state slice in a generic fashion it needs to conform to the EntityState interface.

It already includes the properties for handling an entitiy collection:

interface EntityState<T> {

ids: string[] | number[];

entities: Dictionary<T>;

}

Therefore, we’ll refactor the issue state to extend this base type:

// issue.state.ts

import { EntityState } from "@ngrx/entity";

export interface IssueState extends EntityState<Issue> {

filter: Filter;

loaded: boolean;

loading: boolean;

}

At the same time, we’ll ditch our custom entities property as it’s already defined in the parent. The

dictionary type will be inferred from the generic parameter on EntityState<Issue> . NgRx has a

custom Dictionary type for this purpose. That’s basically the same as our index type Issues but

reusable for different types of values.

The ids property specified by EntityState is supposed to be an array containing the IDs of all

entities, therefore the keys for the entities dictionary. While this might seem redundant at first,

since those are already accessible via Object.keys(entities) , storing them also in an array serves

a purpose that a dictionary can not: retaining order. This way, looking up a specific entity can remain

fast, but we can also have our entities sorted.

Afterwards we can create the centerpiece of the entity abstraction: the EntityAdapter . There’s a

factory function createEntityAdapter() which accepts the entity type as a generic parameter:

// issue.state.ts

import { EntityState, createEntityAdapter } from "@ngrx/entity";

import { Issue } from "../../models/issue";

export const adapter = createEntityAdapter<Issue>();

During creation you can also pass a function for selecting IDs that are available under a key other than

id (e.g. uuid , guid or ID). You can also define a sort comparer which defaults to a sorting based

on the ID. Passing false instead of a function for the sortComparer optionwill disable the sorting.

141

https://nils-mehlhorn.de/short/wzhbZ
https://nils-mehlhorn.de/short/gRaZR
https://nils-mehlhorn.de/short/wzhbZ
https://nils-mehlhorn.de/short/bkV9A
https://nils-mehlhorn.de/short/LSVig

The adapter has a function for initializing the generic entity state where we can pass additional custom

properties as a parameter:

// issue.state.ts

export const initialState: IssueState = adapter.getInitialState({

filter: {

text: "",

},

loaded: false,

loading: false,

});

Now that we’re using the adapter, we can replace any collection related selectors with generic once.

Create and re-export them within a destructuring assignment of the adapter’s getSelectors()

method. You’ll have to pass the feature selector in order to let the adapter knowwhere the entity state is

registered in the root state.:

// issue.selectors.ts

import { adapter } from "./issue.state.ts";

export const selectFeature = (state: RootState) => state.issues;

export const {

selectIds,

selectEntities,

selectAll,

selectTotal,

} = adapter.getSelectors(selectFeature);

The adapter doesn’t provide us with actions. You’ll still have to define those yourself. However, we also

don’t need any specific actions, instead we can keep using our existing ones. Youmight want to take a

look at the available adapter collection methods to get some inspiration though. We’ll apply those inside

the reducer - that’s where we reap the benefits of the adapter abstraction:

// issue.reducer.ts

import { createReducer, on } from "@ngrx/store";

import { resolve, submitSuccess } from "./issues.actions";

import { adapter, initialState } from "./issues.state";

export const issueReducer = createReducer(

initialState,

on(submitSuccess, (state, { issue }) => adapter.addOne(issue, state)),

142

https://nils-mehlhorn.de/short/XWCZJ

on(resolve, (state, { id }) =>

adapter.mapOne(

{

id,

map: (issue) => ({

...issue,

resolved: true,

}),

},

state

)

),

on(IssueActions.resolveFailure, (state, { issueId }) =>

adapter.mapOne(

{

id: issueId,

map: (issue) => ({

...issue,

resolved: false,

}),

},

state

)

),

on(IssueActions.loadSuccess, (state, { issues }) => ({

...adapter.setAll(issues, state),

loaded: true,

}))

);

Every adapter collectionmethod allows us to perform a generic operation on our entitieswhile returning

a new state. Take a look at howwe’re now handling submitSuccess actions. Passing the incoming

issue to adapter.addOne() will create a copy of the existing state where the issue is then placed into

the entities dictionary - same functionality as before, but less code.

When transformations get more specific, we can utilize advanced adapter methods like updateOne()

which expects an Update<T> next to the current state. The corresponding type definitions look like

this:

143

https://nils-mehlhorn.de/short/PJY9J

export interface UpdateStr<T> {

id: string;

changes: Partial<T>;

}

export interface UpdateNum<T> {

id: number;

changes: Partial<T>;

}

export declare type Update<T> = UpdateStr<T> | UpdateNum<T>;

There are two definitions based on whether your ID is a number or strings. The adapter will try to

find an entity with the passed ID and potentially update the corresponding entity with the partial

representation specified under the changes property.

Note that you can still write state change functions that don’t use the adapter. Moreover, you might also

combine adapter operations with manual logic by either transforming the state before passing it to an

adapter method or expanding on the result (see the handling of loadSuccess above). Keep in mind

though that you still must not directly mutate the state at any point.

18.3 When to Use

The entity abstraction is definitely well thought out. While it allows us to handle entity collections in a

generic way, it also doesn’t restrict us. We can still add custom properties, write additional reducer logic

or define actions the waywewant. Yet, with solutions like immer.js in the picture, it doesn’t drastically

reduce the code we’re writing. At the same time, even if it doesn’t dictate fat actions, it somewhat

promotes their use. You’ll be tempted to define a single action creator for updating an entity which

might then be used all over your application. This contradicts our rules for writing actions, specifically

regarding categorization based on event source. However, the charm of NgRx entity is that it’s non-

obstructive - you can easily introduce it at a later point of time. Therefore you might start out managing

entities manually and add the abstraction when it fits.

CODE-BRANCH
Entity Abstraction

Changes | Source Code | Live Demo

144

https://nils-mehlhorn.de/short/KeKub
https://nils-mehlhorn.de/short/wHmgp
https://nils-mehlhorn.de/short/jt4y4

Chapter 19

Data Abstraction

NgRx data is a conceptual extension of the entity abstraction that takes care of evenmore than imple-

menting state transitions and selectors for collections. Per entity collection it’ll also give you a service

for persisting to a remote server via HTTP, corresponding actions and effects as well as a facade for

interacting with entities in an abstract manner. Additionally, it supports intricacies like transaction

support or entity change tracking. Exploring all available extension points is beyond the scope of this

book, however, I’d like to show you howwe can re-create our existing functionality.

You can install the@ngrx/data library with one of the following commands:

npm install @ngrx/data

yarn add @ngrx/data

Youmight also get installation support with the ng add schematic:

ng add @ngrx/data@latest

Thiswill alreadycreateafile entity-metadata.ts foryouandregister its EntityDataModuleConfig

while importing the EntityDataModule into your app module - otherwise you’ll have to do this

yourself.

With NgRx Data, Instead of implementing each code unit for managing an entity collection ourselves,

we’ll provide the abstraction with metadata which it then uses to derive the necessary functionality

under the hood. We don’t need to work with an entity adapter anymore, actually, we can ditch most of

our custom code for the part of the store that is concernedwith issues like reducer, actions, selectors,

effects - even the facade. As long as we’re okay with howNgRx handles our entities, we just need to

to provide metadata for the issue entity. That’s done by defining an EntityMetadataMap where the

entity name in its singular form is used as the key. The corresponding value is a partial representation

of EntityMetadata which offers certain options for configuring how the entity is handled - in our

case we’ll pass our custom filter function here:

145

https://nils-mehlhorn.de/short/8SXu4
https://nils-mehlhorn.de/short/BUqBL
https://nils-mehlhorn.de/short/BUqBL
https://nils-mehlhorn.de/short/ZTnjr
https://nils-mehlhorn.de/short/CUkzE
https://nils-mehlhorn.de/short/cZhy4

// entity-metadata.ts

import { EntityMetadataMap, EntityDataModuleConfig } from "@ngrx/data";

const entityMetadata: EntityMetadataMap = {

Issue: {

filterFn: (issues, text) => {

if (text) {

const lowercased = text.toLowerCase();

return issues.filter(

({ title, description }) =>

title.toLowerCase().includes(lowercased) ||

description.toLowerCase().includes(lowercased)

);

} else {

return issues;

}

},

},

};

export const entityConfig: EntityDataModuleConfig = {

entityMetadata,

};

// app.module.ts

@NgModule({

imports: [EntityDataModule.forRoot(entityConfig)],

})

export class AppModule {}

These few lines of code are all that’s required for generating the following units for the issue entity

collection at runtime:

• various actions for all entity operations (i.a. create, update, delete) based on the container type

EntityAction

• an EntityCollectionReducer thatmanages an EntityCollection basedonentity actions;

the reducer and state type are respectively comparable to the collection methods and entity state

type from the plain entity abstraction

• an EntityCollectionDataService for performing HTTP requests for persisting entity state

to the server based on the entity name

146

https://nils-mehlhorn.de/short/6sje5
https://nils-mehlhorn.de/short/ogE8L
https://nils-mehlhorn.de/short/hYJVd
https://nils-mehlhorn.de/short/hnQsZ

• EntityEffects that connect entity actions to the EntityCollectionDataService

• an EntityCollectionService , the facade for interacting with the entity collection from com-

ponents and services, plus corresponding EntitySelectors

We can adapt the default facade by extending EntityCollectionServiceBase . This waywe can

expose additional selections andmethods:

// issue-collection.service.ts

import { Injectable } from "@angular/core";

import {

EntityCollectionServiceBase,

EntityCollectionServiceElementsFactory,

} from "@ngrx/data";

import { Observable } from "rxjs";

import { Issue } from "../models/issue";

import * as fromIssue from "../store/issue/issue.selectors";

@Injectable({ providedIn: "root" })

export class IssueCollectionService extends EntityCollectionServiceBase<Issue> {

active$: Observable<Issue>;

constructor(elementsFactory: EntityCollectionServiceElementsFactory) {

super("Issue", elementsFactory);

this.active$ = this.store.select(fromIssue.selectActive);

}

resolve(issue: Issue): Observable<Issue> {

return this.update({ ...issue, resolved: true });

}

}

Our container component can then use the collection service to interact with the entity state:

// issues.component.ts

import { IssueCollectionService } from '../../services/issue-collection.service';

@Component({ ... })

export class IssuesComponent implements OnInit {

issues$: Observable<Issue[]>;

constructor(private issues: IssueCollectionService) {

147

https://nils-mehlhorn.de/short/LAtTz
https://nils-mehlhorn.de/short/hnQsZ
https://nils-mehlhorn.de/short/gmEuQ
https://nils-mehlhorn.de/short/GJoud
https://nils-mehlhorn.de/short/nP7Ny

this.issues$ = this.issues.filteredEntities$;

}

ngOnInit(): void {

this.issues.load();

}

onSearch(text: string): void {

this.issues.setFilter(text);

}

onResolve(issue: Issue): void {

this.issues.resolve(issue);

}

onSubmit(issue: Issue): void {

this.issues.add(issue);

}

}

Note that I cleared out all files in store/issue/ except for issue.selectors.ts . Here we still

need to define the selectStats and selectActive selectors. We can do so by retrieving the

existing entity selectors through a EntitySelectorsFactory (similar to getSelectors() from

the plain entity abstraction). This allows us to re-create our custom selectors:

// issue.selectors.ts

import { EntitySelectorsFactory } from "@ngrx/data";

import { createSelector } from "@ngrx/store";

import { Issue } from "../../models/issue";

import * as fromRouter from "../router/router.selectors";

export const {

selectEntities,

selectEntityMap,

} = new EntitySelectorsFactory().create<Issue>("Issue");

export const selectStats = createSelector(

selectEntities,

(issues): IssueStats => {

const resolved = issues.filter((issue) => issue.resolved);

148

https://nils-mehlhorn.de/short/ZCnj8

return {

total: issues.length,

resolved: resolved.length,

};

}

);

export const selectActiveId = fromRouter.selectRouteParam("id");

export const selectActive = createSelector(

selectEntityMap,

selectActiveId,

(entities, id) => entities[id]

);

Nowwe can also update the detail view to leverage the collection service:

// issue-detail.component.ts

import { IssueCollectionService } from '../../services/issue-collection.service';

@Component({ ... })

export class IssueDetailComponent {

issue$: Observable<Issue>;

constructor(private issues: IssueCollectionService) {

this.issue$ = this.issues.active$;

}

}

Meanwhile, you can still directly select the entity state from the store as wemight do for keeping our

stats in the application header.

As you can see, almost all functionality we need is already provided by NgRx Data andwhat’s missing

can be implemented through extension points (at least most of the time). This makes the abstraction

extremely powerful since we get the same result with a fraction of the code that we had prior.

When you’re already using NgRx this abstraction is a seamless addition for managing data. However,

it also promotes action re-use, thus diminishes the value of a Redux-like architecture to some extend.

Moreover, there is currently no support for things like pagination and the documentation is a bit sparse.

Therefore, evaluate carefully whether you need these big guns for your project.

149

CODE-BRANCH
Data Abstraction

Changes | Source Code | Live Demo

150

https://nils-mehlhorn.de/short/XpyKf
https://nils-mehlhorn.de/short/pan7U
https://nils-mehlhorn.de/short/ppKNe

Resources

Documentation

• NgRx Documentation

• Angular Documentation

• TypeScript Documentation

• RxJS Documentation

• Redux Style Guide

Community

• NgRx Discord Server

• Angular Discord Server

• Angular Checklist

Alternatives

• NGXS

• Akita

• RxState

• NgRx ComponentStore

• XState

Tools used for this Book

• Pandoc

• Excalidraw

151

https://nils-mehlhorn.de/short/aZefb
https://nils-mehlhorn.de/short/QZEn9
https://nils-mehlhorn.de/short/cnTUr
https://nils-mehlhorn.de/short/2GiYt
https://nils-mehlhorn.de/short/XxVCn
https://nils-mehlhorn.de/short/dsrrM
https://nils-mehlhorn.de/short/NQf8S
https://nils-mehlhorn.de/short/7xrXj
https://nils-mehlhorn.de/short/STPLS
https://nils-mehlhorn.de/short/e8c67
https://nils-mehlhorn.de/short/AqnMC
https://nils-mehlhorn.de/short/kqhb5
https://nils-mehlhorn.de/short/AZpca
https://nils-mehlhorn.de/short/Sqz53
https://nils-mehlhorn.de/short/mkrJ5

	Preface
	Share This Book
	Feedback
	Acknowledgements
	About the Author

	Introduction
	Motivation
	Concepts and Terminology
	NgRx Is Not Just A Store
	You Might Not Need NgRx

	Example App
	Installation
	First Steps
	Debugging
	File Structure and Naming
	State
	Normalization
	What Not to Put in the State

	Actions
	Action Creators
	Action Hygiene

	Reducers
	Creating Reducers
	Registering Reducers
	Mutable APIs with immer.js
	Meta-Reducers
	Error Handling

	Selectors
	Computed Selectors
	Parameterized Selectors
	Pipeable Selectors

	Fat vs. Thin Actions and Reducers
	Feature Modules
	Multiple Reducers per Module
	Deciding between root and feature state

	Effects
	Installation
	Creating Effects
	Accessing the State
	Error Handling
	Optimistic vs. Pessimistic Updates
	Initial Data and Effects
	Non-Dispatching Effects
	Other Effect Sources

	Testing
	Testing Reducers
	Test Object Factories
	Testing Action Creators
	Testing Selectors
	Testing Observables
	Testing Effects
	Testing Components and Services

	Performance
	OnPush Change Detection
	Tracking List Elements
	Efficient Handling of Remote Data

	Patterns
	Container and Presentational Components
	Facades
	Re-Hydration

	Router Store
	Installation
	Selecting Router State
	Reacting to Router Actions

	Entity Abstraction
	Installation
	Entitiy State and Adapter
	When to Use

	Data Abstraction
	Resources

